Upload blackbox yahpo-rbv2_svm
Browse files
yahpo/rbv2_svm/best_params_resnet.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"d": 256, "d_hidden_factor": 2.825666228947733, "hidden_dropout": 0.22851788850647428, "lr": 0.0007036627426044551, "mixup": false, "n_layers": 3, "opt_tfms_acc": false, "opt_tfms_auc": true, "opt_tfms_bac": true, "opt_tfms_brier": true, "opt_tfms_cost": true, "opt_tfms_degree": false, "opt_tfms_f1": false, "opt_tfms_gamma": true, "opt_tfms_logloss": true, "opt_tfms_memory": false, "opt_tfms_repl": false, "opt_tfms_timepredict": false, "opt_tfms_timetrain": false, "opt_tfms_tolerance": true, "opt_tfms_trainsize": false, "tfms_auc": "tlog", "tfms_bac": "tlog", "tfms_brier": "tlog", "tfms_cost": "tlog", "tfms_gamma": "tlog", "tfms_logloss": "tnexp", "tfms_tolerance": "tnexp", "use_residual_dropout": false}
|
yahpo/rbv2_svm/config_space.json
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"hyperparameters": [
|
3 |
+
{
|
4 |
+
"name": "cost",
|
5 |
+
"type": "uniform_float",
|
6 |
+
"log": true,
|
7 |
+
"lower": 4.5399929762484854e-05,
|
8 |
+
"upper": 22026.465794806718,
|
9 |
+
"default": 1.0
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"name": "kernel",
|
13 |
+
"type": "categorical",
|
14 |
+
"choices": [
|
15 |
+
"linear",
|
16 |
+
"polynomial",
|
17 |
+
"radial"
|
18 |
+
],
|
19 |
+
"default": "linear",
|
20 |
+
"probabilities": null
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"name": "num.impute.selected.cpo",
|
24 |
+
"type": "categorical",
|
25 |
+
"choices": [
|
26 |
+
"impute.mean",
|
27 |
+
"impute.median",
|
28 |
+
"impute.hist"
|
29 |
+
],
|
30 |
+
"default": "impute.mean",
|
31 |
+
"probabilities": null
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"name": "repl",
|
35 |
+
"type": "uniform_int",
|
36 |
+
"log": false,
|
37 |
+
"lower": 1,
|
38 |
+
"upper": 10,
|
39 |
+
"default": 6
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"name": "task_id",
|
43 |
+
"type": "categorical",
|
44 |
+
"choices": ["40981","4134","1220","40978","40966","40536","41156","458","41157","40975","40994","1468","6332","40670","151","1475","1476","1478","1479","41212","1480","1053","1067","1056","12","1487","1068","32","470","312","38","40982","50","41216","307","40498","181","1464","41164","16","1461","41162","6","14","1494","54","375","1590","23","41163","1111","41027","40668","41138","4135","4538","40496","4534","40900","1457","11","1462","41142","40701","29","37","23381","188","41143","1063","3","18","40979","22","1515","334","24","1493","28","1050","1049","40984","40685","42","44","46","1040","41146","377","40499","1497","60","40983","4154","469","31","41278","1489","1501","15","300","1485","1486","1510","182","41169"
|
45 |
+
],
|
46 |
+
"default": "1040",
|
47 |
+
"probabilities": null
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"name": "tolerance",
|
51 |
+
"type": "uniform_float",
|
52 |
+
"log": true,
|
53 |
+
"lower": 4.5399929762484854e-05,
|
54 |
+
"upper": 2.0,
|
55 |
+
"default": 0.009528896
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"name": "trainsize",
|
59 |
+
"type": "uniform_float",
|
60 |
+
"log": false,
|
61 |
+
"lower": 0.03,
|
62 |
+
"upper": 1.0,
|
63 |
+
"default": 0.525
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"name": "degree",
|
67 |
+
"type": "uniform_int",
|
68 |
