licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | code | 1905 | module BoundTypes
export ConstraintError
export BoundNumber,
NumberCustomBound,
NumberPositive,
NumberNonPositive,
NumberNegative,
NumberNonNegative,
NumberGreater,
NumberGreaterOrEqual,
NumberLess,
NumberLessOrEqual,
NumberOdd,
NumberEven,
NumberInterval
export BoundString,
StringCustomBound,
StringLowerCase,
StringUpperCase,
StringMinLength,
StringMaxLength,
StringFixedLength,
StringPattern
export BoundTime,
TimeCustomBound,
TimeAfter,
TimeAfterNow,
TimeAfterOrEqual,
TimePeriodAfterNow,
TimeBefore,
TimeBeforeNow,
TimeBeforeOrEqual,
TimePeriodBeforeNow,
TimeInterval
export bound_value,
bound_type
export @pattern_str
using Dates
"""
ConstraintError
Exception thrown when a constraint is violated on bound type creation.
## Fields
- `message::String`: The error message.
"""
struct ConstraintError{T} <: Exception
message::String
end
function Base.showerror(io::IO, exception::ConstraintError{T}) where {T}
print(io, "ConstraintError: constraints of type $T violated.\n")
print(io, "Wrong value: $(exception.message)")
end
"""
bound_value(x) -> value
Getter function for the underlying value from the bound type object `x`.
## Examples
```jldoctest
julia> val = StringFixedLength{String,3}("abc")
"abc"
julia> typeof(val)
StringFixedLength{String, 3}
julia> inner_val = bound_value(val)
"abc"
julia> typeof(inner_val)
String
```
"""
function bound_value end
"""
bound_type(x) -> type
Returns the type of the internal object of `x`.
## Examples
```jldoctest
julia> bound_type(NumberPositive{Float64}(1.0))
Float64
julia> bound_type(NumberLess{NumberGreater{Int64,2},8}(6))
Int64
```
"""
function bound_type end
include("bound_number/bound_number.jl")
include("bound_string/bound_string.jl")
include("bound_time/bound_time.jl")
end
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | code | 2659 | # bound_number/bound_number
"""
BoundNumber{N<:Number} <: Number
Abstract type for number constraints.
"""
abstract type BoundNumber{N<:Number} <: Number end
bound_type(::Type{<:BoundNumber{T}}) where {T<:Number} = T
bound_type(::Type{<:BoundNumber{T}}) where {T<:BoundNumber} = bound_type(T)
bound_type(x::BoundNumber) = bound_type(typeof(x))
bound_value(x::BoundNumber) = x.value
bound_value(x::BoundNumber{T}) where {T<:BoundNumber} = bound_value(x.value)
Base.eltype(::Type{<:BoundNumber{T}}) where {T} = T
Base.eltype(x::BoundNumber) = eltype(typeof(x))
Base.convert(::Type{T}, x::BoundNumber) where {T<:Number} = T(bound_value(x))
Base.tryparse(::Type{T}, x::String) where {T<:BoundNumber} = convert(T, (tryparse(bound_type(T), x)))
for op in [:+, :-, :/, :*, :^]
@eval Base.$op(x::BoundNumber, y::BoundNumber) = $op(bound_value(x), bound_value(y))
@eval Base.$op(x::Number, y::BoundNumber) = $op(x, bound_value(y))
@eval Base.$op(x::BoundNumber, y::Number) = $op(bound_value(x), y)
end
for op in [:isless, :isequal, :(==)]
@eval Base.$op(x::BoundNumber, y::BoundNumber) = $op(bound_value(x), bound_value(y))
@eval Base.$op(x::Number, y::BoundNumber) = $op(x, bound_value(y))
@eval Base.$op(x::BoundNumber, y::Number) = $op(bound_value(x), y)
end
for op in [:div, :fld, :rem, :mod, :mod1, :atan, :atand]
@eval Base.$op(x::BoundNumber, y::BoundNumber) = $op(bound_value(x), bound_value(y))
@eval Base.$op(x::Number, y::BoundNumber) = $op(x, bound_value(y))
@eval Base.$op(x::BoundNumber, y::Number) = $op(bound_value(x), y)
end
for op in [:isinf, :isnan, :iszero, :isreal, :isempty, :isodd, :iseven, :ispow2]
@eval Base.$op(x::BoundNumber) = $op(bound_value(x))
end
for op in [:sqrt, :abs, :abs2, :sign, :one, :zero]
@eval Base.$op(x::BoundNumber) = $op(bound_value(x))
end
for op in [:log, :log2, :log1p, :log10, :exp, :exp2, :rad2deg, :deg2rad]
@eval Base.$op(x::BoundNumber) = $op(bound_value(x))
end
for op in [:sin, :sinh, :asin, :asinh, :sec, :asec, :sech, :asech, :sinc, :secd, :sind, :asecd, :asind, :sinpi]
@eval Base.$op(x::BoundNumber) = $op(bound_value(x))
end
for op in [:cos, :cosh, :acos, :acosh, :csc, :acsc, :csch, :acsch, :cosc, :cotd, :cscd, :acosd, :acscd, :cospi]
@eval Base.$op(x::BoundNumber) = $op(bound_value(x))
end
for op in [:tan, :tanh, :atan, :atanh, :cot, :acot, :coth, :acoth, :atand, :tand, :acotd]
@eval Base.$op(x::BoundNumber) = $op(bound_value(x))
end
function Base.print(io::IO, x::BoundNumber)
print(io, bound_value(x))
end
function Base.show(io::IO, x::BoundNumber)
print(io, bound_value(x))
end
include("number_types.jl")
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | code | 8768 | # bound_number/number_types
"""
NumberCustomBound{T<:Number,B} <: BoundNumber{T}
NumberCustomBound{T,B}(x::Number)
A number constraint for a value `x` of type `T` using custom function `B`.
