sea_wiki / README.md
sabilmakbar's picture
Update codebase and new langs
566a951
|
raw
history blame
22.8 kB
metadata
annotations_creators:
  - no-annotation
language_creators:
  - crowdsourced
language:
  - ace
  - ban
  - bjn
  - bug
  - gor
  - km
  - id
  - jv
  - lo
  - mad
  - mnw
  - min
  - ms
  - my
  - nia
  - shn
  - su
  - tet
  - th
  - vi
license:
  - cc-by-sa-3.0
  - gfdl
multilinguality:
  - multilingual
source_datasets:
  - Wikipedia
task_categories:
  - text-generation
  - fill-mask
task_ids:
  - language-modeling
  - masked-language-modeling
pretty_name: Wikipedia Archive for SEA Languages
tags:
  - Wikipedia
  - Southeast Asia (SEA)
  - Dialect
  - Banyumasan Dialect of Javanese (Ngapak)
  - SEA-related Languages
  - SEA Local Languages
dataset_info:
  - config_name: seawiki_all
    features:
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: ace
        num_bytes: 4952102
        num_examples: 13003
      - name: ban
        num_bytes: 18198909
        num_examples: 20987
      - name: bcl
        num_bytes: 20258642
        num_examples: 15743
      - name: bjn
        num_bytes: 6792259
        num_examples: 10519
      - name: bug
        num_bytes: 3298561
        num_examples: 15880
      - name: cbk_zam
        num_bytes: 2033238
        num_examples: 3285
      - name: gor
        num_bytes: 6239133
        num_examples: 15359
      - name: id
        num_bytes: 1118834498
        num_examples: 665622
      - name: ilo
        num_bytes: 16719139
        num_examples: 15371
      - name: jv
        num_bytes: 72101470
        num_examples: 73380
      - name: km
        num_bytes: 103146669
        num_examples: 11994
      - name: lo
        num_bytes: 15240262
        num_examples: 5014
      - name: mad
        num_bytes: 1612542
        num_examples: 1192
      - name: map_bms
        num_bytes: 5221506
        num_examples: 13580
      - name: min
        num_bytes: 116824020
        num_examples: 227143
      - name: mnw
        num_bytes: 47321734
        num_examples: 3296
      - name: ms
        num_bytes: 419662356
        num_examples: 368628
      - name: my
        num_bytes: 313370839
        num_examples: 109310
      - name: nia
        num_bytes: 2153274
        num_examples: 1714
      - name: pag
        num_bytes: 1370162
        num_examples: 2665
      - name: pam
        num_bytes: 8218370
        num_examples: 9006
      - name: shn
        num_bytes: 33754296
        num_examples: 13945
      - name: su
        num_bytes: 47516268
        num_examples: 61555
      - name: ta
        num_bytes: 809156746
        num_examples: 160651
      - name: tet
        num_bytes: 1454499
        num_examples: 1468
      - name: th
        num_bytes: 1012930269
        num_examples: 159719
      - name: tl
        num_bytes: 85356818
        num_examples: 45341
      - name: vi
        num_bytes: 1603057632
        num_examples: 1288680
      - name: war
        num_bytes: 454304567
        num_examples: 1266394
    download_size: 6358317628
    dataset_size: 6351100780
  - config_name: seawiki_dedup_all
    features:
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: ace
        num_bytes: 4944916
        num_examples: 12979
      - name: ban
        num_bytes: 18025267
        num_examples: 20611
      - name: bcl
        num_bytes: 19977232
        num_examples: 14079
      - name: bjn
        num_bytes: 6786207
        num_examples: 10503
      - name: bug
        num_bytes: 2182435
        num_examples: 9969
      - name: cbk_zam
        num_bytes: 1579651
        num_examples: 2242
      - name: gor
        num_bytes: 6217480
        num_examples: 15290
      - name: id
        num_bytes: 1117891512
        num_examples: 662443
      - name: ilo
        num_bytes: 16719001
