geoalgo commited on
Commit
eb9761b
·
verified ·
1 Parent(s): 878ef3a

Upload blackbox yahpo-rbv2_super

Browse files
yahpo/rbv2_super/best_params_resnet.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"d": 512, "d_hidden_factor": 3.141331955873597, "hidden_dropout": 0.15835721248635748, "lr": 0.004207643040634978, "mixup": false, "n_layers": 1, "opt_tfms_acc": true, "opt_tfms_aknn.M": false, "opt_tfms_aknn.ef": false, "opt_tfms_aknn.ef_construction": false, "opt_tfms_aknn.k": true, "opt_tfms_auc": true, "opt_tfms_bac": true, "opt_tfms_brier": true, "opt_tfms_f1": false, "opt_tfms_glmnet.alpha": false, "opt_tfms_glmnet.s": false, "opt_tfms_logloss": true, "opt_tfms_memory": true, "opt_tfms_ranger.min.node.size": false, "opt_tfms_ranger.mtry.power": false, "opt_tfms_ranger.num.random.splits": true, "opt_tfms_ranger.num.trees": false, "opt_tfms_ranger.sample.fraction": true, "opt_tfms_repl": true, "opt_tfms_rpart.cp": false, "opt_tfms_rpart.maxdepth": false, "opt_tfms_rpart.minbucket": true, "opt_tfms_rpart.minsplit": false, "opt_tfms_svm.cost": true, "opt_tfms_svm.degree": false, "opt_tfms_svm.gamma": false, "opt_tfms_svm.tolerance": false, "opt_tfms_timepredict": false, "opt_tfms_timetrain": false, "opt_tfms_trainsize": false, "opt_tfms_xgboost.alpha": false, "opt_tfms_xgboost.colsample_bylevel": false, "opt_tfms_xgboost.colsample_bytree": true, "opt_tfms_xgboost.eta": false, "opt_tfms_xgboost.gamma": true, "opt_tfms_xgboost.lambda": false, "opt_tfms_xgboost.max_depth": false, "opt_tfms_xgboost.min_child_weight": true, "opt_tfms_xgboost.nrounds": true, "opt_tfms_xgboost.rate_drop": false, "opt_tfms_xgboost.skip_drop": true, "opt_tfms_xgboost.subsample": true, "residual_dropout": 0.03256172522342702, "tfms_acc": "tlog", "tfms_aknn.k": "tnexp", "tfms_auc": "tlog", "tfms_bac": "tnexp", "tfms_brier": "tlog", "tfms_logloss": "tlog", "tfms_memory": "tnexp", "tfms_ranger.num.random.splits": "tlog", "tfms_ranger.sample.fraction": "tnexp", "tfms_repl": "tnexp", "tfms_rpart.minbucket": "tlog", "tfms_svm.cost": "tlog", "tfms_xgboost.colsample_bytree": "tnexp", "tfms_xgboost.gamma": "tlog", "tfms_xgboost.min_child_weight": "tlog", "tfms_xgboost.nrounds": "tlog", "tfms_xgboost.skip_drop": "tlog", "tfms_xgboost.subsample": "tlog", "use_residual_dropout": true}
yahpo/rbv2_super/config_space.json ADDED
@@ -0,0 +1,727 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "hyperparameters": [
3
+ {
4
+ "name": "learner_id",
5
+ "type": "categorical",
6
+ "choices": [
7
+ "aknn",
8
+ "glmnet",
9
+ "ranger",
10
+ "rpart",
11
+ "svm",
12
+ "xgboost"
13
+ ],
14
+ "default": "aknn",
15
+ "probabilities": null
16
+ },
17
+ {
18
+ "name": "num.impute.selected.cpo",
19
+ "type": "categorical",
20
+ "choices": [
21
+ "impute.mean",
22
+ "impute.median",
23
+ "impute.hist"
24
+ ],
25
+ "default": "impute.mean",
26
+ "probabilities": null
27
+ },
28
+ {
29
+ "name": "repl",
30
+ "type": "uniform_int",
31
+ "log": false,
32
+ "lower": 1,
33
+ "upper": 10,
34
+ "default": 6
35
+ },
36
+ {
37
+ "name": "task_id",
38
+ "type": "categorical",
39
+ "choices": [
40
+ "41138","40981","4134","1220","4154","41163","4538","40978","375","1111","40496","40966","4534","40900","40536","41156","1590","1457","458","469","41157","11","1461","1462","1464","15","40975","41142","40701","40994","23","1468","40668","29","31","6332","37","40670","23381","151","188","41164","1475","1476","1478","41169","1479","41212","1480","300","41143","1053","41027","1067","1063","41162","3","6","1485","1056","12","14","16","18","40979","22","1515","334","24","1486","1493","28","1487","1068","1050","1049","32","1489","470","1494","182","312","40984","1501","40685","38","42","44","46","40982","1040","41146","377","40499","50","54","307","1497","60","1510","40983","40498","181"
