|
--- |
|
license: mit |
|
tags: |
|
- dna |
|
- variant-effect-prediction |
|
- biology |
|
- genomics |
|
--- |
|
# gnomAD variants and GPN-MSA predictions |
|
For more information check out our [paper](https://doi.org/10.1101/2023.10.10.561776) and [repository](https://github.com/songlab-cal/gpn). |
|
|
|
## Querying specific variants or genes |
|
|
|
- Install the latest [tabix](https://www.htslib.org/doc/tabix.html): |
|
In your current conda environment (might be slow): |
|
```bash |
|
conda install -c bioconda -c conda-forge htslib=1.18 |
|
``` |
|
or in a new conda environment: |
|
```bash |
|
conda create -n tabix -c bioconda -c conda-forge htslib=1.18 |
|
conda activate tabix |
|
``` |
|
- Query a specific region (e.g. BRCA1), from the remote file: |
|
```bash |
|
tabix https://huggingface.co/datasets/songlab/gnomad/resolve/main/scores.tsv.bgz 17:43,044,295-43,125,364 |
|
``` |
|
The output has the following columns: |
|
| chrom | pos | ref | alt | GPN-MSA score | |
|
and would start like this: |
|
```tsv |
|
17 43044304 T G -5.10 |
|
17 43044309 A G -3.27 |
|
17 43044315 T A -6.84 |
|
17 43044320 T C -6.19 |
|
17 43044322 G T -5.29 |
|
17 43044326 T G -3.22 |
|
17 43044342 T C -4.10 |
|
17 43044346 C T -2.06 |
|
17 43044351 C T -0.33 |
|
17 43044352 G A 2.05 |
|
``` |
|
- If you want to do many queries you might want to first download the files locally |
|
```bash |
|
wget https://huggingface.co/datasets/songlab/gnomad/resolve/main/scores.tsv.bgz |
|
wget https://huggingface.co/datasets/songlab/gnomad/resolve/main/scores.tsv.bgz.tbi |
|
``` |
|
and then score: |
|
```bash |
|
tabix scores.tsv.bgz 17:43,044,295-43,125,364 |
|
``` |
|
|
|
## Large-scale analysis |
|
`test.parquet` contains coordinates, scores, plus allele frequency and consequences. |
|
Download: |
|
``` |
|
wget https://huggingface.co/datasets/songlab/gnomad/resolve/main/test.parquet |
|
``` |
|
Load into a Pandas dataframe: |
|
```python |
|
df = pd.read_parquet("test.parquet") |
|
``` |