Function `B` should only accept object `x` and return `true` or `false` (or throw a custom [`ConstraintError`](@ref)).
## Examples
```julia-repl
julia> NumberCustomBound{Float64,x -> x % 2 == 0}(10.0)
10.0
julia> NumberCustomBound{Float64,x -> x % 2 == 0}(13.0)
ERROR: ConstraintError: constraints of type NumberCustomBound violated.
Wrong value: Custom constraint '#7' violated for value "13.0" of type Float64.
[...]
```
"""
struct NumberCustomBound{T<:Number,B} <: BoundNumber{T}
value::T
function NumberCustomBound{T,B}(x::Number) where {T<:Number,B}
!B(x) && throw(ConstraintError{NumberCustomBound}("Custom constraint '$B' violated for value \"$x\" of type $T."))
return new{T,B}(x)
end
end
"""
NumberPositive{T<:Number} <: BoundNumber{T}
NumberPositive{T}(x::Number)
A number constraint that enforces `x > 0` for value `x` of type `T`.
## Examples
```jldoctest
julia> NumberPositive{Float64}(10.0)
10.0
julia> NumberPositive{Float64}(-10.0)
ERROR: ConstraintError: constraints of type NumberPositive violated.
Wrong value: number -10.0 must be a positive (x > 0).
[...]
```
"""
struct NumberPositive{T<:Number} <: BoundNumber{T}
value::T
function NumberPositive{T}(x::Number) where {T<:Number}
x <= 0 && throw(ConstraintError{NumberPositive}("number $x must be a positive (x > 0)."))
return new{T}(x)
end
end
"""
NumberNonPositive{T<:Number} <: BoundNumber{T}
NumberNonPositive{T}(x::Number)
A number constraint that enforces `x ≤ 0` for value `x` of type `T`.
## Examples
```jldoctest
julia> NumberNonPositive{Float64}(-10.0)
-10.0
julia> NumberNonPositive{Float64}(10.0)
ERROR: ConstraintError: constraints of type NumberNonPositive violated.
Wrong value: number 10.0 must be a negative or zero (x ≤ 0).
[...]
```
"""
struct NumberNonPositive{T<:Number} <: BoundNumber{T}
value::T
function NumberNonPositive{T}(x::Number) where {T<:Number}
x > 0 && throw(ConstraintError{NumberNonPositive}("number $x must be a negative or zero (x ≤ 0)."))
return new{T}(x)
end
end
"""
NumberNegative{T<:Number} <: BoundNumber{T}
NumberNegative{T}(x::Number)
A number constraint that enforces `x < 0` for value `x` of type `T`.
## Examples
```jldoctest
julia> NumberNegative{Float64}(-10.0)
-10.0
julia> NumberNegative{Float64}(10.0)
ERROR: ConstraintError: constraints of type NumberNegative violated.
Wrong value: 10.0 must be a negative (x < 0).
[...]
```
"""
struct NumberNegative{T<:Number} <: BoundNumber{T}
value::T
function NumberNegative{T}(x::Number) where {T<:Number}
x >= 0 && throw(ConstraintError{NumberNegative}("$x must be a negative (x < 0)."))
return new{T}(x)
end
end
"""
NumberNonNegative{T<:Number} <: BoundNumber{T}
NumberNonNegative{T}(x::Number)
A number constraint that enforces `x ≥ 0` for value `x` of type `T`.
## Examples
```jldoctest
julia> NumberNonNegative{Float64}(10.0)
10.0
julia> NumberNonNegative{Float64}(-10.0)
ERROR: ConstraintError: constraints of type NumberNonNegative violated.
Wrong value: -10.0 must be a positive or zero (x ≥ 0).
[...]
```
"""
struct NumberNonNegative{T<:Number} <: BoundNumber{T}
value::T
function NumberNonNegative{T}(x::Number) where {T<:Number}
x < 0 && throw(ConstraintError{NumberNonNegative}("$x must be a positive or zero (x ≥ 0)."))
return new{T}(x)
end
end
"""
NumberGreater{T<:Number,V} <: BoundNumber{T}
NumberGreater{T,V}(x::Number)
A number constraint that enforces `x > V` for value `x` of type `T`.
## Examples
```jldoctest
julia> NumberGreater{Float64,10.0}(20.0)
20.0
julia> NumberGreater{Float64,10.0}(5.0)
ERROR: ConstraintError: constraints of type NumberGreater violated.