        num_examples: 15369
      - name: jv
        num_bytes: 71997517
        num_examples: 73080
      - name: km
        num_bytes: 102698901
        num_examples: 11466
      - name: lo
        num_bytes: 14908444
        num_examples: 4897
      - name: mad
        num_bytes: 1612542
        num_examples: 1192
      - name: map_bms
        num_bytes: 5067489
        num_examples: 11839
      - name: min
        num_bytes: 116721269
        num_examples: 225972
      - name: mnw
        num_bytes: 47243333
        num_examples: 3271
      - name: ms
        num_bytes: 414783365
        num_examples: 348045
      - name: my
        num_bytes: 312990457
        num_examples: 108819
      - name: nia
        num_bytes: 2153274
        num_examples: 1714
      - name: pag
        num_bytes: 764869
        num_examples: 1108
      - name: pam
        num_bytes: 8205723
        num_examples: 8932
      - name: shn
        num_bytes: 33616591
        num_examples: 13662
      - name: su
        num_bytes: 47512744
        num_examples: 61529
      - name: ta
        num_bytes: 809061339
        num_examples: 160580
      - name: tet
        num_bytes: 1452151
        num_examples: 1464
      - name: th
        num_bytes: 1012868861
        num_examples: 159666
      - name: tl
        num_bytes: 85286023
        num_examples: 45121
      - name: vi
        num_bytes: 1602828123
        num_examples: 1287910
      - name: war
        num_bytes: 454266479
        num_examples: 1266204
    download_size: 6347597222
    dataset_size: 6340363195
  - config_name: seawiki_with_countries_all
    features:
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: brn_ms
        num_bytes: 419662356
        num_examples: 368628
      - name: idn_ace
        num_bytes: 4952102
        num_examples: 13003
      - name: idn_ban
        num_bytes: 18198909
        num_examples: 20987
      - name: idn_bjn
        num_bytes: 6792259
        num_examples: 10519
      - name: idn_bug
        num_bytes: 3298561
        num_examples: 15880
      - name: idn_gor
        num_bytes: 6239133
        num_examples: 15359
      - name: idn_id
        num_bytes: 1118834498
        num_examples: 665622
      - name: idn_jv
        num_bytes: 72101470
        num_examples: 73380
      - name: idn_mad
        num_bytes: 1612542
        num_examples: 1192
      - name: idn_map_bms
        num_bytes: 5221506
        num_examples: 13580
      - name: idn_min
        num_bytes: 116824020
        num_examples: 227143
      - name: idn_ms
        num_bytes: 419662356
        num_examples: 368628
      - name: idn_nia
        num_bytes: 2153274
        num_examples: 1714
      - name: idn_su
        num_bytes: 47516268
        num_examples: 61555
      - name: idn_tet
        num_bytes: 1454499
        num_examples: 1468
      - name: khm_km
        num_bytes: 103146669
        num_examples: 11994
      - name: lao_lo
        num_bytes: 15240262
        num_examples: 5014
      - name: mmr_my
        num_bytes: 313370839
        num_examples: 109310
      - name: mmr_shn
        num_bytes: 33754296
        num_examples: 13945
      - name: mmr_mnw
        num_bytes: 47321734
        num_examples: 3296
      - name: mys_ms
        num_bytes: 419662356
        num_examples: 368628
      - name: mys_ta
        num_bytes: 809156746
        num_examples: 160651
      - name: phl_war
        num_bytes: 454304567
        num_examples: 1266394
      - name: phl_tl
        num_bytes: 85356818
        num_examples: 45341
      - name: phl_ilo
        num_bytes: 16719139
        num_examples: 15371
      - name: phl_bcl
        num_bytes: 20258642
        num_examples: 15743
      - name: phl_pam
        num_bytes: 8218370
        num_examples: 9006