41
+ ],
42
+ "default": "1040",
43
+ "probabilities": null
44
+ },
45
+ {
46
+ "name": "trainsize",
47
+ "type": "uniform_float",
48
+ "log": false,
49
+ "lower": 0.03,
50
+ "upper": 1.0,
51
+ "default": 0.525
52
+ },
53
+ {
54
+ "name": "aknn.M",
55
+ "type": "uniform_int",
56
+ "log": false,
57
+ "lower": 18,
58
+ "upper": 50,
59
+ "default": 34
60
+ },
61
+ {
62
+ "name": "aknn.distance",
63
+ "type": "categorical",
64
+ "choices": [
65
+ "l2",
66
+ "cosine",
67
+ "ip"
68
+ ],
69
+ "default": "l2",
70
+ "probabilities": null
71
+ },
72
+ {
73
+ "name": "aknn.ef",
74
+ "type": "uniform_int",
75
+ "log": true,
76
+ "lower": 7,
77
+ "upper": 403,
78
+ "default": 53
79
+ },
80
+ {
81
+ "name": "aknn.ef_construction",
82
+ "type": "uniform_int",
83
+ "log": true,
84
+ "lower": 7,
85
+ "upper": 1097,
86
+ "default": 88
87
+ },
88
+ {
89
+ "name": "aknn.k",
90
+ "type": "uniform_int",
91
+ "log": false,
92
+ "lower": 1,
93
+ "upper": 50,
94
+ "default": 26
95
+ },
96
+ {
97
+ "name": "glmnet.alpha",
98
+ "type": "uniform_float",
99
+ "log": false,
100
+ "lower": 0.0,
101
+ "upper": 1.0,
102
+ "default": 1.0
103
+ },
104
+ {
105
+ "name": "glmnet.s",
106
+ "type": "uniform_float",
107
+ "log": true,
108
+ "lower": 0.0009118819655545162,
109
+ "upper": 1096.6331584284585,
110
+ "default": 1.0
111
+ },
112
+ {
113
+ "name": "ranger.min.node.size",
114
+ "type": "uniform_int",
115
+ "log": false,
116
+ "lower": 1,
117
+ "upper": 100,
118
+ "default": 50
119
+ },
120
+ {
121
+ "name": "ranger.mtry.power",
122
+ "type": "uniform_int",
123
+ "log": false,
124
+ "lower": 0,
125
+ "upper": 1,
126
+ "default": 0
127
+ },
128
+ {
129
+ "name": "ranger.num.trees",
130
+ "type": "uniform_int",
131
+ "log": false,
132
+ "lower": 1,
133
+ "upper": 2000,
134
+ "default": 1000
135
+ },
136
+ {
137
+ "name": "ranger.respect.unordered.factors",
138
+ "type": "categorical",
139
+ "choices": [
140
+ "ignore",
141
+ "order",
142
+ "partition"
143
+ ],
144
+ "default": "ignore",
145
+ "probabilities": null
146
+ },
147
+ {
148
+ "name": "ranger.sample.fraction",
149
+ "type": "uniform_float",
150
+ "log": false,
151
+ "lower": 0.1,
152
+ "upper": 1.0,
153
+ "default": 0.55
154
+ },
155
+ {
156
+ "name": "ranger.splitrule",
157
+ "type": "categorical",
158
+ "choices": [
159
+ "gini",
160
+ "extratrees"
161
+ ],
162
+ "default": "gini",
163
+ "probabilities": null
164
+ },
165
+ {
166
+ "name": "rpart.cp",
167
+ "type": "uniform_float",
168
+ "log": true,
169
+ "lower": 0.0009118819655545162,
170
+ "upper": 1.0,
171
+ "default": 0.01
172
+ },
173
+ {
174
+ "name": "rpart.maxdepth",
175
+ "type": "uniform_int",
176
+ "log": false,
177
+ "lower": 1,
178
+ "upper": 30,
179
+ "default": 30
180
+ },
181
+ {
182
+ "name": "rpart.minbucket",
183
+ "type": "uniform_int",
184
+ "log": false,
185
+ "lower": 1,
186
+ "upper": 100,
187
+ "default": 1
188
+ },
189
+ {
190
+ "name": "rpart.minsplit",
191
+ "type": "uniform_int",
192
+ "log": false,
193
+ "lower": 1,
194
+ "upper": 100,
195
+ "default": 20
196
+ },
197
+ {
198
+ "name": "svm.cost",
199
+ "type": "uniform_float",
200
+ "log": true,
201
+ "lower": 4.5399929762484854e-05,
202
+ "upper": 22026.465794806718,
203
+ "default": 1.0
204
+ },
205
+ {
206
+ "name": "svm.kernel",
207
+ "type": "categorical",
208
+ "choices": [
209
+ "linear",
210
+ "polynomial",
211
+ "radial"
212
+ ],
213
+ "default": "linear",
214
+ "probabilities": null
215
+ },
216
+ {
217
+ "name": "svm.tolerance",
218
+ "type": "uniform_float",
219