Wrong value: 5.0 must be greater than 10.0.
[...]
```
"""
struct NumberGreater{T<:Number,V} <: BoundNumber{T}
value::T
function NumberGreater{T,V}(x::Number) where {T<:Number,V}
x <= V && throw(ConstraintError{NumberGreater}("$x must be greater than $V."))
return new{T,V}(x)
end
end
"""
NumberGreaterOrEqual{T<:Number,V} <: BoundNumber{T}
NumberGreaterOrEqual{T,V}(x::Number)
A number constraint that enforces `x ≥ V` for value `x` of type `T`.
## Examples
```jldoctest
julia> NumberGreaterOrEqual{Float64,10.0}(20.0)
20.0
julia> NumberGreaterOrEqual{Float64,10.0}(5.0)
ERROR: ConstraintError: constraints of type NumberGreaterOrEqual violated.
Wrong value: 5.0 must be greater or equal than 10.0.
[...]
```
"""
struct NumberGreaterOrEqual{T<:Number,V} <: BoundNumber{T}
value::T
function NumberGreaterOrEqual{T,V}(x::Number) where {T<:Number,V}
x < V && throw(ConstraintError{NumberGreaterOrEqual}("$x must be greater or equal than $V."))
return new{T,V}(x)
end
end
"""
NumberLess{T<:Number,V} <: BoundNumber{T}
NumberLess{T,V}(x::Number)
A number constraint that enforces `x < V` for value `x` of type `T`.
## Examples
```jldoctest
julia> NumberLess{Float64,10.0}(5.0)
5.0
julia> NumberLess{Float64,10.0}(20.0)
ERROR: ConstraintError: constraints of type NumberLess violated.
Wrong value: 20.0 must be less than 10.0.
[...]
```
"""
struct NumberLess{T<:Number,V} <: BoundNumber{T}
value::T
function NumberLess{T,V}(x::Number) where {T<:Number,V}
x >= V && throw(ConstraintError{NumberLess}("$x must be less than $V."))
return new{T,V}(x)
end
end
"""
NumberLessOrEqual{T<:Number,V} <: BoundNumber{T}
NumberLessOrEqual{T,V}(x::Number)
A number constraint that enforces `x ≤ V` for value `x` of type `T`.
## Examples
```jldoctest
julia> NumberLessOrEqual{Float64,10.0}(5.0)
5.0
julia> NumberLessOrEqual{Float64,10.0}(20.0)
ERROR: ConstraintError: constraints of type NumberLessOrEqual violated.
Wrong value: 20.0 must be less or equal than 10.0.
[...]
```
"""
struct NumberLessOrEqual{T<:Number,V} <: BoundNumber{T}
value::T
function NumberLessOrEqual{T,V}(x::Number) where {T<:Number,V}
x > V && throw(ConstraintError{NumberLessOrEqual}("$x must be less or equal than $V."))
return new{T,V}(x)
end
end
"""
NumberOdd{T<:Number} <: BoundNumber{T}
NumberOdd{T}(x::Number)
A numeric constraint to ensure that the value `x` of type `T` is odd.
## Examples
```jldoctest
julia> NumberOdd{Float64}(5.0)
5.0
julia> NumberOdd{Float64}(4.0)
ERROR: ConstraintError: constraints of type NumberOdd violated.
Wrong value: 4.0 must be odd.
[...]
```
"""
struct NumberOdd{T<:Number} <: BoundNumber{T}
value::T
function NumberOdd{T}(x::Number) where {T<:Number}
!isodd(x) && throw(ConstraintError{NumberOdd}("$x must be odd."))
return new{T}(x)
end
end
"""
NumberEven{T<:Number} <: BoundNumber{T}
NumberEven{T}(x::Number)
A numeric constraint to ensure that the value `x` of type `T` is even.
## Examples
```jldoctest
julia> NumberEven{Float64}(4.0)
4.0
julia> NumberEven{Float64}(5.0)
ERROR: ConstraintError: constraints of type NumberEven violated.
Wrong value: 5.0 must be even.
[...]
```
"""
struct NumberEven{T<:Number} <: BoundNumber{T}
value::T
function NumberEven{T}(x::Number) where {T<:Number}
!iseven(x) && throw(ConstraintError{NumberEven}("$x must be even."))
return new{T}(x)
end
end
"""
NumberInterval{T<:Number,A,L,R,B} <: BoundNumber{T}
NumberInterval{T,A,L,R,B}(x::Number)
A numeric constraint for a value `x` of type `T` which belongs to an interval between `A` and `B`.
Parameters `L` and `R` are the comparison functions e.g `<` or `<=` which determine whether interval boundaries are included.
## Examples
```jldoctest
julia> NumberInterval{Float64,5,<,<=,10}(7.0)
7.0
julia> NumberInterval{Float64,5,<,<=,10}(10.0)
10.0
julia> NumberInterval{Float64,5,<,<=,10}(15.0)
ERROR: ConstraintError: constraints of type NumberInterval violated.
Wrong value: 15.0 must be in interval between 5 and 10.
[...]
