File size: 28,850 Bytes
26499b9 f782a76 eda3bbb 6e65877 50e79c3 26499b9 eda3bbb 3f2130c 26499b9 50e79c3 f782a76 26499b9 f782a76 26499b9 50e79c3 26499b9 f782a76 26499b9 50e79c3 26499b9 50e79c3 f782a76 26499b9 eda3bbb 50e79c3 26499b9 eda3bbb 4ba0357 f782a76 4ba0357 f782a76 4ba0357 eda3bbb 50e79c3 26499b9 f782a76 26499b9 a77fbf7 50e79c3 a77fbf7 26499b9 f782a76 26499b9 a77fbf7 50e79c3 a77fbf7 26499b9 f782a76 1a4b1b3 26499b9 1a4b1b3 26499b9 a77fbf7 50e79c3 a77fbf7 26499b9 f782a76 26499b9 a77fbf7 26499b9 a77fbf7 50e79c3 a77fbf7 26499b9 f782a76 4ba0357 a77fbf7 50e79c3 a77fbf7 eda3bbb 50e79c3 eda3bbb 50e79c3 4ba0357 50e79c3 4ba0357 daa7fbf 4ba0357 daa7fbf 4ba0357 daa7fbf 4ba0357 daa7fbf 4ba0357 eda3bbb 4ba0357 6e65877 4ba0357 eda3bbb 4ba0357 eda3bbb 4ba0357 eda3bbb 4ba0357 eda3bbb 4ba0357 6e65877 eda3bbb 4ba0357 eda3bbb 6e65877 eda3bbb 4ba0357 eda3bbb 4ba0357 eda3bbb 4ba0357 eda3bbb 4ba0357 eda3bbb 26499b9 50e79c3 26499b9 eda3bbb 50e79c3 eda3bbb 50e79c3 26499b9 50e79c3 26499b9 50e79c3 26499b9 50e79c3 26499b9 50e79c3 26499b9 50e79c3 26499b9 50e79c3 26499b9 50e79c3 26499b9 a77fbf7 26499b9 a77fbf7 26499b9 a77fbf7 26499b9 a77fbf7 50e79c3 eda3bbb a77fbf7 26499b9 a77fbf7 c4d2d91 a77fbf7 3f2130c a77fbf7 50e79c3 a77fbf7 50e79c3 a77fbf7 26499b9 50e79c3 a77fbf7 26499b9 50e79c3 a77fbf7 50e79c3 a77fbf7 50e79c3 a77fbf7 eda3bbb a77fbf7 eda3bbb a77fbf7 50e79c3 4ba0357 a77fbf7 50e79c3 a77fbf7 daa7fbf a77fbf7 529489f a77fbf7 529489f a77fbf7 4ba0357 a77fbf7 eda3bbb 50e79c3 a77fbf7 4ba0357 a77fbf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 |
import json
import logging
import random
import string
import warnings
from dataclasses import dataclass
from typing import Dict, List, Literal, Optional
import datasets as ds
import pandas as pd
logger = logging.getLogger(__name__)
_JGLUE_CITATION = """\
@inproceedings{kurihara-lrec-2022-jglue,
title={JGLUE: Japanese general language understanding evaluation},
author={Kurihara, Kentaro and Kawahara, Daisuke and Shibata, Tomohide},
booktitle={Proceedings of the Thirteenth Language Resources and Evaluation Conference},
pages={2957--2966},
year={2022},
url={https://aclanthology.org/2022.lrec-1.317/}
}
@inproceedings{kurihara-nlp-2022-jglue,
title={JGLUE: 日本語言語理解ベンチマーク},
author={栗原健太郎 and 河原大輔 and 柴田知秀},
booktitle={言語処理学会第28回年次大会},
pages={2023--2028},
year={2022},
url={https://www.anlp.jp/proceedings/annual_meeting/2022/pdf_dir/E8-4.pdf},
note={in Japanese}
}
"""
_JCOLA_CITATION = """\
@article{someya2023jcola,
title={JCoLA: Japanese Corpus of Linguistic Acceptability},
author={Taiga Someya and Yushi Sugimoto and Yohei Oseki},
year={2023},
eprint={2309.12676},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@inproceedings{someya-nlp-2022-jcola,
title={日本語版 CoLA の構築},
author={染谷 大河 and 大関 洋平},
booktitle={言語処理学会第28回年次大会},
pages={1872--1877},
year={2022},
url={https://www.anlp.jp/proceedings/annual_meeting/2022/pdf_dir/E7-1.pdf},
note={in Japanese}
}
"""
_MARC_JA_CITATION = """\
@inproceedings{marc_reviews,
title={The Multilingual Amazon Reviews Corpus},
author={Keung, Phillip and Lu, Yichao and Szarvas, György and Smith, Noah A.},
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing},
pages={4563--4568},
year={2020}
}
"""
_JSTS_JNLI_CITATION = """\
@inproceedings{miyazaki2016cross,
title={Cross-lingual image caption generation},
author={Miyazaki, Takashi and Shimizu, Nobuyuki},
booktitle={Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
pages={1780--1790},
year={2016}
}
"""
_DESCRIPTION = """\
JGLUE, Japanese General Language Understanding Evaluation, \