+ "log": true,
220
+ "lower": 4.5399929762484854e-05,
221
+ "upper": 2.0,
222
+ "default": 0.009528896
223
+ },
224
+ {
225
+ "name": "xgboost.alpha",
226
+ "type": "uniform_float",
227
+ "log": true,
228
+ "lower": 0.0009118819655545162,
229
+ "upper": 1096.6331584284585,
230
+ "default": 1.0
231
+ },
232
+ {
233
+ "name": "xgboost.booster",
234
+ "type": "categorical",
235
+ "choices": [
236
+ "gblinear",
237
+ "gbtree",
238
+ "dart"
239
+ ],
240
+ "default": "gblinear",
241
+ "probabilities": null
242
+ },
243
+ {
244
+ "name": "xgboost.lambda",
245
+ "type": "uniform_float",
246
+ "log": true,
247
+ "lower": 0.0009118819655545162,
248
+ "upper": 1096.6331584284585,
249
+ "default": 1.0
250
+ },
251
+ {
252
+ "name": "xgboost.nrounds",
253
+ "type": "uniform_int",
254
+ "log": true,
255
+ "lower": 7,
256
+ "upper": 2981,
257
+ "default": 144
258
+ },
259
+ {
260
+ "name": "xgboost.subsample",
261
+ "type": "uniform_float",
262
+ "log": false,
263
+ "lower": 0.1,
264
+ "upper": 1.0,
265
+ "default": 0.55
266
+ },
267
+ {
268
+ "name": "ranger.num.random.splits",
269
+ "type": "uniform_int",
270
+ "log": false,
271
+ "lower": 1,
272
+ "upper": 100,
273
+ "default": 1
274
+ },
275
+ {
276
+ "name": "svm.degree",
277
+ "type": "uniform_int",
278
+ "log": false,
279
+ "lower": 2,
280
+ "upper": 5,
281
+ "default": 4
282
+ },
283
+ {
284
+ "name": "svm.gamma",
285
+ "type": "uniform_float",
286
+ "log": true,
287
+ "lower": 4.5399929762484854e-05,
288
+ "upper": 22026.465794806718,
289
+ "default": 1.0
290
+ },
291
+ {
292
+ "name": "xgboost.colsample_bylevel",
293
+ "type": "uniform_float",
294
+ "log": false,
295
+ "lower": 0.01,
296
+ "upper": 1.0,
297
+ "default": 0.505
298
+ },
299
+ {
300
+ "name": "xgboost.colsample_bytree",
301
+ "type": "uniform_float",
302
+ "log": false,
303
+ "lower": 0.01,
304
+ "upper": 1.0,
305
+ "default": 0.505
306
+ },
307
+ {
308
+ "name": "xgboost.eta",
309
+ "type": "uniform_float",
310
+ "log": true,
311
+ "lower": 0.0009118819655545162,
312
+ "upper": 1.0,
313
+ "default": 0.0301973834
314
+ },
315
+ {
316
+ "name": "xgboost.gamma",
317
+ "type": "uniform_float",
318
+ "log": true,
319
+ "lower": 4.5399929762484854e-05,
320
+ "upper": 7.38905609893065,
321
+ "default": 0.0183156389
322
+ },
323
+ {
324
+ "name": "xgboost.max_depth",
325
+ "type": "uniform_int",
326
+ "log": false,
327
+ "lower": 1,
328
+ "upper": 15,
329
+ "default": 8
330
+ },
331
+ {
332
+ "name": "xgboost.min_child_weight",
333
+ "type": "uniform_float",
334
+ "log": true,
335
+ "lower": 2.718281828459045,
336
+ "upper": 148.4131591025766,
337
+ "default": 20.0855369232
338
+ },
339
+ {
340
+ "name": "xgboost.rate_drop",
341
+ "type": "uniform_float",
342
+ "log": false,
343
+ "lower": 0.0,
344
+ "upper": 1.0,
345
+ "default": 0.5
346
+ },
347
+ {
348
+ "name": "xgboost.skip_drop",
349
+ "type": "uniform_float",
350
+ "log": false,
351
+ "lower": 0.0,
352
+ "upper": 1.0,
353
+ "default": 0.5
354
+ }
355
+ ],
356
+ "conditions": [
357
+ {
358
+ "child": "aknn.M",
359
+ "parent": "learner_id",
360
+ "type": "EQ",
361
+ "value": "aknn"
362
+ },
363
+ {
364
+ "child": "aknn.distance",
365
+ "parent": "learner_id",
366
+ "type": "EQ",
367
+ "value": "aknn"
368
+ },
369
+ {
370
+ "child": "aknn.ef",
371
+ "parent": "learner_id",
372
+ "type": "EQ",
373
+ "value": "aknn"
374
+ },
375
+ {
376
+ "child": "aknn.ef_construction",
377
+ "parent": "learner_id",
378
+ "type": "EQ",
379
+ "value": "aknn"
380
+ },
381
+ {
382
+ "child": "aknn.k",
383
+ "parent": "learner_id",
384
+ "type": "EQ",
385
+ "value": "aknn"
386
+ },
387
+ {
388
+ "child": "glmnet.alpha",
389
+ "parent": "learner_id",