```
"""
struct NumberInterval{T<:Number,A,L,R,B} <: BoundNumber{T}
value::T
function NumberInterval{T,A,L,R,B}(x::Number) where {T<:Number,A,L,R,B}
!(A <= B) && throw(ArgumentError("Wrong interval: A = $A must be less or equal than B = $B."))
!L(zero(x), one(x)) && throw(ArgumentError("Wrong left comparison function: $L must be one of '<' or '<='."))
!R(zero(x), one(x)) && throw(ArgumentError("Wrong right comparison function: $R must be one of '<' or '<='."))
(!L(A, x) || !R(x, B)) && throw(ConstraintError{NumberInterval}("$x must be in interval between $A and $B."))
return new{T,A,L,R,B}(x)
end
end
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | code | 1138 | # bound_string/bound_string
"""
BoundString{T<:AbstractString} <: AbstractString
Abstract type for string constraints.
"""
abstract type BoundString{T<:AbstractString} <: AbstractString end
bound_type(::Type{<:BoundString{T}}) where {T<:AbstractString} = T
bound_type(::Type{<:BoundString{T}}) where {T<:BoundString} = bound_type(T)
bound_type(x::BoundString) = bound_type(typeof(x))
bound_value(x::BoundString) = x.value
bound_value(x::BoundString{T}) where {T<:BoundString} = bound_value(x.value)
Base.convert(::Type{T}, x::BoundString) where {T<:AbstractString} = T(bound_value(x))
Base.ncodeunits(x::BoundString) = ncodeunits(bound_value(x))
Base.isvalid(x::BoundString, i::Integer) = isvalid(bound_value(x), i)
Base.iterate(x::BoundString, i::Integer = firstindex(bound_value(x))) = iterate(bound_value(x), i)
Base.codeunit(x::BoundString) = codeunit(bound_value(x))
Base.codeunit(x::BoundString, i::Integer) = codeunit(bound_value(x), i)
function Base.print(io::IO, x::BoundString)
print(io, bound_value(x))
end
function Base.show(io::IO, x::BoundString)
show(io, bound_value(x))
end
include("string_types.jl")
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | code | 7513 | # bound_string/string_types
"""
StringCustomBound{T<:AbstractString,B} <: BoundString{T}
StringCustomBound{T,B}(x::AbstractString)
A string constraint for a value `x` of type `T` using custom function `B`.
Function `B` should only accept object `x` and return `true` or `false` (or throw a custom [`ConstraintError`](@ref)).
## Examples
```julia-repl
julia> StringCustomBound{String,x -> length(x) > 5}("abcdef")
"abcdef"
julia> StringCustomBound{String,x -> length(x) > 5}("abc")
ERROR: ConstraintError: constraints of type StringCustomBound violated.
Wrong value: Custom constraint '#5' violated for value "abc" of type String.
[...]
```
"""
struct StringCustomBound{T<:AbstractString,B} <: BoundString{T}
value::T
function StringCustomBound{T,B}(x::AbstractString) where {T<:AbstractString,B}
!B(x) && throw(ConstraintError{StringCustomBound}("Custom constraint '$B' violated for value \"$x\" of type $T."))
return new{T,B}(x)
end
function StringCustomBound{T,B}(x::AbstractVector{<:Unsigned}) where {T<:AbstractString,B}
return StringCustomBound{T,B}(String(x))
end
end
"""
StringLowerCase{T<:AbstractString} <: BoundString{T}
StringLowerCase{T}(x::AbstractString)
A string constraint for a value `x` of type `T` which characters must be in lowercase.
## Examples
```jldoctest
julia> StringLowerCase{String}("abcdef")
"abcdef"
julia> StringLowerCase{String}("aBcdEf")
ERROR: ConstraintError: constraints of type StringLowerCase violated.
Wrong value: some characters of "aBcdEf" must be in lowercase (B,E).
[...]
```
"""
struct StringLowerCase{T<:AbstractString} <: BoundString{T}
value::T
function StringLowerCase{T}(x::AbstractString) where {T<:AbstractString}
!all(x -> islowercase(x) || !isletter(x), x) && throw(ConstraintError{StringLowerCase}(
"some characters of \"$x\" must be in lowercase ($(join(x[findall(isuppercase, x)], ","))).")
)
return new{T}(x)
end
function StringLowerCase{T}(x::AbstractVector{<:Unsigned}) where {T<:AbstractString}
return StringLowerCase{T}(String(x))
end
end
"""
StringUpperCase{T<:AbstractString} <: BoundString{T}
StringUpperCase{T}(x::AbstractString)
A string constraint for a value `x` of type `T` which characters must be in uppercase.
## Examples
```jldoctest
julia> StringUpperCase{String}("ABCDEF")
"ABCDEF"
julia> StringUpperCase{String}("AbCDeF")
ERROR: ConstraintError: constraints of type StringUpperCase violated.
Wrong value: some characters of "AbCDeF" must be in uppercase (b,e).
[...]
```
"""
struct StringUpperCase{T<:AbstractString} <: BoundString{T}
value::T
function StringUpperCase{T}(x::AbstractString) where {T<:AbstractString}
!all(x -> isuppercase(x) || !isletter(x), x) && throw(ConstraintError{StringUpperCase}(
"some characters of \"$x\" must be in uppercase ($(join(x[findall(islowercase, x)], ","))).")
