Upload blackbox yahpo-rbv2_super
Browse files
yahpo/rbv2_super/best_params_resnet.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"d": 512, "d_hidden_factor": 3.141331955873597, "hidden_dropout": 0.15835721248635748, "lr": 0.004207643040634978, "mixup": false, "n_layers": 1, "opt_tfms_acc": true, "opt_tfms_aknn.M": false, "opt_tfms_aknn.ef": false, "opt_tfms_aknn.ef_construction": false, "opt_tfms_aknn.k": true, "opt_tfms_auc": true, "opt_tfms_bac": true, "opt_tfms_brier": true, "opt_tfms_f1": false, "opt_tfms_glmnet.alpha": false, "opt_tfms_glmnet.s": false, "opt_tfms_logloss": true, "opt_tfms_memory": true, "opt_tfms_ranger.min.node.size": false, "opt_tfms_ranger.mtry.power": false, "opt_tfms_ranger.num.random.splits": true, "opt_tfms_ranger.num.trees": false, "opt_tfms_ranger.sample.fraction": true, "opt_tfms_repl": true, "opt_tfms_rpart.cp": false, "opt_tfms_rpart.maxdepth": false, "opt_tfms_rpart.minbucket": true, "opt_tfms_rpart.minsplit": false, "opt_tfms_svm.cost": true, "opt_tfms_svm.degree": false, "opt_tfms_svm.gamma": false, "opt_tfms_svm.tolerance": false, "opt_tfms_timepredict": false, "opt_tfms_timetrain": false, "opt_tfms_trainsize": false, "opt_tfms_xgboost.alpha": false, "opt_tfms_xgboost.colsample_bylevel": false, "opt_tfms_xgboost.colsample_bytree": true, "opt_tfms_xgboost.eta": false, "opt_tfms_xgboost.gamma": true, "opt_tfms_xgboost.lambda": false, "opt_tfms_xgboost.max_depth": false, "opt_tfms_xgboost.min_child_weight": true, "opt_tfms_xgboost.nrounds": true, "opt_tfms_xgboost.rate_drop": false, "opt_tfms_xgboost.skip_drop": true, "opt_tfms_xgboost.subsample": true, "residual_dropout": 0.03256172522342702, "tfms_acc": "tlog", "tfms_aknn.k": "tnexp", "tfms_auc": "tlog", "tfms_bac": "tnexp", "tfms_brier": "tlog", "tfms_logloss": "tlog", "tfms_memory": "tnexp", "tfms_ranger.num.random.splits": "tlog", "tfms_ranger.sample.fraction": "tnexp", "tfms_repl": "tnexp", "tfms_rpart.minbucket": "tlog", "tfms_svm.cost": "tlog", "tfms_xgboost.colsample_bytree": "tnexp", "tfms_xgboost.gamma": "tlog", "tfms_xgboost.min_child_weight": "tlog", "tfms_xgboost.nrounds": "tlog", "tfms_xgboost.skip_drop": "tlog", "tfms_xgboost.subsample": "tlog", "use_residual_dropout": true}
|
yahpo/rbv2_super/config_space.json
ADDED
@@ -0,0 +1,727 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"hyperparameters": [
|
3 |
+
{
|
4 |
+
"name": "learner_id",
|
5 |
+
"type": "categorical",
|
6 |
+
"choices": [
|
7 |
+
"aknn",
|
8 |
+
"glmnet",
|
9 |
+
"ranger",
|
10 |
+
"rpart",
|
11 |
+
"svm",
|
12 |
+
"xgboost"
|
13 |
+
],
|
14 |
+
"default": "aknn",
|
15 |
+
"probabilities": null
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"name": "num.impute.selected.cpo",
|
19 |
+
"type": "categorical",
|
20 |
+
"choices": [
|
21 |
+
"impute.mean",
|
22 |
+
"impute.median",
|
23 |
+
"impute.hist"
|
24 |
+
],
|
25 |
+
"default": "impute.mean",
|
26 |
+
"probabilities": null
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"name": "repl",
|
30 |
+
"type": "uniform_int",
|
31 |
+
"log": false,
|
32 |
+
"lower": 1,
|
33 |
+
"upper": 10,
|
34 |
+
"default": 6
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"name": "task_id",
|
38 |
+
"type": "categorical",
|
39 |
+
"choices": [
|
40 |
+
"41138","40981","4134","1220","4154","41163","4538","40978","375","1111","40496","40966","4534","40900","40536","41156","1590","1457","458","469","41157","11","1461","1462","1464","15","40975","41142","40701","40994","23","1468","40668","29","31","6332","37","40670","23381","151","188","41164","1475","1476","1478","41169","1479","41212","1480","300","41143","1053","41027","1067","1063","41162","3","6","1485","1056","12","14","16","18","40979","22","1515","334","24","1486","1493","28","1487","1068","1050","1049","32","1489","470","1494","182","312","40984","1501","40685","38","42","44","46","40982","1040","41146","377","40499","50","54","307","1497","60","1510","40983","40498","181"
|
41 |
+
],
|
42 |
+
"default": "1040",
|
43 |
+
"probabilities": null
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"name": "trainsize",
|
47 |
+
"type": "uniform_float",
|
48 |
+
"log": false,
|
49 |
+
"lower": 0.03,
|
50 |
+
"upper": 1.0,
|
51 |
+
"default": 0.525
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"name": "aknn.M",