390
+ "type": "EQ",
391
+ "value": "glmnet"
392
+ },
393
+ {
394
+ "child": "glmnet.s",
395
+ "parent": "learner_id",
396
+ "type": "EQ",
397
+ "value": "glmnet"
398
+ },
399
+ {
400
+ "child": "ranger.min.node.size",
401
+ "parent": "learner_id",
402
+ "type": "EQ",
403
+ "value": "ranger"
404
+ },
405
+ {
406
+ "child": "ranger.mtry.power",
407
+ "parent": "learner_id",
408
+ "type": "EQ",
409
+ "value": "ranger"
410
+ },
411
+ {
412
+ "child": "ranger.num.trees",
413
+ "parent": "learner_id",
414
+ "type": "EQ",
415
+ "value": "ranger"
416
+ },
417
+ {
418
+ "child": "ranger.respect.unordered.factors",
419
+ "parent": "learner_id",
420
+ "type": "EQ",
421
+ "value": "ranger"
422
+ },
423
+ {
424
+ "child": "ranger.sample.fraction",
425
+ "parent": "learner_id",
426
+ "type": "EQ",
427
+ "value": "ranger"
428
+ },
429
+ {
430
+ "child": "ranger.splitrule",
431
+ "parent": "learner_id",
432
+ "type": "EQ",
433
+ "value": "ranger"
434
+ },
435
+ {
436
+ "child": "rpart.cp",
437
+ "parent": "learner_id",
438
+ "type": "EQ",
439
+ "value": "rpart"
440
+ },
441
+ {
442
+ "child": "rpart.maxdepth",
443
+ "parent": "learner_id",
444
+ "type": "EQ",
445
+ "value": "rpart"
446
+ },
447
+ {
448
+ "child": "rpart.minbucket",
449
+ "parent": "learner_id",
450
+ "type": "EQ",
451
+ "value": "rpart"
452
+ },
453
+ {
454
+ "child": "rpart.minsplit",
455
+ "parent": "learner_id",
456
+ "type": "EQ",
457
+ "value": "rpart"
458
+ },
459
+ {
460
+ "child": "svm.cost",
461
+ "parent": "learner_id",
462
+ "type": "EQ",
463
+ "value": "svm"
464
+ },
465
+ {
466
+ "child": "svm.kernel",
467
+ "parent": "learner_id",
468
+ "type": "EQ",
469
+ "value": "svm"
470
+ },
471
+ {
472
+ "child": "svm.tolerance",
473
+ "parent": "learner_id",
474
+ "type": "EQ",
475
+ "value": "svm"
476
+ },
477
+ {
478
+ "child": "xgboost.alpha",
479
+ "parent": "learner_id",
480
+ "type": "EQ",
481
+ "value": "xgboost"
482
+ },
483
+ {
484
+ "child": "xgboost.booster",
485
+ "parent": "learner_id",
486
+ "type": "EQ",
487
+ "value": "xgboost"
488
+ },
489
+ {
490
+ "child": "xgboost.lambda",
491
+ "parent": "learner_id",
492
+ "type": "EQ",
493
+ "value": "xgboost"
494
+ },
495
+ {
496
+ "child": "xgboost.nrounds",
497
+ "parent": "learner_id",
498
+ "type": "EQ",
499
+ "value": "xgboost"
500
+ },
501
+ {
502
+ "child": "xgboost.subsample",
503
+ "parent": "learner_id",
504
+ "type": "EQ",
505
+ "value": "xgboost"
506
+ },
507
+ {
508
+ "child": "ranger.num.random.splits",
509
+ "type": "AND",
510
+ "conditions": [
511
+ {
512
+ "child": "ranger.num.random.splits",
513
+ "parent": "ranger.splitrule",
514
+ "type": "EQ",
515
+ "value": "extratrees"
516
+ },
517
+ {
518
+ "child": "ranger.num.random.splits",
519
+ "parent": "learner_id",
520
+ "type": "EQ",
521
+ "value": "ranger"
522
+ }
523
+ ]
524
+ },
525
+ {
526
+ "child": "svm.degree",
527
+ "type": "AND",
528
+ "conditions": [
529
+ {
530
+ "child": "svm.degree",
531
+ "parent": "svm.kernel",
532
+ "type": "EQ",
533
+ "value": "polynomial"
534
+ },
535
+ {
536
+ "child": "svm.degree",
537
+ "parent": "learner_id",
538
+ "type": "EQ",
539
+ "value": "svm"
540
+ }
541
+ ]
542
+ },
543
+ {
544
+ "child": "svm.gamma",
545
+ "type": "AND",
546
+ "conditions": [
547
+ {
548
+ "child": "svm.gamma",
549
+ "parent": "svm.kernel",
550
+ "type": "EQ",
551
+ "value": "radial"
552
+ },
553
+ {
554
+ "child": "svm.gamma",
555
+ "parent": "learner_id",
556
+ "type": "EQ",
557
+ "value": "svm"
558
+ }
559
+ ]
560
+ },
561
+ {
562
+ "child": "xgboost.colsample_bylevel",
563
+ "type": "AND",
564
+ "conditions": [
565
+ {
566
+ "child": "xgboost.colsample_bylevel",
567
+ "parent": "xgboost.booster",