is built to measure the general NLU ability in Japanese. JGLUE has been constructed \
from scratch without translation. We hope that JGLUE will facilitate NLU research in Japanese.\
"""
_JGLUE_HOMEPAGE = "https://github.com/yahoojapan/JGLUE"
_JCOLA_HOMEPAGE = "https://github.com/osekilab/JCoLA"
_MARC_JA_HOMEPAGE = "https://registry.opendata.aws/amazon-reviews-ml/"
_JGLUE_LICENSE = """\
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.\
"""
_DESCRIPTION_CONFIGS = {
"MARC-ja": "MARC-ja is a dataset of the text classification task. This dataset is based on the Japanese portion of Multilingual Amazon Reviews Corpus (MARC) (Keung+, 2020).",
"JCoLA": "JCoLA (Japanese Corpus of Linguistic Accept010 ability) is a novel dataset for targeted syntactic evaluations of language models in Japanese, which consists of 10,020 sentences with acceptability judgments by linguists.",
"JSTS": "JSTS is a Japanese version of the STS (Semantic Textual Similarity) dataset. STS is a task to estimate the semantic similarity of a sentence pair.",
"JNLI": "JNLI is a Japanese version of the NLI (Natural Language Inference) dataset. NLI is a task to recognize the inference relation that a premise sentence has to a hypothesis sentence.",
"JSQuAD": "JSQuAD is a Japanese version of SQuAD (Rajpurkar+, 2016), one of the datasets of reading comprehension.",
"JCommonsenseQA": "JCommonsenseQA is a Japanese version of CommonsenseQA (Talmor+, 2019), which is a multiple-choice question answering dataset that requires commonsense reasoning ability.",
}
_URLS = {
"MARC-ja": {
"data": "https://s3.amazonaws.com/amazon-reviews-pds/tsv/amazon_reviews_multilingual_JP_v1_00.tsv.gz",
"filter_review_id_list": {
"valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/filter_review_id_list/valid.txt",
},
"label_conv_review_id_list": {
"valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/label_conv_review_id_list/valid.txt",
},
},
"JCoLA": {
"train": {
"in_domain": {
"json": "https://raw.githubusercontent.com/osekilab/JCoLA/main/data/jcola-v1.0/in_domain_train-v1.0.json",
}
},
"valid": {
"in_domain": {
"json": "https://raw.githubusercontent.com/osekilab/JCoLA/main/data/jcola-v1.0/in_domain_valid-v1.0.json",
},
"out_of_domain": {
"json": "https://raw.githubusercontent.com/osekilab/JCoLA/main/data/jcola-v1.0/out_of_domain_valid-v1.0.json",
"json_annotated": "https://raw.githubusercontent.com/osekilab/JCoLA/main/data/jcola-v1.0/out_of_domain_valid_annotated-v1.0.json",
},
},
},
"JSTS": {
"train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/train-v1.1.json",
"valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/valid-v1.1.json",
},
"JNLI": {
"train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jnli-v1.1/train-v1.1.json",
"valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jnli-v1.1/valid-v1.1.json",
},
"JSQuAD": {
"train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsquad-v1.1/train-v1.1.json",
"valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsquad-v1.1/valid-v1.1.json",
},
"JCommonsenseQA": {
"train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jcommonsenseqa-v1.1/train-v1.1.json",
"valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jcommonsenseqa-v1.1/valid-v1.1.json",
},
}
def dataset_info_jsts() -> ds.DatasetInfo:
features = ds.Features(
{
"sentence_pair_id": ds.Value("string"),
"yjcaptions_id": ds.Value("string"),
"sentence1": ds.Value("string"),
"sentence2": ds.Value("string"),
"label": ds.Value("float"),
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_JGLUE_CITATION,