)
return new{T}(x)
end
function StringUpperCase{T}(x::AbstractVector{<:Unsigned}) where {T<:AbstractString}
return StringUpperCase{T}(String(x))
end
end
"""
StringMinLength{T<:AbstractString,V} <: BoundString{T}
StringMinLength{T,V}(x::AbstractString)
A string constraint for a value `x` of type `T` which length must be at least `V` characters.
## Examples
```jldoctest
julia> StringMinLength{String,5}("abcdef")
"abcdef"
julia> StringMinLength{String,5}("abc")
ERROR: ConstraintError: constraints of type StringMinLength violated.
Wrong value: length of the "abc" must be at least 5 characters (3).
[...]
```
"""
struct StringMinLength{T<:AbstractString,V} <: BoundString{T}
value::T
function StringMinLength{T,V}(x::AbstractString) where {T<:AbstractString,V}
length(x) < V && throw(ConstraintError{StringMinLength}(
"length of the \"$x\" must be at least $V characters ($(length(x))).")
)
return new{T,V}(x)
end
function StringMinLength{T,V}(x::AbstractVector{<:Unsigned}) where {T<:AbstractString,V}
return StringMinLength{T,V}(String(x))
end
end
"""
StringMaxLength{T<:AbstractString,V} <: BoundString{T}
StringMaxLength{T,V}(x::AbstractString)
A string constraint for a value `x` of type `T` which length must be no more than `V` characters.
## Examples
```jldoctest
julia> StringMaxLength{String,5}("abc")
"abc"
julia> StringMaxLength{String,5}("abcdef")
ERROR: ConstraintError: constraints of type StringMaxLength violated.
Wrong value: length of the "abcdef" must be no more than 5 characters (6).
[...]
```
"""
struct StringMaxLength{T<:AbstractString,V} <: BoundString{T}
value::T
function StringMaxLength{T,V}(x::AbstractString) where {T<:AbstractString,V}
length(x) > V && throw(ConstraintError{StringMaxLength}(
"length of the \"$x\" must be no more than $V characters ($(length(x))).")
)
return new{T,V}(x)
end
function StringMaxLength{T,V}(x::AbstractVector{<:Unsigned}) where {T<:AbstractString,V}
return StringMaxLength{T,V}(String(x))
end
end
"""
StringFixedLength{T<:AbstractString,V} <: BoundString{T}
StringFixedLength{T,V}(x::AbstractString)
A string constraint for a value `x` of type `T` which length must be equal to `V` characters.
## Examples
```jldoctest
julia> StringFixedLength{String,5}("abcde")
"abcde"
julia> StringFixedLength{String,5}("abc")
ERROR: ConstraintError: constraints of type StringFixedLength violated.
Wrong value: length of the "abc" must be equal to 5 characters (3).
[...]
```
"""
struct StringFixedLength{T<:AbstractString,V} <: BoundString{T}
value::T
function StringFixedLength{T,V}(x::AbstractString) where {T<:AbstractString,V}
length(x) != V && throw(ConstraintError{StringFixedLength}(
"length of the \"$x\" must be equal to $V characters ($(length(x))).")
)
return new{T,V}(x)
end
function StringFixedLength{T,V}(x::AbstractVector{<:Unsigned}) where {T<:AbstractString,V}
return StringFixedLength{T,V}(String(x))
end
end
"""
@pattern_str -> Symbol
An auxiliary function that allows you to pass a regex string to [`StringPattern`](@ref) parameters, turning it into a Symbol.
"""
macro pattern_str(p)
esc(:(Symbol($p)))
end
"""
StringPattern{T<:AbstractString,P} <: BoundString{T}
StringPattern{T,P}(x::AbstractString)
A string constraint for a value `x` of type `T` which must match regex pattern `P`.
!!! note
Use a helper function [`@pattern_str`](@ref) to pass a regex expression.
## Examples
```jldoctest
julia> StringPattern{String,pattern"^[a-zA-Z0-9_]+\$"}("abcde")
"abcde"
julia> StringPattern{String,pattern"^[a-zA-Z0-9_]+\$"}("abc+def")
ERROR: ConstraintError: constraints of type StringPattern violated.
Wrong value: "abc+def" must match to regex pattern /^[a-zA-Z0-9_]+\$/.
[...]
```
"""
struct StringPattern{T<:AbstractString,P} <: BoundString{T}
value::T
function StringPattern{T,P}(x::AbstractString) where {T<:AbstractString,P}
isnothing(match(Regex(String(P)), x)) && throw(ConstraintError{StringPattern}(
"\"$x\" must match to regex pattern /$P/.")
)
return new{T,P}(x)
end
function StringPattern{T,P}(x::AbstractVector{<:Unsigned}) where {T<:AbstractString,P}
return StringPattern{T,P}(String(x))
end
end
function Base.show(io::IO, ::Type{StringPattern{T,P}}) where {T,P}
print(io, "StringPattern{$T,/$P/}")
end
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | code | 2912 | # bound_time/bound_time
"""
BoundTime{T<:TimeType} <: TimeType
Abstract type for time constraints.