568
+ "type": "IN",
569
+ "values": [
570
+ "dart",
571
+ "gbtree"
572
+ ]
573
+ },
574
+ {
575
+ "child": "xgboost.colsample_bylevel",
576
+ "parent": "learner_id",
577
+ "type": "EQ",
578
+ "value": "xgboost"
579
+ }
580
+ ]
581
+ },
582
+ {
583
+ "child": "xgboost.colsample_bytree",
584
+ "type": "AND",
585
+ "conditions": [
586
+ {
587
+ "child": "xgboost.colsample_bytree",
588
+ "parent": "xgboost.booster",
589
+ "type": "IN",
590
+ "values": [
591
+ "dart",
592
+ "gbtree"
593
+ ]
594
+ },
595
+ {
596
+ "child": "xgboost.colsample_bytree",
597
+ "parent": "learner_id",
598
+ "type": "EQ",
599
+ "value": "xgboost"
600
+ }
601
+ ]
602
+ },
603
+ {
604
+ "child": "xgboost.eta",
605
+ "type": "AND",
606
+ "conditions": [
607
+ {
608
+ "child": "xgboost.eta",
609
+ "parent": "xgboost.booster",
610
+ "type": "IN",
611
+ "values": [
612
+ "dart",
613
+ "gbtree"
614
+ ]
615
+ },
616
+ {
617
+ "child": "xgboost.eta",
618
+ "parent": "learner_id",
619
+ "type": "EQ",
620
+ "value": "xgboost"
621
+ }
622
+ ]
623
+ },
624
+ {
625
+ "child": "xgboost.gamma",
626
+ "type": "AND",
627
+ "conditions": [
628
+ {
629
+ "child": "xgboost.gamma",
630
+ "parent": "xgboost.booster",
631
+ "type": "IN",
632
+ "values": [
633
+ "dart",
634
+ "gbtree"
635
+ ]
636
+ },
637
+ {
638
+ "child": "xgboost.gamma",
639
+ "parent": "learner_id",
640
+ "type": "EQ",
641
+ "value": "xgboost"
642
+ }
643
+ ]
644
+ },
645
+ {
646
+ "child": "xgboost.max_depth",
647
+ "type": "AND",
648
+ "conditions": [
649
+ {
650
+ "child": "xgboost.max_depth",
651
+ "parent": "xgboost.booster",
652
+ "type": "IN",
653
+ "values": [
654
+ "dart",
655
+ "gbtree"
656
+ ]
657
+ },
658
+ {
659
+ "child": "xgboost.max_depth",
660
+ "parent": "learner_id",
661
+ "type": "EQ",
662
+ "value": "xgboost"
663
+ }
664
+ ]
665
+ },
666
+ {
667
+ "child": "xgboost.min_child_weight",
668
+ "type": "AND",
669
+ "conditions": [
670
+ {
671
+ "child": "xgboost.min_child_weight",
672
+ "parent": "xgboost.booster",
673
+ "type": "IN",
674
+ "values": [
675
+ "dart",
676
+ "gbtree"
677
+ ]
678
+ },
679
+ {
680
+ "child": "xgboost.min_child_weight",
681
+ "parent": "learner_id",
682
+ "type": "EQ",
683
+ "value": "xgboost"
684
+ }
685
+ ]
686
+ },
687
+ {
688
+ "child": "xgboost.rate_drop",
689
+ "type": "AND",
690
+ "conditions": [
691
+ {
692
+ "child": "xgboost.rate_drop",
693
+ "parent": "xgboost.booster",
694
+ "type": "EQ",
695
+ "value": "dart"
696
+ },
697
+ {
698
+ "child": "xgboost.rate_drop",
699
+ "parent": "learner_id",
700
+ "type": "EQ",
701
+ "value": "xgboost"
702
+ }
703
+ ]
704
+ },
705
+ {
706
+ "child": "xgboost.skip_drop",
707
+ "type": "AND",
708
+ "conditions": [
709
+ {
710
+ "child": "xgboost.skip_drop",
711
+ "parent": "xgboost.booster",
712
+ "type": "EQ",
713
+ "value": "dart"
714
+ },
715
+ {
716
+ "child": "xgboost.skip_drop",
717
+ "parent": "learner_id",
718
+ "type": "EQ",
719
+ "value": "xgboost"
720
+ }
721
+ ]
722
+ }
723
+ ],
724
+ "forbiddens": [],
725
+ "python_module_version": "0.4.18",
726
+ "json_format_version": 0.2
727
+ }
yahpo/rbv2_super/encoding.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"aknn.distance": {"#na#": 0, "cosine": 1, "ip": 2, "l2": 3}, "learner_id": {"#na#": 0, "aknn": 1, "glmnet": 2, "ranger": 3, "rpart": 4, "svm": 5, "xgboost": 6}, "num.impute.selected.cpo": {"#na#": 0, "impute.hist": 1, "impute.mean": 2, "impute.median": 3}, "ranger.respect.unordered.factors": {"#na#": 0, "ignore": 1, "order": 2, "partition": 3}, "ranger.splitrule": {"#na#": 0, "extratrees": 1, "gini": 2}, "svm.kernel": {"#na#": 0, "linear": 1, "polynomial": 2, "radial": 3}, "task_id": {"#na#": 