|
55 |
+
"type": "uniform_int",
|
56 |
+
"log": false,
|
57 |
+
"lower": 18,
|
58 |
+
"upper": 50,
|
59 |
+
"default": 34
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"name": "aknn.distance",
|
63 |
+
"type": "categorical",
|
64 |
+
"choices": [
|
65 |
+
"l2",
|
66 |
+
"cosine",
|
67 |
+
"ip"
|
68 |
+
],
|
69 |
+
"default": "l2",
|
70 |
+
"probabilities": null
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"name": "aknn.ef",
|
74 |
+
"type": "uniform_int",
|
75 |
+
"log": true,
|
76 |
+
"lower": 7,
|
77 |
+
"upper": 403,
|
78 |
+
"default": 53
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"name": "aknn.ef_construction",
|
82 |
+
"type": "uniform_int",
|
83 |
+
"log": true,
|
84 |
+
"lower": 7,
|
85 |
+
"upper": 1097,
|
86 |
+
"default": 88
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"name": "aknn.k",
|
90 |
+
"type": "uniform_int",
|
91 |
+
"log": false,
|
92 |
+
"lower": 1,
|
93 |
+
"upper": 50,
|
94 |
+
"default": 26
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"name": "glmnet.alpha",
|
98 |
+
"type": "uniform_float",
|
99 |
+
"log": false,
|
100 |
+
"lower": 0.0,
|
101 |
+
"upper": 1.0,
|
102 |
+
"default": 1.0
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"name": "glmnet.s",
|
106 |
+
"type": "uniform_float",
|
107 |
+
"log": true,
|
108 |
+
"lower": 0.0009118819655545162,
|
109 |
+
"upper": 1096.6331584284585,
|
110 |
+
"default": 1.0
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"name": "ranger.min.node.size",
|
114 |
+
"type": "uniform_int",
|
115 |
+
"log": false,
|
116 |
+
"lower": 1,
|
117 |
+
"upper": 100,
|
118 |
+
"default": 50
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"name": "ranger.mtry.power",
|
122 |
+
"type": "uniform_int",
|
123 |
+
"log": false,
|
124 |
+
"lower": 0,
|
125 |
+
"upper": 1,
|
126 |
+
"default": 0
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"name": "ranger.num.trees",
|
130 |
+
"type": "uniform_int",
|
131 |
+
"log": false,
|
132 |
+
"lower": 1,
|
133 |
+
"upper": 2000,
|
134 |
+
"default": 1000
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"name": "ranger.respect.unordered.factors",
|
138 |
+
"type": "categorical",
|
139 |
+
"choices": [
|
140 |
+
"ignore",
|
141 |
+
"order",
|
142 |
+
"partition"
|
143 |
+
],
|
144 |
+
"default": "ignore",
|
145 |
+
"probabilities": null
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"name": "ranger.sample.fraction",
|
149 |
+
"type": "uniform_float",
|
150 |
+
"log": false,
|
151 |
+
"lower": 0.1,
|
152 |
+
"upper": 1.0,
|
153 |
+
"default": 0.55
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"name": "ranger.splitrule",
|
157 |
+
"type": "categorical",
|
158 |
+
"choices": [
|
159 |
+
"gini",
|
160 |
+
"extratrees"
|
161 |
+
],
|
162 |
+
"default": "gini",
|
163 |
+
"probabilities": null
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"name": "rpart.cp",
|
167 |
+
"type": "uniform_float",
|
168 |
+
"log": true,
|
169 |
+
"lower": 0.0009118819655545162,
|
170 |
+
"upper": 1.0,
|
171 |
+
"default": 0.01
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"name": "rpart.maxdepth",
|
175 |
+
"type": "uniform_int",
|
176 |
+
"log": false,
|
177 |
+
"lower": 1,
|
178 |
+
"upper": 30,
|
179 |
+
"default": 30
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"name": "rpart.minbucket",
|
183 |
+
"type": "uniform_int",
|
184 |
+
"log": false,
|
185 |
+
"lower": 1,
|
186 |
+
"upper": 100,
|
187 |
+
"default": 1
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"name": "rpart.minsplit",
|
191 |
+
"type": "uniform_int",
|
192 |
+
"log": false,
|
193 |
+
"lower": 1,
|
194 |
+
"upper": 100,
|
195 |
+
"default": 20
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"name": "svm.cost",
|
199 |
+
"type": "uniform_float",
|
200 |
+
"log": true,
|
201 |
+
"lower": 4.5399929762484854e-05,
|
202 |
+
"upper": 22026.465794806718,
|
203 |
+
"default": 1.0
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"name": "svm.kernel",
|
207 |
+
"type": "categorical",
|
208 |
+
"choices": [
|
209 |
+
"linear",
|
210 |
+
"polynomial",
|
211 |
+
"radial"
|
212 |
+
],
|
213 |
+
"default": "linear",
|
214 |
+
"probabilities": null
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"name": "svm.tolerance",
|
218 |
+
"type": "uniform_float",
|
219 |