      - name: phl_cbk_zam
        num_bytes: 2033238
        num_examples: 3285
      - name: phl_pag
        num_bytes: 1370162
        num_examples: 2665
      - name: sgp_ms
        num_bytes: 419662356
        num_examples: 368628
      - name: sgp_ta
        num_bytes: 809156746
        num_examples: 160651
      - name: tha_th
        num_bytes: 1012930269
        num_examples: 159719
      - name: tha_mnw
        num_bytes: 47321734
        num_examples: 3296
      - name: tha_shn
        num_bytes: 33754296
        num_examples: 13945
      - name: tls_tet
        num_bytes: 1454499
        num_examples: 1468
      - name: vnm_vi
        num_bytes: 1603057632
        num_examples: 1288680
    download_size: 6358317628
    dataset_size: 8501775123
  - config_name: seawiki_with_countries_dedup_all
    features:
      - name: url
        dtype: string
      - name: title
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: brn_ms
        num_bytes: 414783365
        num_examples: 348045
      - name: idn_ace
        num_bytes: 4944916
        num_examples: 12979
      - name: idn_ban
        num_bytes: 18025267
        num_examples: 20611
      - name: idn_bjn
        num_bytes: 6786207
        num_examples: 10503
      - name: idn_bug
        num_bytes: 2182435
        num_examples: 9969
      - name: idn_gor
        num_bytes: 6217480
        num_examples: 15290
      - name: idn_id
        num_bytes: 1117891512
        num_examples: 662443
      - name: idn_jv
        num_bytes: 71997517
        num_examples: 73080
      - name: idn_mad
        num_bytes: 1612542
        num_examples: 1192
      - name: idn_map_bms
        num_bytes: 5067489
        num_examples: 11839
      - name: idn_min
        num_bytes: 116721269
        num_examples: 225972
      - name: idn_ms
        num_bytes: 414783365
        num_examples: 348045
      - name: idn_nia
        num_bytes: 2153274
        num_examples: 1714
      - name: idn_su
        num_bytes: 47512744
        num_examples: 61529
      - name: idn_tet
        num_bytes: 1452151
        num_examples: 1464
      - name: khm_km
        num_bytes: 102698901
        num_examples: 11466
      - name: lao_lo
        num_bytes: 14908444
        num_examples: 4897
      - name: mmr_my
        num_bytes: 312990457
        num_examples: 108819
      - name: mmr_shn
        num_bytes: 33616591
        num_examples: 13662
      - name: mmr_mnw
        num_bytes: 47243333
        num_examples: 3271
      - name: mys_ms
        num_bytes: 414783365
        num_examples: 348045
      - name: mys_ta
        num_bytes: 809061339
        num_examples: 160580
      - name: phl_war
        num_bytes: 454266479
        num_examples: 1266204
      - name: phl_tl
        num_bytes: 85286023
        num_examples: 45121
      - name: phl_ilo
        num_bytes: 16719001
        num_examples: 15369
      - name: phl_bcl
        num_bytes: 19977232
        num_examples: 14079
      - name: phl_pam
        num_bytes: 8205723
        num_examples: 8932
      - name: phl_cbk_zam
        num_bytes: 1579651
        num_examples: 2242
      - name: phl_pag
        num_bytes: 764869
        num_examples: 1108
      - name: sgp_ms
        num_bytes: 414783365
        num_examples: 348045
      - name: sgp_ta
        num_bytes: 809061339
        num_examples: 160580
      - name: tha_th
        num_bytes: 1012868861
        num_examples: 159666
      - name: tha_mnw
        num_bytes: 47243333
        num_examples: 3271
      - name: tha_shn
        num_bytes: 33616591
        num_examples: 13662
      - name: tls_tet
        num_bytes: 1452151
        num_examples: 1464
      - name: vnm_vi
        num_bytes: 1602828123
        num_examples: 1287910
    download_size: 6347597222
    dataset_size: 8476086704

