|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Youtube Casual Audio Dataset""" |
|
|
|
|
|
import datasets |
|
import pandas as pd |
|
import re |
|
|
|
|
|
_DATA_URL = "https://dutudn-my.sharepoint.com/:u:/g/personal/122180028_sv1_dut_udn_vn/Ed5mI5CjXIxHgb2qqPOElj0BBgn7FGT75SUgPdIuMS1LDw?download=1" |
|
_PROMPTS_URLS = { |
|
"train": "https://drive.google.com/uc?export=download&id=1s5d-1ZTzcxsnxUjiBLsv9KCB-yBcXyQ9", |
|
"test": "https://drive.google.com/uc?export=download&id=1-l1QdNQ98DGZM63-GOKIVnFvxTz2SGeK", |
|
"validation": "https://drive.google.com/uc?export=download&id=1GM_6s5icko6zRrldx8LcbANyl0geMSl8" |
|
} |
|
|
|
_DESCRIPTION = """\ |
|
""" |
|
|
|
_LANGUAGES = { |
|
"vi": { |
|
"Language": "Vietnamese", |
|
"Date": "2021-12-11", |
|
"Size": "17000 MB", |
|
"Version": "vi_100h_2020-12-11", |
|
"Validated_Hr_Total": '~20h', |
|
"Overall_Hr_Total": '~100h', |
|
"Number_Of_Voice": 62, |
|
}, |
|
} |
|
|
|
|
|
class YoutubeCasualAudioConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for YoutubeCasualAudio.""" |
|
|
|
def __init__(self, name, sub_version, **kwargs): |
|
""" |
|
Args: |
|
data_dir: `string`, the path to the folder containing the files in the |
|
downloaded .tar |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
self.sub_version = sub_version |
|
self.language = kwargs.pop("language", None) |
|
self.date_of_snapshot = kwargs.pop("date", None) |
|
self.size = kwargs.pop("size", None) |
|
self.validated_hr_total = kwargs.pop("val_hrs", None) |
|
self.total_hr_total = kwargs.pop("total_hrs", None) |
|
self.num_of_voice = kwargs.pop("num_of_voice", None) |
|
description = f"Youtube Casual Audio speech to text dataset in {self.language} version " \ |
|
f"{self.sub_version} of {self.date_of_snapshot}. " \ |
|
f"The dataset comprises {self.validated_hr_total} of validated transcribed speech data from " \ |
|
f"{self.num_of_voice} speakers. The dataset has a size of {self.size} " |
|
super(YoutubeCasualAudioConfig, self).__init__( |
|
name=name, version=datasets.Version("0.1.0", ""), description=description, **kwargs |
|
) |
|
|
|
|
|
class YoutubeCasualAudio(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 1000 |
|
BUILDER_CONFIGS = [ |
|
YoutubeCasualAudioConfig( |
|
name=lang_id, |
|
language=_LANGUAGES[lang_id]["Language"], |
|
sub_version=_LANGUAGES[lang_id]["Version"], |
|
) |
|
for lang_id in _LANGUAGES.keys() |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"file_path": datasets.Value("string"), |
|
"script": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
archive = dl_manager.download(_DATA_URL) |
|
tsv_files = dl_manager.download(_PROMPTS_URLS) |
|
path_to_data = "audio" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"tsv_files": tsv_files["train"], |
|
"audio_files": dl_manager.iter_archive(archive), |
|
"path_to_clips": path_to_data, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"tsv_files": tsv_files["test"], |
|
"audio_files": dl_manager.iter_archive(archive), |
|
"path_to_clips": path_to_data, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"tsv_files": tsv_files["validation"], |
|
"audio_files": dl_manager.iter_archive(archive), |
|
"path_to_clips": path_to_data, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, tsv_files, audio_files, path_to_clips): |
|
"""Yields examples.""" |
|
data_fields = list(self._info().features.keys()) |
|
|
|
|
|
data_fields.remove("audio") |
|
examples = {} |
|
|
|
df = pd.read_csv(tsv_files, sep="\t", header=0) |
|
df = df.dropna() |
|
chars_to_ignore_regex = r'[,?.!\-;:"“%\'�]' |
|
|
|
for file_path, script in zip(df["file_path"], df["script"]): |
|
|
|
audio_path = path_to_clips + "/" + file_path |
|
|
|
|
|
if ":" in script: |
|
two_dot_index = script.index(":") |
|
script = script[two_dot_index + 1:] |
|
script = script.replace("\n", " ") |
|
script = re.sub(chars_to_ignore_regex, '', script).lower() |
|
|
|
examples[audio_path] = { |
|
"file_path": audio_path, |
|
"script": script, |
|
} |
|
|
|
for path, f in audio_files: |
|
if path.startswith(path_to_clips): |
|
if path in examples: |
|
audio = {"path": path, "bytes": f.read()} |
|
yield path, {**examples[path], "audio": audio} |
|
|