|
--- |
|
license: cc-by-4.0 |
|
language: |
|
- zh |
|
tags: |
|
- text-generation |
|
- e-commerce advertise |
|
pretty_name: AdvertiseGen |
|
task_categories: |
|
- text-generation |
|
--- |
|
|
|
# Dataset Card for Alpaca-zh |
|
|
|
- **formal url:** https://www.luge.ai/#/luge/dataDetail?id=9 |
|
|
|
## Dataset Description |
|
数据集介绍 |
|
|
|
AdvertiseGen是电商广告文案生成数据集。 |
|
|
|
AdvertiseGen以商品网页的标签与文案的信息对应关系为基础构造,是典型的开放式生成任务,在模型基于key-value输入生成开放式文案时,与输入信息的事实一致性需要得到重点关注。 |
|
|
|
|
|
- 任务描述:给定商品信息的关键词和属性列表kv-list,生成适合该商品的广告文案adv; |
|
- 数据规模:训练集114k,验证集1k,测试集3k; |
|
- 数据来源:清华大学CoAI小组; |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
The Alpaca dataset designed for instruction training pretrained language models. |
|
|
|
### Languages |
|
|
|
The data in AdvertiseGen are in Chinese. |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
An example of "train" looks as follows: |
|
|
|
```json |
|
{ |
|
"content": "类型#上衣*材质#牛仔布*颜色#白色*风格#简约*图案#刺绣*衣样式#外套*衣款式#破洞", |
|
"summary": "简约而不简单的牛仔外套,白色的衣身十分百搭。衣身多处有做旧破洞设计,打破单调乏味,增加一丝造型看点。衣身后背处有趣味刺绣装饰,丰富层次感,彰显别样时尚。" |
|
} |
|
``` |
|
|
|
## Dataset Creation |
|
|
|
### Curation Rationale |
|
|
|
[More Information Needed] |
|
|
|
### Source Data |
|
|
|
#### Initial Data Collection and Normalization |
|
|
|
[More Information Needed] |
|
|
|
#### Who are the source language producers? |
|
|
|
[More Information Needed] |
|
|
|
### Annotations |
|
|
|
#### Annotation process |
|
|
|
[More Information Needed] |
|
|
|
#### Who are the annotators? |
|
|
|
[More Information Needed] |
|
|
|
### Personal and Sensitive Information |
|
|
|
[More Information Needed] |
|
|
|
## Considerations for Using the Data |
|
|
|
|
|
### Discussion of Biases |
|
|
|
[More Information Needed] |
|
|
|
### Other Known Limitations |
|
|
|
The `alpaca` data is generated by a language model (`text-davinci-003`) and inevitably contains some errors or biases. We encourage users to use this data with caution and propose new methods to filter or improve the imperfections. |
|
|
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
|
|
[More Information Needed] |
|
|
|
### Citation Information |
|
数据集引用 |
|
|
|
如在学术论文中使用本数据集,请添加相关引用说明,具体如下: |
|
``` |
|
Shao, Zhihong, et al. "Long and Diverse Text Generation with Planning-based Hierarchical Variational Model." Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019. |
|
``` |
|
|
|
### Contributions |
|
|
|
[More Information Needed] |