+
"log": false,
|
69 |
+
"lower": 2,
|
70 |
+
"upper": 5,
|
71 |
+
"default": 4
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"name": "gamma",
|
75 |
+
"type": "uniform_float",
|
76 |
+
"log": true,
|
77 |
+
"lower": 4.5399929762484854e-05,
|
78 |
+
"upper": 22026.465794806718,
|
79 |
+
"default": 1.0
|
80 |
+
}
|
81 |
+
],
|
82 |
+
"conditions": [
|
83 |
+
{
|
84 |
+
"child": "degree",
|
85 |
+
"parent": "kernel",
|
86 |
+
"type": "EQ",
|
87 |
+
"value": "polynomial"
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"child": "gamma",
|
91 |
+
"parent": "kernel",
|
92 |
+
"type": "EQ",
|
93 |
+
"value": "radial"
|
94 |
+
}
|
95 |
+
],
|
96 |
+
"forbiddens": [],
|
97 |
+
"python_module_version": "0.4.18",
|
98 |
+
"json_format_version": 0.2
|
99 |
+
}
|
yahpo/rbv2_svm/encoding.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"kernel": {"#na#": 0, "linear": 1, "polynomial": 2, "radial": 3}, "num.impute.selected.cpo": {"#na#": 0, "impute.hist": 1, "impute.mean": 2, "impute.median": 3}, "task_id": {"#na#": 0, "1040": 1, "1049": 2, "1050": 3, "1053": 4, "1056": 5, "1063": 6, "1067": 7, "1068": 8, "11": 9, "1111": 10, "12": 11, "1220": 12, "14": 13, "1457": 14, "1461": 15, "1462": 16, "1464": 17, "1468": 18, "1475": 19, "1476": 20, "1478": 21, "1479": 22, "1480": 23, "1485": 24, "1486": 25, "1487": 26, "1489": 27, "1493": 28, "1494": 29, "1497": 30, "15": 31, "1501": 32, "151": 33, "1510": 34, "1515": 35, "1590": 36, "16": 37, "18": 38, "181": 39, "182": 40, "188": 41, "22": 42, "23": 43, "23381": 44, "24": 45, "28": 46, "29": 47, "3": 48, "300": 49, "307": 50, "31": 51, "312": 52, "32": 53, "334": 54, "37": 55, "375": 56, "377": 57, "38": 58, "40496": 59, "40498": 60, "40499": 61, "40536": 62, "40668": 63, "40670": 64, "40685": 65, "40701": 66, "40900": 67, "40966": 68, "40975": 69, "40978": 70, "40979": 71, "40981": 72, "40982": 73, "40983": 74, "40984": 75, "40994": 76, "41027": 77, "41138": 78, "41142": 79, "41143": 80, "41146": 81, "41156": 82, "41157": 83, "41162": 84, "41163": 85, "41164": 86, "41169": 87, "41212": 88, "41216": 89, "41278": 90, "4134": 91, "4135": 92, "4154": 93, "42": 94, "44": 95, "4534": 96, "4538": 97, "458": 98, "46": 99, "469": 100, "470": 101, "50": 102, "54": 103, "6": 104, "60": 105, "6332": 106}}
|
yahpo/rbv2_svm/metadata.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"metric_elapsed_time": "time", "metric_default": "val_accuracy", "resource_attr": "st_worker_iter"}
|
yahpo/rbv2_svm/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4315a0582286c957358e3defc29ce911f83ff32c997d9a1264fb8711297ae08
|
3 |
+
size 6806467
|
yahpo/rbv2_svm/param_set.R
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
search_space = ps(
|
2 |
+
kernel = p_fct(levels = c("linear", "polynomial", "radial")),
|
3 |
+
cost = p_dbl(lower = -10, upper = 10, tags = "log", trafo = function(x) exp(x)),
|
4 |
+
gamma = p_dbl(lower = -10, upper = 10, tags = "log", trafo = function(x) exp(x), depends = kernel == "radial"),
|
5 |
+
tolerance = p_dbl(lower = -10, upper = log(2), tags = "log", trafo = function(x) exp(x)),
|
6 |
+
degree = p_int(lower = 2L, upper = 5L, depends = kernel == "polynomial"),
|
7 |
+
trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
|
8 |
+
repl = p_int(lower = 1L, upper = 10L, tags = "budget"),
|
9 |
+