homepage=f"{_JSTS_JNLI_CITATION}\n{_JGLUE_HOMEPAGE}",
license=_JGLUE_LICENSE,
features=features,
)
def dataset_info_jnli() -> ds.DatasetInfo:
features = ds.Features(
{
"sentence_pair_id": ds.Value("string"),
"yjcaptions_id": ds.Value("string"),
"sentence1": ds.Value("string"),
"sentence2": ds.Value("string"),
"label": ds.ClassLabel(
num_classes=3, names=["entailment", "contradiction", "neutral"]
),
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_JGLUE_CITATION,
homepage=f"{_JSTS_JNLI_CITATION}\n{_JGLUE_HOMEPAGE}",
license=_JGLUE_LICENSE,
features=features,
supervised_keys=None,
)
def dataset_info_jsquad() -> ds.DatasetInfo:
features = ds.Features(
{
"id": ds.Value("string"),
"title": ds.Value("string"),
"context": ds.Value("string"),
"question": ds.Value("string"),
"answers": ds.Sequence(
{"text": ds.Value("string"), "answer_start": ds.Value("int32")}
),
"is_impossible": ds.Value("bool"),
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_JGLUE_CITATION,
homepage=_JGLUE_HOMEPAGE,
license=_JGLUE_LICENSE,
features=features,
supervised_keys=None,
)
def dataset_info_jcommonsenseqa() -> ds.DatasetInfo:
features = ds.Features(
{
"q_id": ds.Value("int64"),
"question": ds.Value("string"),
"choice0": ds.Value("string"),
"choice1": ds.Value("string"),
"choice2": ds.Value("string"),
"choice3": ds.Value("string"),
"choice4": ds.Value("string"),
"label": ds.ClassLabel(
num_classes=5,
names=["choice0", "choice1", "choice2", "choice3", "choice4"],
),
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_JGLUE_CITATION,
homepage=_JGLUE_HOMEPAGE,
license=_JGLUE_LICENSE,
features=features,
)
def dataset_info_jcola() -> ds.DatasetInfo:
features = ds.Features(
{
"uid": ds.Value("int64"),
"source": ds.Value("string"),
"label": ds.ClassLabel(
num_classes=2,
names=["unacceptable", "acceptable"],
),
"diacritic": ds.Value("string"),
"sentence": ds.Value("string"),
"original": ds.Value("string"),
"translation": ds.Value("string"),
"gloss": ds.Value("bool"),
"linguistic_phenomenon": {
"argument_structure": ds.Value("bool"),
"binding": ds.Value("bool"),
"control_raising": ds.Value("bool"),
"ellipsis": ds.Value("bool"),
"filler_gap": ds.Value("bool"),
"island_effects": ds.Value("bool"),
"morphology": ds.Value("bool"),
"nominal_structure": ds.Value("bool"),
"negative_polarity_concord_items": ds.Value("bool"),
"quantifier": ds.Value("bool"),
"verbal_agreement": ds.Value("bool"),
"simple": ds.Value("bool"),
},
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=f"{_JCOLA_CITATION}\n{_JGLUE_CITATION}",
homepage=_JCOLA_HOMEPAGE,
features=features,
)
def dataset_info_marc_ja() -> ds.DatasetInfo:
features = ds.Features(
{
"sentence": ds.Value("string"),
"label": ds.ClassLabel(
num_classes=3, names=["positive", "negative", "neutral"]
),
"review_id": ds.Value("string"),
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=f"{_MARC_JA_CITATION}\n{_JGLUE_CITATION}",
homepage=_MARC_JA_HOMEPAGE,
license=_JGLUE_LICENSE,
features=features,
)
@dataclass
class JGLUEConfig(ds.BuilderConfig):
"""Class for JGLUE benchmark configuration"""
@dataclass
class MarcJaConfig(JGLUEConfig):
name: str = "MARC-ja"
is_han_to_zen: bool = False
max_instance_num: Optional[int] = None
max_char_length: int = 500
is_pos_neg: bool = True
train_ratio: float = 0.94
val_ratio: float = 0.03
test_ratio: float = 0.03
output_testset: bool = False
filter_review_id_list_valid: bool = True
label_conv_review_id_list_valid: bool = True
def __post_init__(self) -> None:
assert self.train_ratio + self.val_ratio + self.test_ratio == 1.0
JcolaDomain = Literal["in_domain", "out_of_domain"]