SEA Wikipedia Data Repository


license: cc-by-sa-3.0

Welcome to SEA Wikipedia Data Repository. The datasets are extracted from Wikipedia HF and processed using the scripts available in this repository for reproducibility purpose.

Getting Started

To read the datasets directly

Use one of the following code chunks to load it from HuggingFace Hub: You can refer to the 2nd args of config name using the following script

dataset = load_dataset(
  "sabilmakbar/sea_wiki",
  "seawiki_dedup_all" # a config name, can be "seawiki_dedup_all" or "seawiki_with_countries_all", or "seawiki_with_countries_dedup_all" , defaults to "seawiki_dedup_all"
)

Or you can provide both lang and date_stamp (or just lang only by assuming the date_stamp will take the newest one)

dataset = load_dataset(
  "sabilmakbar/sea_wiki",
  lang = "id", # see README for complete lang choices
  date_stamp="20230901"
)

Or you can provide a country params with similar fashion to lang args (providing both country and lang will prioritize the lang kwarg)

dataset = load_dataset(
  "sabilmakbar/sea_wiki",
  lang = "id", # see the splits for complete lang choices
  date_stamp="20230901"
)

FAQS

What are the available languages provided in dataset and from which country?

You may check the following tables to understand the current coverage of this dataset (languages, countries, data size & volume).

1. Table of Countries and its Country Code

Country Code Country Name Wiki Info
brn Brunei Wiki Link
idn Indonesia Wiki Link
khm Cambodia Wiki Link
lao Laos Wiki Link
mmr Myanmar Wiki Link
mys Malaysia Wiki Link
phl Philippines Wiki Link
sgp Singapore Wiki Link
tha Thailand Wiki Link
tls East Timor Wiki Link
vnm Vietnam Wiki Link

2. Table of Languages and Countries of its speakers

Lang Code Lang Name Country Codes Spoken Wiki Info Total Data Total Size (MiB rounded)
ace Acehnese idn Wiki Link 12904 4.64
ban Balinese idn Wiki Link 19837 16.56
bjn Banjarese idn Wiki Link 10437 6.35
bcl Central Bicolano phl Wiki Link 15743 19.32
bug Buginese idn Wiki Link 9793 1.98
ceb Cebuano phl Wiki Link Not Supported Yet Not Supported Yet
cbk (ISO 639-3)
cbk_zam (WikiMedia)
Zamboanga Chavacano/Chavacano phl Wiki Link 3285 1.94
gor Gorontalo idn Wiki Link 14514 5.71
ilo Ilokano phl Wiki Link 15371 15.94
km Khmer khm Wiki Link 11994 98.37
id Indonesian idn Wiki Link 654287 1049.93
jv Javanese idn Wiki Link 72667 66.54
lo Lao lao Wiki Link 5014 14.53
mad Madurese idn Wiki Link 1192 1.54
map_bms Banyumasan
(Dialect of Javanese)
idn Wiki Link 11832 4.83
mnw Mon mmr Wiki Link 3296 45.13
min Minangkabau idn Wiki Link 225858 110.99
ms Malay mys, sgp, brn, idn Wiki Link 346186 391.43
my Burmese mmr Wiki Link 109310 298.85
nia Nias idn Wiki Link 1650 1.85
pag Pangasinan phl Wiki Link 2665 1.31
pam Kapampangan phl Wiki Link 9006 7.84
shn Shan mmr Wiki Link 13945 32.19
su Sundanese idn Wiki Link 61494 45.21
ta Tamil mys, sgp Wiki Link 160651 0.15
tet Tetum tls, idn Wiki Link 1465 1.39
th Thai tha Wiki Link 159719 966.00
tl Tagalog phl Wiki Link 45341 81.42
vi Vietnamese vnm Wiki Link 1288680 1528.79
war Waray phl Wiki Link 1266394 433.26

3. Table of Token Statistics for Covered Languages

The token statistics is generated using tiktoken using encoder for GPT-4.

