|
--- |
|
pretty_name: QReCC |
|
language_creators: |
|
- expert-generated |
|
- found |
|
languages: |
|
- en |
|
licenses: |
|
- cc-by-3.0 |
|
multilinguality: |
|
- monolingual |
|
source_datasets: |
|
- extended|natural_questions |
|
- extended|quac |
|
task_categories: |
|
- question-answering |
|
task_ids: |
|
- open-domain-qa |
|
--- |
|
|
|
# Dataset Card for QReCC: Question Rewriting in Conversational Context |
|
|
|
## Table of Contents |
|
- [Dataset Description](#dataset-description) |
|
- [Dataset Summary](#dataset-summary) |
|
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) |
|
- [Languages](#languages) |
|
- [Dataset Structure](#dataset-structure) |
|
- [Data Instances](#data-instances) |
|
- [Data Fields](#data-fields) |
|
- [Data Splits](#data-splits) |
|
- [Dataset Creation](#dataset-creation) |
|
- [Curation Rationale](#curation-rationale) |
|
- [Source Data](#source-data) |
|
- [Annotations](#annotations) |
|
- [Personal and Sensitive Information](#personal-and-sensitive-information) |
|
- [Considerations for Using the Data](#considerations-for-using-the-data) |
|
- [Social Impact of Dataset](#social-impact-of-dataset) |
|
- [Discussion of Biases](#discussion-of-biases) |
|
- [Other Known Limitations](#other-known-limitations) |
|
- [Additional Information](#additional-information) |
|
- [Dataset Curators](#dataset-curators) |
|
- [Licensing Information](#licensing-information) |
|
- [Citation Information](#citation-information) |
|
- [Contributions](#contributions) |
|
|
|
## Dataset Description |
|
|
|
- [**Repository:**](https://github.com/apple/ml-qrecc) |
|
- [**Paper:**](https://arxiv.org/pdf/2010.04898.pdf) |
|
|
|
### Dataset Summary |
|
|
|
QReCC (Question Rewriting in Conversational Context) is an end-to-end open-domain question answering dataset comprising of 14K conversations with 81K question-answer pairs. The goal of this dataset is to provide a challenging benchmark for end-to-end conversational question answering that includes the individual subtasks of question rewriting, passage retrieval and reading comprehension. |
|
|
|
The task in QReCC is to find answers to conversational questions within a collection of 10M web pages split into 54M passages. Answers to questions in the same conversation may be distributed across several web pages. |
|
|
|
The passage collection should be downloaded from [**Zenodo**](https://zenodo.org/record/5115890#.YaeD7C8RppR) (passages.zip) |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
`question-answering` |
|
|
|
### Languages |
|
|
|
English |
|
|
|
## Dataset Structure |
|
### Data Instances |
|
|
|
An example from the data set looks as follows: |
|
``` |
|
{ |
|
"Context": [ |
|
"What are the pros and cons of electric cars?", |
|
"Some pros are: They're easier on the environment. Electricity is cheaper than gasoline. Maintenance is less frequent and less expensive. They're very quiet. You'll get tax credits. They can shorten your commute time. Some cons are: Most EVs have pretty short ranges. Recharging can take a while." |
|
], |
|
"Question": "Tell me more about Tesla", |
|
"Rewrite": "Tell me more about Tesla the car company.", |
|
"Answer": "Tesla Inc. is an American automotive and energy company based in Palo Alto, California. The company specializes in electric car manufacturing and, through its SolarCity subsidiary, solar panel manufacturing.", |
|
"Answer_URL": "https://en.wikipedia.org/wiki/Tesla,_Inc.", |
|
"Conversation_no": 74, |
|
"Turn_no": 2, |
|
"Conversation_source": "trec" |
|
} |
|
``` |
|
|
|
### Data Fields |
|
|
|
[More Information Needed] |
|
|
|
### Data Splits |
|
|
|
- train: 63501 |
|
- test: 16451 |
|
|
|
|
|
## Dataset Creation |
|
|
|
### Curation Rationale |
|
|
|
[More Information Needed] |
|
|
|
### Source Data |
|
|
|
- QuAC |
|
- TREC CAsT |
|
- Natural Questions |
|
|
|
|
|
#### Initial Data Collection and Normalization |
|
|
|
[More Information Needed] |
|
|
|
#### Who are the source language producers? |
|
|
|
[More Information Needed] |
|
|
|
### Annotations |
|
|
|
#### Annotation process |
|
|
|
[More Information Needed] |
|
|
|
#### Who are the annotators? |
|
|
|
[More Information Needed] |
|
|
|
### Personal and Sensitive Information |
|
|
|
[More Information Needed] |
|
|
|
## Considerations for Using the Data |
|
|
|
### Social Impact of Dataset |
|
|
|
[More Information Needed] |
|
|
|
### Discussion of Biases |
|
|
|
[More Information Needed] |
|
|
|
### Other Known Limitations |
|
|
|
[More Information Needed] |
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
|
|
[More Information Needed] |
|
|
|
### Licensing Information |
|
|
|
[CC BY-SA 3.0](http://creativecommons.org/licenses/by-sa/3.0/) |
|
|
|
### Citation Information |
|
``` |
|
@inproceedings{ qrecc, |
|
title={Open-Domain Question Answering Goes Conversational via Question Rewriting}, |
|
author={Anantha, Raviteja and Vakulenko, Svitlana and Tu, Zhucheng and Longpre, Shayne and Pulman, Stephen and Chappidi, Srinivas}, |
|
booktitle={ NAACL }, |
|
year={2021} |
|
} |
|
``` |
|
|
|
### Contributions |
|
|
|
[More Information Needed] |