@dataclass
class JcolaConfig(JGLUEConfig):
name: str = "JCoLA"
domain: JcolaDomain = "in_domain"
def get_label(rating: int, is_pos_neg: bool = False) -> Optional[str]:
if rating >= 4:
return "positive"
elif rating <= 2:
return "negative"
else:
if is_pos_neg:
return None
else:
return "neutral"
def is_filtered_by_ascii_rate(text: str, threshold: float = 0.9) -> bool:
ascii_letters = set(string.printable)
rate = sum(c in ascii_letters for c in text) / len(text)
return rate >= threshold
def shuffle_dataframe(df: pd.DataFrame) -> pd.DataFrame:
instances = df.to_dict(orient="records")
random.seed(1)
random.shuffle(instances)
return pd.DataFrame(instances)
def get_filter_review_id_list(
filter_review_id_list_paths: Dict[str, str],
) -> Dict[str, List[str]]:
filter_review_id_list_valid = filter_review_id_list_paths.get("valid")
filter_review_id_list_test = filter_review_id_list_paths.get("test")
filter_review_id_list = {}
if filter_review_id_list_valid is not None:
with open(filter_review_id_list_valid, "r", encoding="utf-8") as rf:
filter_review_id_list["valid"] = [line.rstrip() for line in rf]
if filter_review_id_list_test is not None:
with open(filter_review_id_list_test, "r", encoding="utf-8") as rf:
filter_review_id_list["test"] = [line.rstrip() for line in rf]
return filter_review_id_list
def get_label_conv_review_id_list(
label_conv_review_id_list_paths: Dict[str, str],
) -> Dict[str, Dict[str, str]]:
import csv
label_conv_review_id_list_valid = label_conv_review_id_list_paths.get("valid")
label_conv_review_id_list_test = label_conv_review_id_list_paths.get("test")
label_conv_review_id_list: Dict[str, Dict[str, str]] = {}
if label_conv_review_id_list_valid is not None:
with open(label_conv_review_id_list_valid, "r", encoding="utf-8") as rf:
label_conv_review_id_list["valid"] = {
row[0]: row[1] for row in csv.reader(rf)
}
if label_conv_review_id_list_test is not None:
with open(label_conv_review_id_list_test, "r", encoding="utf-8") as rf:
label_conv_review_id_list["test"] = {
row[0]: row[1] for row in csv.reader(rf)
}
return label_conv_review_id_list
def output_data(
df: pd.DataFrame,
train_ratio: float,
val_ratio: float,
test_ratio: float,
output_testset: bool,
filter_review_id_list_paths: Dict[str, str],
label_conv_review_id_list_paths: Dict[str, str],
) -> Dict[str, pd.DataFrame]:
instance_num = len(df)
split_dfs: Dict[str, pd.DataFrame] = {}
length1 = int(instance_num * train_ratio)
split_dfs["train"] = df.iloc[:length1]
length2 = int(instance_num * (train_ratio + val_ratio))
split_dfs["valid"] = df.iloc[length1:length2]
split_dfs["test"] = df.iloc[length2:]
filter_review_id_list = get_filter_review_id_list(
filter_review_id_list_paths=filter_review_id_list_paths,
)
label_conv_review_id_list = get_label_conv_review_id_list(
label_conv_review_id_list_paths=label_conv_review_id_list_paths,
)
for eval_type in ("valid", "test"):
if filter_review_id_list.get(eval_type):
df = split_dfs[eval_type]
df = df[~df["review_id"].isin(filter_review_id_list[eval_type])]
split_dfs[eval_type] = df
for eval_type in ("valid", "test"):
if label_conv_review_id_list.get(eval_type):
df = split_dfs[eval_type]
df = df.assign(
converted_label=df["review_id"].map(label_conv_review_id_list["valid"])
)
df = df.assign(
label=df[["label", "converted_label"]].apply(
lambda xs: xs["label"]
if pd.isnull(xs["converted_label"])
else xs["converted_label"],
axis=1,
)
)
df = df.drop(columns=["converted_label"])
split_dfs[eval_type] = df
return {
"train": split_dfs["train"],
"valid": split_dfs["valid"],
}
def preprocess_for_marc_ja(