+
"log": true,
|
220 |
+
"lower": 4.5399929762484854e-05,
|
221 |
+
"upper": 2.0,
|
222 |
+
"default": 0.009528896
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"name": "xgboost.alpha",
|
226 |
+
"type": "uniform_float",
|
227 |
+
"log": true,
|
228 |
+
"lower": 0.0009118819655545162,
|
229 |
+
"upper": 1096.6331584284585,
|
230 |
+
"default": 1.0
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"name": "xgboost.booster",
|
234 |
+
"type": "categorical",
|
235 |
+
"choices": [
|
236 |
+
"gblinear",
|
237 |
+
"gbtree",
|
238 |
+
"dart"
|
239 |
+
],
|
240 |
+
"default": "gblinear",
|
241 |
+
"probabilities": null
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"name": "xgboost.lambda",
|
245 |
+
"type": "uniform_float",
|
246 |
+
"log": true,
|
247 |
+
"lower": 0.0009118819655545162,
|
248 |
+
"upper": 1096.6331584284585,
|
249 |
+
"default": 1.0
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"name": "xgboost.nrounds",
|
253 |
+
"type": "uniform_int",
|
254 |
+
"log": true,
|
255 |
+
"lower": 7,
|
256 |
+
"upper": 2981,
|
257 |
+
"default": 144
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"name": "xgboost.subsample",
|
261 |
+
"type": "uniform_float",
|
262 |
+
"log": false,
|
263 |
+
"lower": 0.1,
|
264 |
+
"upper": 1.0,
|
265 |
+
"default": 0.55
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"name": "ranger.num.random.splits",
|
269 |
+
"type": "uniform_int",
|
270 |
+
"log": false,
|
271 |
+
"lower": 1,
|
272 |
+
"upper": 100,
|
273 |
+
"default": 1
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"name": "svm.degree",
|
277 |
+
"type": "uniform_int",
|
278 |
+
"log": false,
|
279 |
+
"lower": 2,
|
280 |
+
"upper": 5,
|
281 |
+
"default": 4
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"name": "svm.gamma",
|
285 |
+
"type": "uniform_float",
|
286 |
+
"log": true,
|
287 |
+
"lower": 4.5399929762484854e-05,
|
288 |
+
"upper": 22026.465794806718,
|
289 |
+
"default": 1.0
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"name": "xgboost.colsample_bylevel",
|
293 |
+
"type": "uniform_float",
|
294 |
+
"log": false,
|
295 |
+
"lower": 0.01,
|
296 |
+
"upper": 1.0,
|
297 |
+
"default": 0.505
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"name": "xgboost.colsample_bytree",
|
301 |
+
"type": "uniform_float",
|
302 |
+
"log": false,
|
303 |
+
"lower": 0.01,
|
304 |
+
"upper": 1.0,
|
305 |
+
"default": 0.505
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"name": "xgboost.eta",
|
309 |
+
"type": "uniform_float",
|
310 |
+
"log": true,
|
311 |
+
"lower": 0.0009118819655545162,
|
312 |
+
"upper": 1.0,
|
313 |
+
"default": 0.0301973834
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"name": "xgboost.gamma",
|
317 |
+
"type": "uniform_float",
|
318 |
+
"log": true,
|
319 |
+
"lower": 4.5399929762484854e-05,
|
320 |
+
"upper": 7.38905609893065,
|
321 |
+
"default": 0.0183156389
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"name": "xgboost.max_depth",
|
325 |
+
"type": "uniform_int",
|
326 |
+
"log": false,
|
327 |
+
"lower": 1,
|
328 |
+
"upper": 15,
|
329 |
+
"default": 8
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"name": "xgboost.min_child_weight",
|
333 |
+
"type": "uniform_float",
|
334 |
+
"log": true,
|
335 |
+
"lower": 2.718281828459045,
|
336 |
+
"upper": 148.4131591025766,
|
337 |
+
"default": 20.0855369232
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"name": "xgboost.rate_drop",
|
341 |
+
"type": "uniform_float",
|
342 |
+
"log": false,
|
343 |
+
"lower": 0.0,
|
344 |
+
"upper": 1.0,
|
345 |
+
"default": 0.5
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"name": "xgboost.skip_drop",
|
349 |
+
"type": "uniform_float",
|
350 |
+
"log": false,
|
351 |
+
"lower": 0.0,
|
352 |
+
"upper": 1.0,
|
353 |
+
"default": 0.5
|
354 |
+
}
|
355 |
+
],
|
356 |
+
"conditions": [
|
357 |
+
{
|
358 |
+
"child": "aknn.M",
|
359 |
+
"parent": "learner_id",
|
360 |
+
"type": "EQ",
|
361 |
+
"value": "aknn"
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"child": "aknn.distance",
|
365 |
+
"parent": "learner_id",
|
366 |
+
"type": "EQ",
|
367 |
+
"value": "aknn"
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"child": "aknn.ef",
|
371 |
+
"parent": "learner_id",
|
372 |
+
"type": "EQ",
|
373 |
+
"value": "aknn"