"""
abstract type BoundTime{T<:TimeType} <: TimeType end
bound_type(::Type{<:BoundTime{T}}) where {T<:TimeType} = T
bound_type(::Type{<:BoundTime{T}}) where {T<:BoundTime} = bound_type(T)
bound_type(x::BoundTime) = bound_type(typeof(x))
bound_value(x::BoundTime) = x.value
bound_value(x::BoundTime{T}) where {T<:BoundTime} = bound_value(x.value)
Base.eltype(::Type{<:BoundTime{T}}) where {T} = T
Base.eltype(x::BoundTime) = eltype(typeof(x))
Base.promote_rule(::Type{T1}, ::Type{BoundTime{T2}}) where {T1<:TimeType,T2<:TimeType} = T1
Base.promote_rule(::Type{BoundTime{T1}}, ::Type{T2}) where {T1<:TimeType,T2<:TimeType} = T2
Base.convert(::Type{T}, x::BoundTime) where {T<:BoundTime} = T(bound_value(x))
Base.convert(::Type{T}, x::TimeType) where {T<:BoundTime} = T(x)
Base.convert(::Type{T}, x::BoundTime) where {T<:TimeType} = convert(T, bound_value(x))
Base.convert(::Type{T}, x::BoundTime{T}) where {T<:TimeType} = bound_value(x)
Base.convert(::Type{Time}, x::BoundTime{T}) where {T<:DateTime} = Time(bound_value(x))
Base.convert(::Type{Date}, x::BoundTime{T}) where {T<:DateTime} = Date(bound_value(x))
for op in [:+, :-]
@eval Base.$op(x::BoundTime, y::Period) = $op(bound_value(x), y)
end
for op in [:isless, :isequal, :(==)]
@eval Base.$op(x::BoundTime, y::BoundTime) = $op(bound_value(x), bound_value(y))
@eval Base.$op(x::TimeType, y::BoundTime) = $op(x, bound_value(y))
@eval Base.$op(x::BoundTime, y::TimeType) = $op(bound_value(x), y)
end
for op in [:year, :month, :week, :day, :hour, :minute, :second, :millisecond, :microsecond, :nanosecond]
@eval Dates.$op(x::BoundTime) = $op(bound_value(x))
end
for op in [:Year, :Quarter, :Month, :Week, :Day, :Hour, :Minute, :Second, :Millisecond, :Microsecond, :Nanosecond]
@eval Dates.$op(x::BoundTime) = $op(bound_value(x))
end
for op in [:yearmonth, :monthday, :yearmonthday]
@eval Dates.$op(x::BoundTime) = $op(bound_value(x))
end
for op in [:dayofyear, :dayofquarter, :quarterofyear]
@eval Dates.$op(x::BoundTime) = $op(bound_value(x))
end
for op in [:dayofmonth, :dayofweek, :dayofweekofmonth, :daysofweekinmonth]
@eval Dates.$op(x::BoundTime) = $op(bound_value(x))
end
for op in [:monthname, :monthabbr, :dayname, :dayabbr]
@eval Dates.$op(x::BoundTime) = $op(bound_value(x))
end
for op in [:firstdayofweek, :firstdayofmonth, :firstdayofquarter, :firstdayofyear]
@eval Dates.$op(x::BoundTime) = $op(bound_value(x))
end
for op in [:lastdayofweek, :lastdayofmonth, :lastdayofquarter, :lastdayofyear]
@eval Dates.$op(x::BoundTime) = $op(bound_value(x))
end
for op in [:eps, :daysinmonth, :daysinyear, :isleapyear, :value]
@eval Dates.$op(x::BoundTime) = $op(bound_value(x))
end
function Base.show(io::IO, x::BoundTime)
print(io, bound_value(x))
end
include("time_types.jl")
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | code | 9327 | # bound_time/time_types
"""
TimeCustomBound{T<:TimeType,B} <: BoundTime{T}
TimeCustomBound{T,B}(x::TimeType)
A time constraint for a value `x` of type `T` using custom function `B`.
Function `B` should only accept object `x` and return `true` or `false` (or throw a custom [`ConstraintError`](@ref)).
## Examples
```julia-repl
julia> using Dates
julia> TimeCustomBound{DateTime,isleapyear}(DateTime(2024))
2024-01-01T00:00:00
julia> TimeCustomBound{DateTime,isleapyear}(DateTime(2023))
ERROR: ConstraintError: constraints of type TimeCustomBound violated.
Wrong value: Custom constraint 'isleapyear' violated for value "2023-01-01T00:00:00" of type DateTime.
[...]
```
"""
struct TimeCustomBound{T<:TimeType,B} <: BoundTime{T}
value::T
function TimeCustomBound{T,B}(x::TimeType) where {T<:TimeType,B}
!B(x) && throw(ConstraintError{TimeCustomBound}("Custom constraint '$B' violated for value \"$x\" of type $T."))
return new{T,B}(x)
end
end
"""
TimeAfter{T<:TimeType,V} <: BoundTime{T}
TimeAfter{T,V}(x::TimeType)
A time constraint for a value `x` of type `T` which must exceed the time `V`.