0, "1040": 1, "1049": 2, "1050": 3, "1053": 4, "1056": 5, "1063": 6, "1067": 7, "1068": 8, "11": 9, "1111": 10, "12": 11, "1220": 12, "14": 13, "1457": 14, "1461": 15, "1462": 16, "1464": 17, "1468": 18, "1475": 19, "1476": 20, "1478": 21, "1479": 22, "1480": 23, "1485": 24, "1486": 25, "1487": 26, "1489": 27, "1493": 28, "1494": 29, "1497": 30, "15": 31, "1501": 32, "151": 33, "1510": 34, "1515": 35, "1590": 36, "16": 37, "18": 38, "181": 39, "182": 40, "188": 41, "22": 42, "23": 43, "23381": 44, "24": 45, "28": 46, "29": 47, "3": 48, "300": 49, "307": 50, "31": 51, "312": 52, "32": 53, "334": 54, "37": 55, "375": 56, "377": 57, "38": 58, "40496": 59, "40498": 60, "40499": 61, "40536": 62, "40668": 63, "40670": 64, "40685": 65, "40701": 66, "40900": 67, "40966": 68, "40975": 69, "40978": 70, "40979": 71, "40981": 72, "40982": 73, "40983": 74, "40984": 75, "40994": 76, "41027": 77, "41138": 78, "41142": 79, "41143": 80, "41146": 81, "41156": 82, "41157": 83, "41162": 84, "41163": 85, "41164": 86, "41169": 87, "41212": 88, "4134": 89, "4154": 90, "42": 91, "44": 92, "4534": 93, "4538": 94, "458": 95, "46": 96, "469": 97, "470": 98, "50": 99, "54": 100, "6": 101, "60": 102, "6332": 103}, "xgboost.booster": {"#na#": 0, "dart": 1, "gblinear": 2, "gbtree": 3}}
yahpo/rbv2_super/metadata.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"metric_elapsed_time": "time", "metric_default": "val_accuracy", "resource_attr": "st_worker_iter"}
yahpo/rbv2_super/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28b25f92be0623bce7809cda0a68670046bc48a994c6081e5fe3b54257581ccd
3
+ size 10227923
yahpo/rbv2_super/param_set.R ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ search_space = ps(
2
+ # svm
3
+ svm.kernel = p_fct(levels = c("linear", "polynomial", "radial")),
4
+ svm.cost = p_dbl(lower = -10, upper = 10, tags = "log", trafo = function(x) exp(x)),
5
+ svm.gamma = p_dbl(lower = -10, upper = 10, tags = "log", trafo = function(x) exp(x), depends = svm.kernel == "radial"),
6
+ svm.tolerance = p_dbl(lower = -10, upper = log(2), tags = "log", trafo = function(x) exp(x)),
7
+ svm.degree = p_int(lower = 2L, upper = 5L, depends = svm.kernel == "polynomial"),
8
+ # glmnet
9
+ glmnet.alpha = p_dbl(lower = 0, upper = 1),
10
+ glmnet.s = p_dbl(lower = -7, upper = 7, tags = "log", trafo = function(x) exp(x)),
11
+ # rpart
12
+ rpart.cp = p_dbl(lower = -7, upper = 0, tags = "log", trafo = function(x) exp(x)),
13
+ rpart.maxdepth = p_int(lower = 1L, upper = 30L),
14
+ rpart.minbucket = p_int(lower = 1L, upper = 100L),
15
+ rpart.minsplit = p_int(lower = 1L, upper = 100L),
16
+ # ranger
17
+ ranger.num.trees = p_int(lower = 1L, upper = 2000L),
18
+ ranger.sample.fraction = p_dbl(lower = 0.1, upper = 1),
19
+ ranger.mtry.power = p_int(lower = 0, upper = 1),
20
+ ranger.respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition")),
21
+ ranger.min.node.size = p_int(lower = 1L, upper = 100L),
22
+ ranger.splitrule = p_fct(levels = c("gini", "extratrees")),
23
+ ranger.num.random.splits = p_int(lower = 1L, upper = 100L, depends = ranger.splitrule == "extratrees"),
24
+ # aknn
25
+ aknn.k = p_int(lower = 1L, upper = 50L),
26
+ aknn.distance = p_fct(levels = c("l2", "cosine", "ip")),
27
+ aknn.M = p_int(lower = 18L, upper = 50L),
28
+ aknn.ef = p_dbl(lower = 2, upper = 6, tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))),
29
+ aknn.ef_construction = p_dbl(lower = 2, upper = 7, tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))),
30
+ # xgboost
31
+ xgboost.booster = p_fct(levels = c("gblinear", "gbtree", "dart")),
32
+ xgboost.nrounds = p_dbl(lower = 2, upper = 8, tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))),