Lang Code Total Token Avg Token per Article Min Token Max Token Token Deciles List
ace 1,370,829 105.61899992295247 3 9,659 [38.0, 52.0, 54.0, 69.0, 76.0, 84.0, 90.0, 123.0, 126.0]
ban 5,924,610 287.44893503469024 5 24,364 [97.0, 144.0, 165.0, 187.0, 209.0, 245.0, 276.0, 315.0, 421.0]
bcl 6,234,838 442.8466510405569 2 54,049 [55.0, 95.0, 143.0, 179.0, 226.0, 304.0, 419.0, 587.0, 917.2]
bjn 1,935,505 184.28115776444827 2 30,170 [36.0, 38.0, 39.0, 40.0, 42.0, 51.0, 82.0, 151.0, 367.0]
bug 553,693 55.54147858360919 1 13,951 [31.0, 42.0, 43.0, 46.0, 48.0, 50.0, 52.0, 55.0, 57.0]
cbk_zam 402,703 179.6177520071365 2 6,494 [35.0, 41.2, 56.0, 69.0, 90.0, 120.0, 138.0, 155.0, 294.9]
gor 1,575,766 103.05860039241334 2 5,525 [55.0, 58.0, 60.0, 62.0, 64.0, 66.0, 69.0, 75.0, 96.0]
id 325,411,713 491.22975561670967 1 198,597 [54.0, 93.0, 123.0, 145.0, 180.0, 226.0, 332.0, 543.0, 1068.0]
ilo 5,593,491 363.94632051532307 17 18,202 [59.0, 80.0, 91.0, 111.0, 152.0, 213.0, 303.0, 461.0, 856.0]
jv 23,528,314 321.95284619594963 2 342,156 [48.0, 60.0, 75.0, 88.0, 117.0, 175.0, 270.0, 420.0, 772.0]
km 54,559,721 4,758.391854177568 1 1,110,771 [160.0, 293.0, 452.0, 693.0, 1032.0, 1609.0, 2644.0, 4745.0, 9607.0]
lo 9,395,636 1,918.6514192362672 3 107,154 [134.0, 184.2, 285.0, 494.0, 658.0, 894.6, 1258.0, 1971.2, 4153.8]
mad 611,736 513.2013422818792 14 17,093 [80.1, 110.2, 135.0, 161.0, 194.0, 242.0, 302.7, 531.4, 1167.1]
map_bms 1,307,244 110.41844750401216 1 20,629 [20.0, 21.0, 22.0, 24.0, 30.0, 35.0, 36.0, 38.0, 111.0]
min 33,114,184 146.54109358681606 3 58,387 [81.0, 91.0, 96.0, 108.0, 119.0, 135.0, 156.0, 168.0, 170.0]
mnw 31,595,647 9,659.3234484867 6 1,450,765 [425.0, 601.0, 629.0, 682.0, 763.0, 2103.0, 4255.0, 7724.0, 14517.0]
ms 121,343,673 348.64363228892813 1 68,545 [32.0, 40.0, 49.0, 63.0, 105.0, 138.0, 216.0, 362.0, 788.0]
my 189,439,447 1,740.8673761015998 10 1,376,658 [164.0, 269.0, 350.0, 508.0, 559.0, 578.0, 605.0, 892.4, 3369.0]
nia 795,527 464.134772462077 8 18,650 [59.0, 61.0, 63.0, 65.0, 67.0, 86.0, 239.1, 623.4, 1249.7]
pag 222,366 200.6913357400722 5 10,143 [31.0, 51.0, 73.0, 110.0, 118.0, 120.0, 127.0, 181.0, 355.8]
pam 2,269,091 254.04064039408868 1 14,912 [38.0, 56.0, 78.0, 108.0, 121.0, 150.0, 193.0, 289.0, 525.8]
shn 23,125,637 1,692.6977748499487 2 204,094 [460.0, 480.0, 585.0, 679.0, 715.0, 740.0, 756.0, 780.0, 1580.9]
su 14,710,124 239.07627297697022 1 99,456 [41.0, 43.0, 45.0, 49.0, 70.0, 146.0, 216.0, 219.0, 419.0]
ta 376,043,508 2,341.782961763607 15 177,054 [543.0, 700.0, 824.0, 1001.0, 1153.0, 1465.0, 1992.0, 2911.0, 4652.0]
tet 487,016 332.6612021857924 4 24,287 [30.3, 47.0, 66.9, 101.0, 164.0, 177.0, 187.0, 248.6, 604.4]
th 330,964,733 2,072.8566695476807 1 289,150 [231.0, 390.0, 546.0, 727.0, 969.0, 1276.0, 1741.0, 2533.0, 4361.0]
tl 27,789,730 615.8934864032269 7 60,728 [73.0, 116.0, 161.0, 214.0, 281.0, 360.0, 465.0, 666.0, 1136.0]
vi 546,481,258 424.3163404275143 3 246,463 [46.0, 64.0, 71.0, 80.0, 86.0, 92.0, 120.0, 240.0, 824.0]
war 117,438,315 92.74833676090108 1 25,689 [60.0, 77.0, 81.0, 84.0, 87.0, 90.0, 94.0, 99.0, 110.0]