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"child": "aknn.ef_construction",
|
377 |
+
"parent": "learner_id",
|
378 |
+
"type": "EQ",
|
379 |
+
"value": "aknn"
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"child": "aknn.k",
|
383 |
+
"parent": "learner_id",
|
384 |
+
"type": "EQ",
|
385 |
+
"value": "aknn"
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"child": "glmnet.alpha",
|
389 |
+
"parent": "learner_id",
|
390 |
+
"type": "EQ",
|
391 |
+
"value": "glmnet"
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"child": "glmnet.s",
|
395 |
+
"parent": "learner_id",
|
396 |
+
"type": "EQ",
|
397 |
+
"value": "glmnet"
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"child": "ranger.min.node.size",
|
401 |
+
"parent": "learner_id",
|
402 |
+
"type": "EQ",
|
403 |
+
"value": "ranger"
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"child": "ranger.mtry.power",
|
407 |
+
"parent": "learner_id",
|
408 |
+
"type": "EQ",
|
409 |
+
"value": "ranger"
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"child": "ranger.num.trees",
|
413 |
+
"parent": "learner_id",
|
414 |
+
"type": "EQ",
|
415 |
+
"value": "ranger"
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"child": "ranger.respect.unordered.factors",
|
419 |
+
"parent": "learner_id",
|
420 |
+
"type": "EQ",
|
421 |
+
"value": "ranger"
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"child": "ranger.sample.fraction",
|
425 |
+
"parent": "learner_id",
|
426 |
+
"type": "EQ",
|
427 |
+
"value": "ranger"
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"child": "ranger.splitrule",
|
431 |
+
"parent": "learner_id",
|
432 |
+
"type": "EQ",
|
433 |
+
"value": "ranger"
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"child": "rpart.cp",
|
437 |
+
"parent": "learner_id",
|
438 |
+
"type": "EQ",
|
439 |
+
"value": "rpart"
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"child": "rpart.maxdepth",
|
443 |
+
"parent": "learner_id",
|
444 |
+
"type": "EQ",
|
445 |
+
"value": "rpart"
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"child": "rpart.minbucket",
|
449 |
+
"parent": "learner_id",
|
450 |
+
"type": "EQ",
|
451 |
+
"value": "rpart"
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"child": "rpart.minsplit",
|
455 |
+
"parent": "learner_id",
|
456 |
+
"type": "EQ",
|
457 |
+
"value": "rpart"
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"child": "svm.cost",
|
461 |
+
"parent": "learner_id",
|
462 |
+
"type": "EQ",
|
463 |
+
"value": "svm"
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"child": "svm.kernel",
|
467 |
+
"parent": "learner_id",
|
468 |
+
"type": "EQ",
|
469 |
+
"value": "svm"
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"child": "svm.tolerance",
|
473 |
+
"parent": "learner_id",
|
474 |
+
"type": "EQ",
|
475 |
+
"value": "svm"
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"child": "xgboost.alpha",
|
479 |
+
"parent": "learner_id",
|
480 |
+
"type": "EQ",
|
481 |
+
"value": "xgboost"
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"child": "xgboost.booster",
|
485 |
+
"parent": "learner_id",
|
486 |
+
"type": "EQ",
|
487 |
+
"value": "xgboost"
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"child": "xgboost.lambda",
|
491 |
+
"parent": "learner_id",
|
492 |
+
"type": "EQ",
|
493 |
+
"value": "xgboost"
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"child": "xgboost.nrounds",
|
497 |
+
"parent": "learner_id",
|
498 |
+
"type": "EQ",
|
499 |
+
"value": "xgboost"
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"child": "xgboost.subsample",
|
503 |
+
"parent": "learner_id",
|
504 |
+
"type": "EQ",
|
505 |
+
"value": "xgboost"
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"child": "ranger.num.random.splits",
|
509 |
+
"type": "AND",
|
510 |
+
"conditions": [
|
511 |
+
{
|
512 |
+
"child": "ranger.num.random.splits",
|
513 |
+
"parent": "ranger.splitrule",
|
514 |
+
"type": "EQ",
|
515 |
+
"value": "extratrees"
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"child": "ranger.num.random.splits",
|
519 |
+
"parent": "learner_id",
|
520 |
+
"type": "EQ",
|
521 |
+
"value": "ranger"
|
522 |
+
}
|
523 |
+
]
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"child": "svm.degree",
|
527 |
+
"type": "AND",
|
528 |
+