config: MarcJaConfig,
data_file_path: str,
filter_review_id_list_paths: Dict[str, str],
label_conv_review_id_list_paths: Dict[str, str],
) -> Dict[str, pd.DataFrame]:
try:
import mojimoji
def han_to_zen(text: str) -> str:
return mojimoji.han_to_zen(text)
except ImportError:
warnings.warn(
"can't import `mojimoji`, failing back to method that do nothing. "
"We recommend running `pip install mojimoji` to reproduce the original preprocessing.",
UserWarning,
)
def han_to_zen(text: str) -> str:
return text
try:
from bs4 import BeautifulSoup
def cleanup_text(text: str) -> str:
return BeautifulSoup(text, "html.parser").get_text()
except ImportError:
warnings.warn(
"can't import `beautifulsoup4`, failing back to method that do nothing."
"We recommend running `pip install beautifulsoup4` to reproduce the original preprocessing.",
UserWarning,
)
def cleanup_text(text: str) -> str:
return text
from tqdm import tqdm
df = pd.read_csv(data_file_path, delimiter="\t")
df = df[["review_body", "star_rating", "review_id"]]
# rename columns
df = df.rename(columns={"review_body": "text", "star_rating": "rating"})
# convert the rating to label
tqdm.pandas(dynamic_ncols=True, desc="Convert the rating to the label")
df = df.assign(
label=df["rating"].progress_apply(
lambda rating: get_label(rating, config.is_pos_neg)
)
)
# remove rows where the label is None
df = df[~df["label"].isnull()]
# remove html tags from the text
tqdm.pandas(dynamic_ncols=True, desc="Remove html tags from the text")
df = df.assign(text=df["text"].progress_apply(cleanup_text))
# filter by ascii rate
tqdm.pandas(dynamic_ncols=True, desc="Filter by ascii rate")
df = df[~df["text"].progress_apply(is_filtered_by_ascii_rate)]
if config.max_char_length is not None:
df = df[df["text"].str.len() <= config.max_char_length]
if config.is_han_to_zen:
df = df.assign(text=df["text"].apply(han_to_zen))
df = df[["text", "label", "review_id"]]
df = df.rename(columns={"text": "sentence"})
# shuffle dataset
df = shuffle_dataframe(df)
split_dfs = output_data(
df=df,
train_ratio=config.train_ratio,
val_ratio=config.val_ratio,
test_ratio=config.test_ratio,
output_testset=config.output_testset,
filter_review_id_list_paths=filter_review_id_list_paths,
label_conv_review_id_list_paths=label_conv_review_id_list_paths,
)
return split_dfs
class JGLUE(ds.GeneratorBasedBuilder):
JGLUE_VERSION = ds.Version("1.1.0")
JCOLA_VERSION = ds.Version("1.0.0")
BUILDER_CONFIG_CLASS = JGLUEConfig
BUILDER_CONFIGS = [
MarcJaConfig(
name="MARC-ja",
version=JGLUE_VERSION,
description=_DESCRIPTION_CONFIGS["MARC-ja"],
),
JcolaConfig(
name="JCoLA",
version=JCOLA_VERSION,
description=_DESCRIPTION_CONFIGS["JCoLA"],
),
JGLUEConfig(
name="JSTS",
version=JGLUE_VERSION,
description=_DESCRIPTION_CONFIGS["JSTS"],
),
JGLUEConfig(
name="JNLI",
version=JGLUE_VERSION,
description=_DESCRIPTION_CONFIGS["JNLI"],
),
JGLUEConfig(
name="JSQuAD",
version=JGLUE_VERSION,
description=_DESCRIPTION_CONFIGS["JSQuAD"],
),
JGLUEConfig(
name="JCommonsenseQA",
version=JGLUE_VERSION,
description=_DESCRIPTION_CONFIGS["JCommonsenseQA"],
),
]
def _info(self) -> ds.DatasetInfo:
if self.config.name == "JSTS":
return dataset_info_jsts()
elif self.config.name == "JNLI":
return dataset_info_jnli()
elif self.config.name == "JSQuAD":
return dataset_info_jsquad()
elif self.config.name == "JCommonsenseQA":
return dataset_info_jcommonsenseqa()
elif self.config.name == "JCoLA":
return dataset_info_jcola()
elif self.config.name == "MARC-ja":
return dataset_info_marc_ja()
else:
raise ValueError(f"Invalid config name: {self.config.name}")