33
+ xgboost.eta = p_dbl(lower = -7, upper = 0, tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree")),
34
+ xgboost.gamma = p_dbl(lower = -10, upper = 2, tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree")),
35
+ xgboost.lambda = p_dbl(lower = -7, upper = 7, tags = "log", trafo = function(x) exp(x)),
36
+ xgboost.alpha = p_dbl(lower = -7, upper = 7, tags = "log", trafo = function(x) exp(x)),
37
+ xgboost.subsample = p_dbl(lower = 0.1, upper = 1),
38
+ xgboost.max_depth = p_int(lower = 1L, upper = 15L, depends = xgboost.booster %in% c("dart", "gbtree")),
39
+ xgboost.min_child_weight = p_dbl(lower = 1, upper = 5, tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree")),
40
+ xgboost.colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree")),
41
+ xgboost.colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree")),
42
+ xgboost.rate_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart"),
43
+ xgboost.skip_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart"),
44
+ trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
45
+ repl = p_int(lower = 1L, upper = 10L, tags = "budget"),
46
+ num.impute.selected.cpo = p_fct(levels = c("impute.mean", "impute.median", "impute.hist")),
47
+ learner_id = p_fct(levels = c("aknn", "glmnet", "ranger", "rpart", "svm", "xgboost")),
48
+ task_id = p_fct(levels = c("41138", "40981", "4134", "1220", "4154", "41163", "4538",
49
+ "40978", "375", "1111", "40496", "40966", "4534", "40900", "40536",
50
+ "41156", "1590", "1457", "458", "469", "41157", "11", "1461",
51
+ "1462", "1464", "15", "40975", "41142", "40701", "40994", "23",
52
+ "1468", "40668", "29", "31", "6332", "37", "40670", "23381",
53
+ "151", "188", "41164", "1475", "1476", "1478", "41169", "1479",
54
+ "41212", "1480", "300", "41143", "1053", "41027", "1067", "1063",
55
+ "41162", "3", "6", "1485", "1056", "12", "14", "16", "18", "40979",
56
+ "22", "1515", "334", "24", "1486", "1493", "28", "1487", "1068",
57
+ "1050", "1049", "32", "1489", "470", "1494", "182", "312", "40984",
58
+ "1501", "40685", "38", "42", "44", "46", "40982", "1040", "41146",
59
+ "377", "40499", "50", "54", "307", "1497", "60", "1510", "40983",
60
+ "40498", "181"),
61
+ tags = "task_id"
62
+ )
63
+ )
64
+ # Add dependencies
65
+ map(search_space$params$learner_id$levels, function(x) {
66
+ nms = names(search_space$params)[startsWith(names(search_space$params), x)]
67
+ map(nms, function(nm) search_space$add_dep(nm, "learner_id", CondEqual$new(x)))
68
+ })
69
+
70
+ domain = ps(
71
+ # svm
72
+ svm.kernel = p_fct(levels = c("linear", "polynomial", "radial")),
73
+ svm.cost = p_dbl(lower = exp(-10), upper = exp(10)),
74
+ svm.gamma = p_dbl(lower = exp(-10), upper = exp(10), depends = svm.kernel == "radial"),
75
+ svm.tolerance = p_dbl(lower = exp(-10), upper = 2),
76
+ svm.degree = p_int(lower = 2L, upper = 5L, depends = svm.kernel == "polynomial"),
77
+ # glmnet
78
+ glmnet.alpha = p_dbl(lower = 0, upper = 1),
79
+ glmnet.s = p_dbl(lower = exp(-7), upper = exp(7)),
80
+ # rpart
81
+ rpart.cp = p_dbl(lower = exp(-7), upper = exp(0)),
82
+ rpart.maxdepth = p_int(lower = 1L, upper = 30L),
83
+ rpart.minbucket = p_int(lower = 1L, upper = 100L),
84
+ rpart.minsplit = p_int(lower = 1L, upper = 100L),
85
+ # ranger
86
+ ranger.num.trees = p_int(lower = 1L, upper = 2000L),
87
+ ranger.sample.fraction = p_dbl(lower = 0.1, upper = 1),
88
+ ranger.mtry.power = p_dbl(lower = 0, upper = 1),
89
+ ranger.respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition")),
90
+ ranger.min.node.size = p_int(lower = 1L, upper = 100L),
91