"conditions": [
|
529 |
+
{
|
530 |
+
"child": "svm.degree",
|
531 |
+
"parent": "svm.kernel",
|
532 |
+
"type": "EQ",
|
533 |
+
"value": "polynomial"
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"child": "svm.degree",
|
537 |
+
"parent": "learner_id",
|
538 |
+
"type": "EQ",
|
539 |
+
"value": "svm"
|
540 |
+
}
|
541 |
+
]
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"child": "svm.gamma",
|
545 |
+
"type": "AND",
|
546 |
+
"conditions": [
|
547 |
+
{
|
548 |
+
"child": "svm.gamma",
|
549 |
+
"parent": "svm.kernel",
|
550 |
+
"type": "EQ",
|
551 |
+
"value": "radial"
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"child": "svm.gamma",
|
555 |
+
"parent": "learner_id",
|
556 |
+
"type": "EQ",
|
557 |
+
"value": "svm"
|
558 |
+
}
|
559 |
+
]
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"child": "xgboost.colsample_bylevel",
|
563 |
+
"type": "AND",
|
564 |
+
"conditions": [
|
565 |
+
{
|
566 |
+
"child": "xgboost.colsample_bylevel",
|
567 |
+
"parent": "xgboost.booster",
|
568 |
+
"type": "IN",
|
569 |
+
"values": [
|
570 |
+
"dart",
|
571 |
+
"gbtree"
|
572 |
+
]
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"child": "xgboost.colsample_bylevel",
|
576 |
+
"parent": "learner_id",
|
577 |
+
"type": "EQ",
|
578 |
+
"value": "xgboost"
|
579 |
+
}
|
580 |
+
]
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"child": "xgboost.colsample_bytree",
|
584 |
+
"type": "AND",
|
585 |
+
"conditions": [
|
586 |
+
{
|
587 |
+
"child": "xgboost.colsample_bytree",
|
588 |
+
"parent": "xgboost.booster",
|
589 |
+
"type": "IN",
|
590 |
+
"values": [
|
591 |
+
"dart",
|
592 |
+
"gbtree"
|
593 |
+
]
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"child": "xgboost.colsample_bytree",
|
597 |
+
"parent": "learner_id",
|
598 |
+
"type": "EQ",
|
599 |
+
"value": "xgboost"
|
600 |
+
}
|
601 |
+
]
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"child": "xgboost.eta",
|
605 |
+
"type": "AND",
|
606 |
+
"conditions": [
|
607 |
+
{
|
608 |
+
"child": "xgboost.eta",
|
609 |
+
"parent": "xgboost.booster",
|
610 |
+
"type": "IN",
|
611 |
+
"values": [
|
612 |
+
"dart",
|
613 |
+
"gbtree"
|
614 |
+
]
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"child": "xgboost.eta",
|
618 |
+
"parent": "learner_id",
|
619 |
+
"type": "EQ",
|
620 |
+
"value": "xgboost"
|
621 |
+
}
|
622 |
+
]
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"child": "xgboost.gamma",
|
626 |
+
"type": "AND",
|
627 |
+
"conditions": [
|
628 |
+
{
|
629 |
+
"child": "xgboost.gamma",
|
630 |
+
"parent": "xgboost.booster",
|
631 |
+
"type": "IN",
|
632 |
+
"values": [
|
633 |
+
"dart",
|
634 |
+
"gbtree"
|
635 |
+
]
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"child": "xgboost.gamma",
|
639 |
+
"parent": "learner_id",
|
640 |
+
"type": "EQ",
|
641 |
+
"value": "xgboost"
|
642 |
+
}
|
643 |
+
]
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"child": "xgboost.max_depth",
|
647 |
+
"type": "AND",
|
648 |
+
"conditions": [
|
649 |
+
{
|
650 |
+
"child": "xgboost.max_depth",
|
651 |
+
"parent": "xgboost.booster",
|
652 |
+
"type": "IN",
|
653 |
+
"values": [
|
654 |
+
"dart",
|
655 |
+
"gbtree"
|
656 |
+
]
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"child": "xgboost.max_depth",
|
660 |
+
"parent": "learner_id",
|
661 |
+
"type": "EQ",
|
662 |
+
"value": "xgboost"
|
663 |
+
}
|
664 |
+
]
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"child": "xgboost.min_child_weight",
|
668 |
+
"type": "AND",
|
669 |
+
"conditions": [
|
670 |
+
{
|
671 |
+
"child": "xgboost.min_child_weight",
|
672 |
+
"parent": "xgboost.booster",
|
673 |
+
"type": "IN",
|
674 |
+
"values": [
|
675 |
+
"dart",
|
676 |
+
"gbtree"
|
677 |
+
]
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"child": "xgboost.min_child_weight",
|
681 |
+
"parent": "learner_id",
|
682 |
+
"type": "EQ",
|
683 |
+
"value": "xgboost"
|
684 |
+
}
|
685 |
+
]
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"child": "xgboost.rate_drop",
|
689 |
+
"type": "AND",
|
690 |
+
"conditions": [
|
691 |
+
{
|
692 |
+
"child": "xgboost.rate_drop",
|
693 |
+
"parent": "xgboost.booster",
|
694 |
+
"type": "EQ",
|
695 |
+
"value": "dart"
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"child": "xgboost.rate_drop",
|
699 |
+
"parent": "learner_id",