def __split_generators_marc_ja(self, dl_manager: ds.DownloadManager):
try:
file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
except FileNotFoundError as err:
logger.warning(err)
# An error occurs because the file cannot be downloaded from _URLS[MARC-ja]['data'].
# So, remove the 'data' key and try to download again.
urls = _URLS[self.config.name]
urls.pop("data") # type: ignore[attr-defined]
file_paths = dl_manager.download_and_extract(urls)
filter_review_id_list = file_paths["filter_review_id_list"]
label_conv_review_id_list = file_paths["label_conv_review_id_list"]
try:
split_dfs = preprocess_for_marc_ja(
config=self.config,
data_file_path=file_paths["data"],
filter_review_id_list_paths=filter_review_id_list,
label_conv_review_id_list_paths=label_conv_review_id_list,
)
except KeyError as err:
from urllib.parse import urljoin
logger.warning(err)
base_url = "https://huggingface.co/datasets/shunk031/JGLUE/resolve/refs%2Fconvert%2Fparquet/MARC-ja/"
marcja_parquet_urls = {
"train": urljoin(base_url, "jglue-train.parquet"),
"valid": urljoin(base_url, "jglue-validation.parquet"),
}
file_paths = dl_manager.download_and_extract(marcja_parquet_urls)
split_dfs = {k: pd.read_parquet(v) for k, v in file_paths.items()}
return [
ds.SplitGenerator(
name=ds.Split.TRAIN,
gen_kwargs={"split_df": split_dfs["train"]},
),
ds.SplitGenerator(
name=ds.Split.VALIDATION,
gen_kwargs={"split_df": split_dfs["valid"]},
),
]
def __split_generators_jcola(self, dl_manager: ds.DownloadManager):
file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
return [
ds.SplitGenerator(
name=ds.Split.TRAIN,
gen_kwargs={"file_path": file_paths["train"]["in_domain"]["json"]},
),
ds.SplitGenerator(
name=ds.Split.VALIDATION,
gen_kwargs={"file_path": file_paths["valid"]["in_domain"]["json"]},
),
ds.SplitGenerator(
name=ds.NamedSplit("validation_out_of_domain"),
gen_kwargs={"file_path": file_paths["valid"]["out_of_domain"]["json"]},
),
ds.SplitGenerator(
name=ds.NamedSplit("validation_out_of_domain_annotated"),
gen_kwargs={
"file_path": file_paths["valid"]["out_of_domain"]["json_annotated"]
},
),
]
def __split_generators(self, dl_manager: ds.DownloadManager):
file_paths = dl_manager.download_and_extract(_URLS[self.config.name])
return [
ds.SplitGenerator(
name=ds.Split.TRAIN,
gen_kwargs={"file_path": file_paths["train"]},
),
ds.SplitGenerator(
name=ds.Split.VALIDATION,
gen_kwargs={"file_path": file_paths["valid"]},
),
]
def _split_generators(self, dl_manager: ds.DownloadManager):
if self.config.name == "MARC-ja":
return self.__split_generators_marc_ja(dl_manager)
elif self.config.name == "JCoLA":
return self.__split_generators_jcola(dl_manager)
else:
return self.__split_generators(dl_manager)
def __generate_examples_marc_ja(self, split_df: Optional[pd.DataFrame] = None):
if split_df is None:
raise ValueError(f"Invalid preprocessing for {self.config.name}")
instances = split_df.to_dict(orient="records")
for i, data_dict in enumerate(instances):
yield i, data_dict
def __generate_examples_jcola(self, file_path: Optional[str] = None):
if file_path is None:
raise ValueError(f"Invalid argument for {self.config.name}")
def convert_label(json_dict):
label_int = json_dict["label"]
label_str = "unacceptable" if label_int == 0 else "acceptable"
json_dict["label"] = label_str
return json_dict
def convert_addntional_info(json_dict):
json_dict["translation"] = json_dict.get("translation")
json_dict["gloss"] = json_dict.get("gloss")
return json_dict
def convert_phenomenon(json_dict):
argument_structure = json_dict.get("Arg. Str.")