+ ranger.splitrule = p_fct(levels = c("gini", "extratrees")),
92
+ ranger.num.random.splits = p_int(lower = 1, upper = 100L, depends = ranger.splitrule == "extratrees"),
93
+ # aknn
94
+ aknn.k = p_int(lower = 1L, upper = 50L),
95
+ aknn.distance = p_fct(levels = c("l2", "cosine", "ip")),
96
+ aknn.M = p_int(lower = 18L, upper = 50L),
97
+ aknn.ef = p_int(lower = 7L, upper = 403L),
98
+ aknn.ef_construction = p_int(lower = 7L, upper = 403L),
99
+ # xgboost
100
+ xgboost.booster = p_fct(levels = c("gblinear", "gbtree", "dart")),
101
+ xgboost.nrounds = p_int(lower = 7L, upper = 2981L),
102
+ xgboost.eta = p_dbl(lower = exp(-7), upper = exp(0),depends = xgboost.booster %in% c("dart", "gbtree")),
103
+ xgboost.gamma = p_dbl(lower = exp(-10), upper = exp(2), depends = xgboost.booster %in% c("dart", "gbtree")),
104
+ xgboost.lambda = p_dbl(lower = exp(-7), upper = exp(7)),
105
+ xgboost.alpha = p_dbl(lower = exp(-7), upper = exp(7)),
106
+ xgboost.subsample = p_dbl(lower = 0.1, upper = 1),
107
+ xgboost.max_depth = p_int(lower = 1L, upper = 15L, depends = xgboost.booster %in% c("dart", "gbtree")),
108
+ xgboost.min_child_weight = p_dbl(lower = exp(1), upper = exp(5), depends = xgboost.booster %in% c("dart", "gbtree")),
109
+ xgboost.colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree")),
110
+ xgboost.colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree")),
111
+ xgboost.rate_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart"),
112
+ xgboost.skip_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart"),
113
+ # learner_id
114
+ trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
115
+ repl = p_int(lower = 1L, upper = 10L, tags = "budget"),
116
+ num.impute.selected.cpo = p_fct(levels = c("impute.mean", "impute.median", "impute.hist")),
117
+ learner_id = p_fct(levels = c("aknn", "glmnet", "ranger", "rpart", "svm", "xgboost")),
118
+ task_id = p_fct(levels = c("41138", "40981", "4134", "1220", "4154", "41163", "4538",
119
+ "40978", "375", "1111", "40496", "40966", "4534", "40900", "40536",
120
+ "41156", "1590", "1457", "458", "469", "41157", "11", "1461",
121
+ "1462", "1464", "15", "40975", "41142", "40701", "40994", "23",
122
+ "1468", "40668", "29", "31", "6332", "37", "40670", "23381",
123
+ "151", "188", "41164", "1475", "1476", "1478", "41169", "1479",
124
+ "41212", "1480", "300", "41143", "1053", "41027", "1067", "1063",
125
+ "41162", "3", "6", "1485", "1056", "12", "14", "16", "18", "40979",
126
+ "22", "1515", "334", "24", "1486", "1493", "28", "1487", "1068",
127
+ "1050", "1049", "32", "1489", "470", "1494", "182", "312", "40984",
128
+ "1501", "40685", "38", "42", "44", "46", "40982", "1040", "41146",
129
+ "377", "40499", "50", "54", "307", "1497", "60", "1510", "40983",
130
+ "40498", "181"),
131
+ tags = "task_id"
132
+ )
133
+ )
134
+ # Add dependencies
135
+ map(domain$params$learner_id$levels, function(x) {
136
+ nms = names(domain$params)[startsWith(names(domain$params), x)]
137
+ map(nms, function(nm) domain$add_dep(nm, "learner_id", CondEqual$new(x)))
138
+ })
139
+
140
+ codomain = ps(
141
+ acc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
142
+ bac = p_dbl(lower = 0, upper = 1, tags = "maximize"),
143
+ f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"),
144
+ auc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
145
+ brier = p_dbl(lower = 0, upper = 1, tags = "minimize"),
146
+ logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
147
+ timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
148
+ timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
149
+ memory = p_dbl(lower = 0, upper = Inf, tags = "minimize")
150
+ )