|
700 |
+
"type": "EQ",
|
701 |
+
"value": "xgboost"
|
702 |
+
}
|
703 |
+
]
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"child": "xgboost.skip_drop",
|
707 |
+
"type": "AND",
|
708 |
+
"conditions": [
|
709 |
+
{
|
710 |
+
"child": "xgboost.skip_drop",
|
711 |
+
"parent": "xgboost.booster",
|
712 |
+
"type": "EQ",
|
713 |
+
"value": "dart"
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"child": "xgboost.skip_drop",
|
717 |
+
"parent": "learner_id",
|
718 |
+
"type": "EQ",
|
719 |
+
"value": "xgboost"
|
720 |
+
}
|
721 |
+
]
|
722 |
+
}
|
723 |
+
],
|
724 |
+
"forbiddens": [],
|
725 |
+
"python_module_version": "0.4.18",
|
726 |
+
"json_format_version": 0.2
|
727 |
+
}
|
yahpo/rbv2_super/encoding.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"aknn.distance": {"#na#": 0, "cosine": 1, "ip": 2, "l2": 3}, "learner_id": {"#na#": 0, "aknn": 1, "glmnet": 2, "ranger": 3, "rpart": 4, "svm": 5, "xgboost": 6}, "num.impute.selected.cpo": {"#na#": 0, "impute.hist": 1, "impute.mean": 2, "impute.median": 3}, "ranger.respect.unordered.factors": {"#na#": 0, "ignore": 1, "order": 2, "partition": 3}, "ranger.splitrule": {"#na#": 0, "extratrees": 1, "gini": 2}, "svm.kernel": {"#na#": 0, "linear": 1, "polynomial": 2, "radial": 3}, "task_id": {"#na#": 0, "1040": 1, "1049": 2, "1050": 3, "1053": 4, "1056": 5, "1063": 6, "1067": 7, "1068": 8, "11": 9, "1111": 10, "12": 11, "1220": 12, "14": 13, "1457": 14, "1461": 15, "1462": 16, "1464": 17, "1468": 18, "1475": 19, "1476": 20, "1478": 21, "1479": 22, "1480": 23, "1485": 24, "1486": 25, "1487": 26, "1489": 27, "1493": 28, "1494": 29, "1497": 30, "15": 31, "1501": 32, "151": 33, "1510": 34, "1515": 35, "1590": 36, "16": 37, "18": 38, "181": 39, "182": 40, "188": 41, "22": 42, "23": 43, "23381": 44, "24": 45, "28": 46, "29": 47, "3": 48, "300": 49, "307": 50, "31": 51, "312": 52, "32": 53, "334": 54, "37": 55, "375": 56, "377": 57, "38": 58, "40496": 59, "40498": 60, "40499": 61, "40536": 62, "40668": 63, "40670": 64, "40685": 65, "40701": 66, "40900": 67, "40966": 68, "40975": 69, "40978": 70, "40979": 71, "40981": 72, "40982": 73, "40983": 74, "40984": 75, "40994": 76, "41027": 77, "41138": 78, "41142": 79, "41143": 80, "41146": 81, "41156": 82, "41157": 83, "41162": 84, "41163": 85, "41164": 86, "41169": 87, "41212": 88, "4134": 89, "4154": 90, "42": 91, "44": 92, "4534": 93, "4538": 94, "458": 95, "46": 96, "469": 97, "470": 98, "50": 99, "54": 100, "6": 101, "60": 102, "6332": 103}, "xgboost.booster": {"#na#": 0, "dart": 1, "gblinear": 2, "gbtree": 3}}
|
yahpo/rbv2_super/metadata.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"metric_elapsed_time": "time", "metric_default": "val_accuracy", "resource_attr": "st_worker_iter"}
|
yahpo/rbv2_super/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28b25f92be0623bce7809cda0a68670046bc48a994c6081e5fe3b54257581ccd
|
3 |
+
size 10227923
|
yahpo/rbv2_super/param_set.R
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
search_space = ps(
|
2 |
+
# svm
|
3 |
+
svm.kernel = p_fct(levels = c("linear", "polynomial", "radial")),
|
4 |
+
svm.cost = p_dbl(lower = -10, upper = 10, tags = "log", trafo = function(x) exp(x)),
|
5 |
+
svm.gamma = p_dbl(lower = -10, upper = 10, tags = "log", trafo = function(x) exp(x), depends = svm.kernel == "radial"),
|
6 |
+
svm.tolerance = p_dbl(lower = -10, upper = log(2), tags = "log", trafo = function(x) exp(x)),
|
7 |
+
svm.degree = p_int(lower = 2L, upper = 5L, depends = svm.kernel == "polynomial"),
|
8 |
+
# glmnet
|
9 |
+
glmnet.alpha = p_dbl(lower = 0, upper = 1),
|
10 |
+
glmnet.s = p_dbl(lower = -7, upper = 7, tags = "log", trafo = function(x) exp(x)),
|
11 |
+
# rpart
|
12 |
+
rpart.cp = p_dbl(lower = -7, upper = 0, tags = "log", trafo = function(x) exp(x)),
|
13 |
+
rpart.maxdepth = p_int(lower = 1L, upper = 30L),
|
14 |
+
rpart.minbucket = p_int(lower = 1L, upper = 100L),
|
15 |
+
rpart.minsplit = p_int(lower = 1L, upper = 100L),
|
16 |
+
# ranger
|
17 |
+
ranger.num.trees = p_int(lower = 1L, upper = 2000L),
|
18 |
+
ranger.sample.fraction = p_dbl(lower = 0.1, upper = 1),
|
19 |
+
ranger.mtry.power = p_int(lower = 0, upper = 1),
|
20 |
+
ranger.respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition")),
|
21 |
+