## Examples
```jldoctest
julia> using Dates
julia> TimeAfter{DateTime,DateTime(2023)}(DateTime(2024))
2024-01-01T00:00:00
julia> TimeAfter{DateTime,DateTime(2023)}(DateTime(2022))
ERROR: ConstraintError: constraints of type TimeAfter violated.
Wrong value: 2022-01-01T00:00:00 must exceed 2023-01-01T00:00:00.
[...]
```
"""
struct TimeAfter{T<:TimeType,V} <: BoundTime{T}
value::T
function TimeAfter{T,V}(x::TimeType) where {T<:TimeType,V}
t = convert(typeof(x), V)
x <= t && throw(ConstraintError{TimeAfter}("$x must exceed $t."))
return new{T,V}(x)
end
end
"""
TimeAfterNow{T<:TimeType} <: BoundTime{T}
TimeAfterNow{T}(x::TimeType)
A time constraint for a value `x` of type `T` which must exceed the current time.
## Examples
```julia-repl
julia> using Dates
julia> TimeAfterNow{DateTime}(DateTime(2030))
2030-01-01T00:00:00
julia> TimeAfterNow{DateTime}(DateTime(2020))
ERROR: ConstraintError: constraints of type TimeAfterNow violated.
Wrong value: 2020-01-01T00:00:00 must exceed 2024-05-03T11:25:26.689.
[...]
```
"""
struct TimeAfterNow{T<:TimeType} <: BoundTime{T}
value::T
function TimeAfterNow{T}(x::TimeType) where {T<:TimeType}
t = convert(typeof(x), now())
x <= t && throw(ConstraintError{TimeAfterNow}("$x must exceed $t."))
return new{T}(x)
end
end
"""
TimePeriodAfterNow{T<:TimeType,P} <: BoundTime{T}
TimePeriodAfterNow{T,P}(x::TimeType)
A time constraint for a value `x` of type `T` which must exceed the current time during period `P`.
## Examples
```julia-repl
julia> using Dates
julia> TimePeriodAfterNow{DateTime,Year(10)}(DateTime(2030))
2030-01-01T00:00:00
julia> TimePeriodAfterNow{DateTime,Year(10)}(DateTime(2050))
ERROR: ConstraintError: constraints of type TimePeriodAfterNow violated.
Wrong value: 2050-01-01T00:00:00 must be in interval between 2024-05-03T11:29:14 and 2034-05-03T11:29:14.
[...]
```
"""
struct TimePeriodAfterNow{T<:TimeType,P} <: BoundTime{T}
value::T
function TimePeriodAfterNow{T,P}(x::TimeType) where {T<:TimeType,P}
t = convert(typeof(x), now())
(x < t || x > t + P) && throw(ConstraintError{TimePeriodAfterNow}("$x must be in interval between $t and $(t + P)."))
return new{T,P}(x)
end
end
"""
TimeAfterOrEqual{T<:TimeType,V} <: BoundTime{T}
TimeAfterOrEqual{T,V}(x::TimeType)
A time constraint for a value `x` of type `T` which must exceed or be equal to the time `V`.
## Examples
```jldoctest
julia> using Dates
julia> TimeAfterOrEqual{DateTime,DateTime(2023)}(DateTime(2024))
2024-01-01T00:00:00
julia> TimeAfterOrEqual{DateTime,DateTime(2023)}(DateTime(2023))
2023-01-01T00:00:00
julia> TimeAfterOrEqual{DateTime,DateTime(2023)}(DateTime(2022))
ERROR: ConstraintError: constraints of type TimeAfterOrEqual violated.
Wrong value: 2022-01-01T00:00:00 must exceed or be equal to 2023-01-01T00:00:00.
[...]
```
"""
struct TimeAfterOrEqual{T<:TimeType,V} <: BoundTime{T}
value::T
function TimeAfterOrEqual{T,V}(x::TimeType) where {T<:TimeType,V}
t = convert(typeof(x), V)
x < t && throw(ConstraintError{TimeAfterOrEqual}("$x must exceed or be equal to $t."))
return new{T,V}(x)
end
end
"""
TimeBefore{T<:TimeType,V} <: BoundTime{T}
TimeBefore{T,V}(x::TimeType)
A time constraint for a value `x` of type `T` which must precede the time `V`.
## Examples
```jldoctest
julia> using Dates
julia> TimeBefore{DateTime,DateTime(2023)}(DateTime(2022))
2022-01-01T00:00:00
julia> TimeBefore{DateTime,DateTime(2023)}(DateTime(2024))
ERROR: ConstraintError: constraints of type TimeBefore violated.
Wrong value: 2024-01-01T00:00:00 must precede 2023-01-01T00:00:00.
[...]
```
"""
struct TimeBefore{T<:TimeType,V} <: BoundTime{T}
value::T
function TimeBefore{T,V}(x::TimeType) where {T<:TimeType,V}
t = convert(typeof(x), V)
x >= t && throw(ConstraintError{TimeBefore}("$x must precede $t."))
return new{T,V}(x)
end
end
"""
TimeBeforeNow{T<:TimeType} <: BoundTime{T}
TimeBeforeNow{T}(x::TimeType)
A time constraint for a value `x` of type `T` which must precede the current time.