def json_pop(key):
return json_dict.pop(key) if argument_structure is not None else None
json_dict["linguistic_phenomenon"] = {
"argument_structure": json_pop("Arg. Str."),
"binding": json_pop("binding"),
"control_raising": json_pop("control/raising"),
"ellipsis": json_pop("ellipsis"),
"filler_gap": json_pop("filler-gap"),
"island_effects": json_pop("island effects"),
"morphology": json_pop("morphology"),
"nominal_structure": json_pop("nominal structure"),
"negative_polarity_concord_items": json_pop("NPI/NCI"),
"quantifier": json_pop("quantifier"),
"verbal_agreement": json_pop("verbal agr."),
"simple": json_pop("simple"),
}
return json_dict
with open(file_path, "r", encoding="utf-8") as rf:
for i, line in enumerate(rf):
json_dict = json.loads(line)
example = convert_label(json_dict)
example = convert_addntional_info(example)
example = convert_phenomenon(example)
yield i, example
def __generate_examples_jsquad(self, file_path: Optional[str] = None):
if file_path is None:
raise ValueError(f"Invalid argument for {self.config.name}")
with open(file_path, "r", encoding="utf-8") as rf:
json_data = json.load(rf)
for json_dict in json_data["data"]:
title = json_dict["title"]
paragraphs = json_dict["paragraphs"]
for paragraph in paragraphs:
context = paragraph["context"]
questions = paragraph["qas"]
for question_dict in questions:
q_id = question_dict["id"]
question = question_dict["question"]
answers = question_dict["answers"]
is_impossible = question_dict["is_impossible"]
example_dict = {
"id": q_id,
"title": title,
"context": context,
"question": question,
"answers": answers,
"is_impossible": is_impossible,
}
yield q_id, example_dict
def __generate_examples_jcommonsenseqa(self, file_path: Optional[str] = None):
if file_path is None:
raise ValueError(f"Invalid argument for {self.config.name}")
with open(file_path, "r", encoding="utf-8") as rf:
for i, line in enumerate(rf):
json_dict = json.loads(line)
json_dict["label"] = f"choice{json_dict['label']}"
yield i, json_dict
def __generate_examples(self, file_path: Optional[str] = None):
if file_path is None:
raise ValueError(f"Invalid argument for {self.config.name}")
with open(file_path, "r", encoding="utf-8") as rf:
for i, line in enumerate(rf):
json_dict = json.loads(line)
yield i, json_dict
def _generate_examples(
self,
file_path: Optional[str] = None,
split_df: Optional[pd.DataFrame] = None,
):
if self.config.name == "MARC-ja":
yield from self.__generate_examples_marc_ja(split_df)
elif self.config.name == "JCoLA":
yield from self.__generate_examples_jcola(file_path)
elif self.config.name == "JSQuAD":
yield from self.__generate_examples_jsquad(file_path)
elif self.config.name == "JCommonsenseQA":
yield from self.__generate_examples_jcommonsenseqa(file_path)
else:
yield from self.__generate_examples(file_path)
|