ranger.min.node.size = p_int(lower = 1L, upper = 100L),
|
22 |
+
ranger.splitrule = p_fct(levels = c("gini", "extratrees")),
|
23 |
+
ranger.num.random.splits = p_int(lower = 1L, upper = 100L, depends = ranger.splitrule == "extratrees"),
|
24 |
+
# aknn
|
25 |
+
aknn.k = p_int(lower = 1L, upper = 50L),
|
26 |
+
aknn.distance = p_fct(levels = c("l2", "cosine", "ip")),
|
27 |
+
aknn.M = p_int(lower = 18L, upper = 50L),
|
28 |
+
aknn.ef = p_dbl(lower = 2, upper = 6, tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))),
|
29 |
+
aknn.ef_construction = p_dbl(lower = 2, upper = 7, tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))),
|
30 |
+
# xgboost
|
31 |
+
xgboost.booster = p_fct(levels = c("gblinear", "gbtree", "dart")),
|
32 |
+
xgboost.nrounds = p_dbl(lower = 2, upper = 8, tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))),
|
33 |
+
xgboost.eta = p_dbl(lower = -7, upper = 0, tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree")),
|
34 |
+
xgboost.gamma = p_dbl(lower = -10, upper = 2, tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree")),
|
35 |
+
xgboost.lambda = p_dbl(lower = -7, upper = 7, tags = "log", trafo = function(x) exp(x)),
|
36 |
+
xgboost.alpha = p_dbl(lower = -7, upper = 7, tags = "log", trafo = function(x) exp(x)),
|
37 |
+
xgboost.subsample = p_dbl(lower = 0.1, upper = 1),
|
38 |
+
xgboost.max_depth = p_int(lower = 1L, upper = 15L, depends = xgboost.booster %in% c("dart", "gbtree")),
|
39 |
+
xgboost.min_child_weight = p_dbl(lower = 1, upper = 5, tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree")),
|
40 |
+
xgboost.colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree")),
|
41 |
+
xgboost.colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree")),
|
42 |
+
xgboost.rate_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart"),
|
43 |
+
xgboost.skip_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart"),
|
44 |
+
trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
|
45 |
+
repl = p_int(lower = 1L, upper = 10L, tags = "budget"),
|
46 |
+
num.impute.selected.cpo = p_fct(levels = c("impute.mean", "impute.median", "impute.hist")),
|
47 |
+
learner_id = p_fct(levels = c("aknn", "glmnet", "ranger", "rpart", "svm", "xgboost")),
|
48 |
+
task_id = p_fct(levels = c("41138", "40981", "4134", "1220", "4154", "41163", "4538",
|
49 |
+
"40978", "375", "1111", "40496", "40966", "4534", "40900", "40536",
|
50 |
+
"41156", "1590", "1457", "458", "469", "41157", "11", "1461",
|
51 |
+
"1462", "1464", "15", "40975", "41142", "40701", "40994", "23",
|
52 |
+
"1468", "40668", "29", "31", "6332", "37", "40670", "23381",
|
53 |
+
"151", "188", "41164", "1475", "1476", "1478", "41169", "1479",
|
54 |
+
"41212", "1480", "300", "41143", "1053", "41027", "1067", "1063",
|
55 |
+
"41162", "3", "6", "1485", "1056", "12", "14", "16", "18", "40979",
|
56 |
+
"22", "1515", "334", "24", "1486", "1493", "28", "1487", "1068",
|
57 |
+
"1050", "1049", "32", "1489", "470", "1494", "182", "312", "40984",
|
58 |
+
"1501", "40685", "38", "42", "44", "46", "40982", "1040", "41146",
|
59 |
+
"377", "40499", "50", "54", "307", "1497", "60", "1510", "40983",
|
60 |
+
"40498", "181"),
|
61 |
+
tags = "task_id"
|
62 |
+
)
|
63 |
+
)
|
64 |
+
# Add dependencies
|
65 |
+
map(search_space$params$learner_id$levels, function(x) {
|
66 |
+
nms = names(search_space$params)[startsWith(names(search_space$params), x)]
|
67 |
+
map(nms, function(nm) search_space$add_dep(nm, "learner_id", CondEqual$new(x)))
|
68 |
+
})
|
69 |
+
|
70 |
+
domain = ps(
|
71 |
+
# svm
|
72 |
+
svm.kernel = p_fct(levels = c("linear", "polynomial", "radial")),
|
73 |
+
svm.cost = p_dbl(lower = exp(-10), upper = exp(10)),
|
74 |
+
svm.gamma = p_dbl(lower = exp(-10), upper = exp(10), depends = svm.kernel == "radial"),
|
75 |
+
svm.tolerance = p_dbl(lower = exp(-10), upper = 2),
|
76 |
+
svm.degree = p_int(lower = 2L, upper = 5L, depends = svm.kernel == "polynomial"),
|
77 |
+
# glmnet
|
78 |
+
glmnet.alpha = p_dbl(lower = 0, upper = 1),
|
79 |
+
glmnet.s = p_dbl(lower = exp(-7), upper = exp(7)),
|
80 |
+
# rpart
|
81 |
+
rpart.cp = p_dbl(lower = exp(-7), upper = exp(0)),
|
82 |
+
rpart.maxdepth = p_int(lower = 1L, upper = 30L),
|
83 |
+
rpart.minbucket = p_int(lower = 1L, upper = 100L),
|
84 |
+
rpart.minsplit = p_int(lower = 1L, upper = 100L),
