Datasets:
metadata
license: mit
tags:
- dna
- variant-effect-prediction
- biology
- genomics
gnomAD variants and GPN-MSA predictions
For more information check out our paper and repository.
Querying specific variants or genes
- Install the latest tabix:
In your current conda environment (might be slow):
or in a new conda environment:conda install -c bioconda -c conda-forge htslib=1.18
conda create -n tabix -c bioconda -c conda-forge htslib=1.18 conda activate tabix
- Query a specific region (e.g. BRCA1), from the remote file:
The output has the following columns:tabix https://huggingface.co/datasets/songlab/gnomad/resolve/main/scores.tsv.bgz 17:43,044,295-43,125,364
| chrom | pos | ref | alt | GPN-MSA score |
and would start like this:17 43044304 T G -5.10 17 43044309 A G -3.27
17 43044315 T A -6.84 17 43044320 T C -6.19 17 43044322 G T -5.29 17 43044326 T G -3.22 17 43044342 T C -4.10 17 43044346 C T -2.06 17 43044351 C T -0.33 17 43044352 G A 2.05
- If you want to do many queries you might want to first download the files locally
```bash
wget https://huggingface.co/datasets/songlab/gnomad/resolve/main/scores.tsv.bgz
wget https://huggingface.co/datasets/songlab/gnomad/resolve/main/scores.tsv.bgz.tbi
and then score:
tabix scores.tsv.bgz 17:43,044,295-43,125,364
Large-scale analysis
test.parquet
contains coordinates, scores, plus allele frequency and consequences.
Download:
wget https://huggingface.co/datasets/songlab/gnomad/resolve/main/test.parquet
Load into a Pandas dataframe:
df = pd.read_parquet("test.parquet")