File size: 3,887 Bytes
d61a5ba
f4ce00e
d2395f0
e618532
d61a5ba
6f69865
fc74c6f
 
6f69865
fc74c6f
 
6f69865
1af3915
6f69865
 
 
 
fc74c6f
 
 
 
6f69865
a186294
6f69865
fc74c6f
 
498fbdd
e618532
 
 
 
 
 
 
498fbdd
fc74c6f
a186294
fc74c6f
6f69865
 
ea0a244
fc74c6f
 
 
 
 
3f0c3b8
d61a5ba
4058cac
fc74c6f
 
4058cac
fc74c6f
 
4058cac
fc74c6f
 
eb03b30
2df6c0e
eb03b30
 
 
 
2df6c0e
5cd88e4
eb03b30
 
 
 
 
2df6c0e
5cd88e4
eb03b30
 
 
 
 
2df6c0e
5cd88e4
eb03b30
 
 
a186294
 
2df6c0e
 
 
 
 
 
 
 
96fd061
a9126ce
2df6c0e
a9126ce
7304059
a186294
2df6c0e
a9126ce
7304059
a186294
7304059
2df6c0e
7304059
a9126ce
 
 
 
a186294
4b10b88
5cd88e4
2df6c0e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
import glob
import random
import zipfile

import datasets
from datasets.tasks import ImageClassification

_HOMEPAGE = "https://github.com/your-github/renovation"

_CITATION = """\
@ONLINE {renovationdata,
    author="Your Name",
    title="Renovation dataset",
    month="January",
    year="2023",
    url="https://github.com/your-github/renovation"
}
"""

_DESCRIPTION = """\
Renovations is a dataset of images of houses taken in the field using smartphone
cameras. It consists of 7 classes: Not Applicable, Very Poor, Poor, Fair, Good, Excellent, and Exceptional renovations.
Data was collected by the your research lab.
"""

_URLS = {
    "Not Applicable": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Not Applicable.zip",
    "Very Poor": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Very Poor.zip",
    "Poor": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Poor.zip",
    "Fair": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Fair.zip",
    "Good": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Good.zip",
    "Excellent": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Excellent.zip",
    "Exceptional": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Exceptional.zip"
}

_NAMES = ["Not Applicable", "Very Poor", "Poor", "Fair", "Good", "Excellent", "Exceptional"]

class Renovations(datasets.GeneratorBasedBuilder):
    """Renovations house images dataset."""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image_file_path": datasets.Value("string"),
                    "image": datasets.Image(),
                    "labels": datasets.features.ClassLabel(names=_NAMES),
                }
            ),
            supervised_keys=("image", "labels"),
            homepage=_HOMEPAGE,
            citation=_CITATION,
            task_templates=[ImageClassification(image_column="image", label_column="labels")],
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_dir": data_dir,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "data_dir": data_dir,
                    "split": "val",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_dir": data_dir,
                    "split": "test",
                },
            ),
        ]


    def _generate_examples(self, data_dir, split):
        all_files_and_labels = []
        for label in _NAMES:
            folder_path = os.path.join(data_dir, label)
            files = glob.glob(os.path.join(folder_path, "*.jpeg"))
            for file in files:
                all_files_and_labels.append((file, label))
    
        random.seed(43)  # ensure reproducibility
        random.shuffle(all_files_and_labels)
    
        num_files = len(all_files_and_labels)
        train_data = all_files_and_labels[:int(num_files*0.9)]
        val_test_data = all_files_and_labels[int(num_files*0.9):]  # This will be used for both val and test
    
        if split == "train":
            data_to_use = train_data
        else:  # "val" or "test" split
            data_to_use = val_test_data
    
        for idx, (file, label) in enumerate(data_to_use):
            yield idx, {
                "image_file_path": file,
                "image": file,
                "labels": label,
            }