|
85 |
+
# ranger
|
86 |
+
ranger.num.trees = p_int(lower = 1L, upper = 2000L),
|
87 |
+
ranger.sample.fraction = p_dbl(lower = 0.1, upper = 1),
|
88 |
+
ranger.mtry.power = p_dbl(lower = 0, upper = 1),
|
89 |
+
ranger.respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition")),
|
90 |
+
ranger.min.node.size = p_int(lower = 1L, upper = 100L),
|
91 |
+
ranger.splitrule = p_fct(levels = c("gini", "extratrees")),
|
92 |
+
ranger.num.random.splits = p_int(lower = 1, upper = 100L, depends = ranger.splitrule == "extratrees"),
|
93 |
+
# aknn
|
94 |
+
aknn.k = p_int(lower = 1L, upper = 50L),
|
95 |
+
aknn.distance = p_fct(levels = c("l2", "cosine", "ip")),
|
96 |
+
aknn.M = p_int(lower = 18L, upper = 50L),
|
97 |
+
aknn.ef = p_int(lower = 7L, upper = 403L),
|
98 |
+
aknn.ef_construction = p_int(lower = 7L, upper = 403L),
|
99 |
+
# xgboost
|
100 |
+
xgboost.booster = p_fct(levels = c("gblinear", "gbtree", "dart")),
|
101 |
+
xgboost.nrounds = p_int(lower = 7L, upper = 2981L),
|
102 |
+
xgboost.eta = p_dbl(lower = exp(-7), upper = exp(0),depends = xgboost.booster %in% c("dart", "gbtree")),
|
103 |
+
xgboost.gamma = p_dbl(lower = exp(-10), upper = exp(2), depends = xgboost.booster %in% c("dart", "gbtree")),
|
104 |
+
xgboost.lambda = p_dbl(lower = exp(-7), upper = exp(7)),
|
105 |
+
xgboost.alpha = p_dbl(lower = exp(-7), upper = exp(7)),
|
106 |
+
xgboost.subsample = p_dbl(lower = 0.1, upper = 1),
|
107 |
+
xgboost.max_depth = p_int(lower = 1L, upper = 15L, depends = xgboost.booster %in% c("dart", "gbtree")),
|
108 |
+
xgboost.min_child_weight = p_dbl(lower = exp(1), upper = exp(5), depends = xgboost.booster %in% c("dart", "gbtree")),
|
109 |
+
xgboost.colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree")),
|
110 |
+
xgboost.colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree")),
|
111 |
+
xgboost.rate_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart"),
|
112 |
+
xgboost.skip_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart"),
|
113 |
+
# learner_id
|
114 |
+
trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
|
115 |
+
repl = p_int(lower = 1L, upper = 10L, tags = "budget"),
|
116 |
+
num.impute.selected.cpo = p_fct(levels = c("impute.mean", "impute.median", "impute.hist")),
|
117 |
+
learner_id = p_fct(levels = c("aknn", "glmnet", "ranger", "rpart", "svm", "xgboost")),
|
118 |
+
task_id = p_fct(levels = c("41138", "40981", "4134", "1220", "4154", "41163", "4538",
|
119 |
+
"40978", "375", "1111", "40496", "40966", "4534", "40900", "40536",
|
120 |
+
"41156", "1590", "1457", "458", "469", "41157", "11", "1461",
|
121 |
+
"1462", "1464", "15", "40975", "41142", "40701", "40994", "23",
|
122 |
+
"1468", "40668", "29", "31", "6332", "37", "40670", "23381",
|
123 |
+
"151", "188", "41164", "1475", "1476", "1478", "41169", "1479",
|
124 |
+
"41212", "1480", "300", "41143", "1053", "41027", "1067", "1063",
|
125 |
+
"41162", "3", "6", "1485", "1056", "12", "14", "16", "18", "40979",
|
126 |
+
"22", "1515", "334", "24", "1486", "1493", "28", "1487", "1068",
|
127 |
+
"1050", "1049", "32", "1489", "470", "1494", "182", "312", "40984",
|
128 |
+
"1501", "40685", "38", "42", "44", "46", "40982", "1040", "41146",
|
129 |
+
"377", "40499", "50", "54", "307", "1497", "60", "1510", "40983",
|
130 |
+
"40498", "181"),
|
131 |
+
tags = "task_id"
|
132 |
+
)
|
133 |
+
)
|
134 |
+
# Add dependencies
|
135 |
+
map(domain$params$learner_id$levels, function(x) {
|
136 |
+
nms = names(domain$params)[startsWith(names(domain$params), x)]
|
137 |
+
map(nms, function(nm) domain$add_dep(nm, "learner_id", CondEqual$new(x)))
|
138 |
+
})
|
139 |
+
|
140 |
+
codomain = ps(
|
141 |
+
acc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
142 |
+
bac = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
143 |
+
f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
144 |
+
auc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
145 |
+
brier = p_dbl(lower = 0, upper = 1, tags = "minimize"),
|
146 |
+
logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
147 |
+
timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
148 |
+
timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
149 |
+
memory = p_dbl(lower = 0, upper = Inf, tags = "minimize")
|
150 |
+
)
|