num.impute.selected.cpo = p_fct(levels = c("impute.mean", "impute.median", "impute.hist")),
|
10 |
+
task_id = p_fct(levels = c("40981", "4134", "1220", "40978", "40966", "40536", "41156",
|
11 |
+
"458", "41157", "40975", "40994", "1468", "6332", "40670", "151",
|
12 |
+
"1475", "1476", "1478", "1479", "41212", "1480", "1053", "1067",
|
13 |
+
"1056", "12", "1487", "1068", "32", "470", "312", "38", "40982",
|
14 |
+
"50", "41216", "307", "40498", "181", "1464", "41164", "16",
|
15 |
+
"1461", "41162", "6", "14", "1494", "54", "375", "1590", "23",
|
16 |
+
"41163", "1111", "41027", "40668", "41138", "4135", "4538", "40496",
|
17 |
+
"4534", "40900", "1457", "11", "1462", "41142", "40701", "29",
|
18 |
+
"37", "23381", "188", "41143", "1063", "3", "18", "40979", "22",
|
19 |
+
"1515", "334", "24", "1493", "28", "1050", "1049", "40984", "40685",
|
20 |
+
"42", "44", "46", "1040", "41146", "377", "40499", "1497", "60",
|
21 |
+
"40983", "4154", "469", "31", "41278", "1489", "1501", "15",
|
22 |
+
"300", "1485", "1486", "1510", "182", "41169"),
|
23 |
+
tags = "task_id"
|
24 |
+
)
|
25 |
+
)
|
26 |
+
|
27 |
+
domain = ps(
|
28 |
+
kernel = p_fct(levels = c("linear", "polynomial", "radial")),
|
29 |
+
cost = p_dbl(lower = exp(-10), upper = exp(10)),
|
30 |
+
gamma = p_dbl(lower = exp(-10), upper = exp(10), depends = kernel == "radial"),
|
31 |
+
tolerance = p_dbl(lower = exp(-10), upper = 2),
|
32 |
+
degree = p_int(lower = 2L, upper = 5L, depends = kernel == "polynomial"),
|
33 |
+
trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
|
34 |
+
repl = p_int(lower = 1L, upper = 10L, tags = "budget"),
|
35 |
+
num.impute.selected.cpo = p_fct(levels = c("impute.mean", "impute.median", "impute.hist")),
|
36 |
+
task_id = p_fct(levels =c("40981", "4134", "1220", "40978", "40966", "40536", "41156",
|
37 |
+
"458", "41157", "40975", "40994", "1468", "6332", "40670", "151",
|
38 |
+
"1475", "1476", "1478", "1479", "41212", "1480", "1053", "1067",
|
39 |
+
"1056", "12", "1487", "1068", "32", "470", "312", "38", "40982",
|
40 |
+
"50", "41216", "307", "40498", "181", "1464", "41164", "16",
|
41 |
+
"1461", "41162", "6", "14", "1494", "54", "375", "1590", "23",
|
42 |
+
"41163", "1111", "41027", "40668", "41138", "4135", "4538", "40496",
|
43 |
+
"4534", "40900", "1457", "11", "1462", "41142", "40701", "29",
|
44 |
+
"37", "23381", "188", "41143", "1063", "3", "18", "40979", "22",
|
45 |
+
"1515", "334", "24", "1493", "28", "1050", "1049", "40984", "40685",
|
46 |
+
"42", "44", "46", "1040", "41146", "377", "40499", "1497", "60",
|
47 |
+
"40983", "4154", "469", "31", "41278", "1489", "1501", "15",
|
48 |
+
"300", "1485", "1486", "1510", "182", "41169"),
|
49 |
+
tags = "task_id"
|
50 |
+
)
|
51 |
+
)
|
52 |
+
|
53 |
+
codomain = ps(
|
54 |
+
acc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
55 |
+
bac = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
56 |
+
f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
57 |
+
auc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
58 |
+
brier = p_dbl(lower = 0, upper = 1, tags = "minimize"),
|
59 |
+
logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
60 |
+
timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
61 |
+
timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
62 |
+
memory = p_dbl(lower = 0, upper = Inf, tags = "minimize")
|
63 |
+
)
|