Some other languages in SEA that are already exists its Wiki Index at Wikimedia might be missing from this list. Any lang update PR is greatly appreciated!

How does the data being preprocessed? What makes it different from loading it directly from Wikipedia HF?

The data available in here are processed with following flows:

  1. Raw data is being deduplicated on title and text (text-content from a given article), to remove articles containing boilerplate text (template text that are used usually for unavailable informations or asking for contributions of content in that article), which usually deemed noisy for NLP data.
  2. Furthermore, the title and text data are being checked for string-matching duplication (duplication of text that are being pre-processed, i.e symbols removed, HTML tags striped, or ASCII-chars/UTF-8 chars validated). You may check this dedup_raw_wiki_data.py script to understand its implementation.

How do I extract new Wikipedia Dataset of SEA languages?

You may check to the script extract_raw_wiki_data.py to understand its implementations, or you can adjust the bash provided in extract_raw_wiki_data_sea.sh to extract it on your own.

How do I extract new Wikipedia Dataset of SEA languages?

You may visit this Wikipedia Dump Index to check any latest available data and this link Wikipedia Language Coverage to map into any languages that you're wanting to extract. Please note that this dataset is extensible to any languages of your choice.

To replicate the whole dataset generation process

  1. Set-up a new Python/Conda Environment (recommended Python version: 3.9.6 to 3.9.18 or 3.10.0 to 3.10.13) and install the requirements on requirements.txt use this codebase via pip install -r requirements.txt.

  2. Activate the chosen Python/Conda environment which the requirements are being installed.

  3. Force install multiprocess==0.70.15 by using pip install multiprocess==0.70.15 to avoid this issue (there's no other workaround for now)

  4. Run this sh script for extractions from Wikiedia HF using sh extract_raw_wiki_data_sea.sh
    This script will run extract_raw_wiki_data.py to construct the Wiki Dataset.

  5. Run this sh script for deduplications from extracted data in Step 4 using sh dedup_raw_wiki_data_sea.sh
    This script will run dedup_raw_wiki_data.py to do Wiki Dataset Clenasing. Please note that the cleansing process can be language/dialect specific.

Citation Info:

@ONLINE{wikidump,
    author = "Wikimedia Foundation",
    title  = "Wikimedia Downloads",
    url    = "https://dumps.wikimedia.org"}
@ONLINE{wikipedia-hf,
    title  = "Huggingface Wikipedia Dataset",
    url    = "https://huggingface.co/datasets/wikipedia"}