## Examples
```julia-repl
julia> using Dates
julia> TimeBeforeNow{DateTime}(DateTime(2020))
2020-01-01T00:00:00
julia> TimeBeforeNow{DateTime}(DateTime(2030))
ERROR: ConstraintError: constraints of type TimeBeforeNow violated.
Wrong value: 2030-01-01T00:00:00 must precede 2024-05-03T11:36:37.848.
[...]
```
"""
struct TimeBeforeNow{T<:TimeType} <: BoundTime{T}
value::T
function TimeBeforeNow{T}(x::TimeType) where {T<:TimeType}
t = convert(typeof(x), now())
x >= t && throw(ConstraintError{TimeBeforeNow}("$x must precede $t."))
return new{T}(x)
end
end
"""
TimePeriodBeforeNow{T<:TimeType,P} <: BoundTime{T}
TimePeriodBeforeNow{T,P}(x::TimeType)
A time constraint for a value `x` of type `T` which must precede the current time during period `P`.
## Examples
```julia-repl
julia> using Dates
julia> TimePeriodBeforeNow{DateTime,Year(10)}(DateTime(2020))
2020-01-01T00:00:00
julia> TimePeriodBeforeNow{DateTime,Year(10)}(DateTime(2030))
ERROR: ConstraintError: constraints of type TimePeriodBeforeNow violated.
Wrong value: 2030-01-01T00:00:00 must be in interval between 2014-05-03T11:38:35.124 and 2024-05-03T11:38:35.124.
[...]
```
"""
struct TimePeriodBeforeNow{T<:TimeType,P} <: BoundTime{T}
value::T
function TimePeriodBeforeNow{T,P}(x::TimeType) where {T<:TimeType,P}
t = convert(typeof(x), now())
(x < t - P || x > t) && throw(ConstraintError{TimePeriodBeforeNow}("$x must be in interval between $(t - P) and $t."))
return new{T,P}(x)
end
end
"""
TimeBeforeOrEqual{T<:TimeType,V} <: BoundTime{T}
TimeBeforeOrEqual{T,V}(x::TimeType)
A time constraint for a value `x` of type `T` which must precede or be equal to the time `V`.
## Examples
```jldoctest
julia> using Dates
julia> TimeBeforeOrEqual{DateTime,DateTime(2023)}(DateTime(2022))
2022-01-01T00:00:00
julia> TimeBeforeOrEqual{DateTime,DateTime(2023)}(DateTime(2023))
2023-01-01T00:00:00
julia> TimeBeforeOrEqual{DateTime,DateTime(2023)}(DateTime(2024))
ERROR: ConstraintError: constraints of type TimeBeforeOrEqual violated.
Wrong value: 2024-01-01T00:00:00 must precede or be equal to 2023-01-01T00:00:00.
[...]
```
"""
struct TimeBeforeOrEqual{T<:TimeType,V} <: BoundTime{T}
value::T
function TimeBeforeOrEqual{T,V}(x::TimeType) where {T<:TimeType,V}
t = convert(typeof(x), V)
x > t && throw(ConstraintError{TimeBeforeOrEqual}("$x must precede or be equal to $t."))
return new{T,V}(x)
end
end
"""
TimeInterval{T<:TimeType,A,L,R,B} <: BoundTime{T}
TimeInterval{T,A,L,R,B}(x::TimeType)
A time constraint for a value `x` of type `T` which belongs to an interval between times `A` and `B`.
Parameters `L` and `R` are the comparison functions e.g `<` or `<=` which determine whether interval boundaries are included.
## Examples
```jldoctest
julia> using Dates
julia> TimeInterval{DateTime,DateTime(2023),<,<,DateTime(2025)}(DateTime(2024))
2024-01-01T00:00:00
julia> TimeInterval{DateTime,DateTime(2023),<,<=,DateTime(2025)}(DateTime(2025))
2025-01-01T00:00:00
julia> TimeInterval{DateTime,DateTime(2023),<,<,DateTime(2025)}(DateTime(2025))
ERROR: ConstraintError: constraints of type TimeInterval violated.
Wrong value: 2025-01-01T00:00:00 must be in interval between 2023-01-01T00:00:00 and 2025-01-01T00:00:00.
[...]
```
"""
struct TimeInterval{T<:TimeType,A,L,R,B} <: BoundTime{T}
value::T
function TimeInterval{T,A,L,R,B}(x::TimeType) where {T<:TimeType,A,L,R,B}
!(A <= B) && throw(ArgumentError("Wrong interval: A = $A must be less or equal than B = $B"))
!L(DateTime(0), DateTime(1)) && throw(ArgumentError("Wrong left comparison function: $L must be one of '<' or '<='"))
!R(DateTime(0), DateTime(1)) && throw(ArgumentError("Wrong right comparison function: $R must be one of '<' or '<='"))
(!L(A, x) || !R(x, B)) && throw(ConstraintError{TimeInterval}("$x must be in interval between $A and $B."))
return new{T,A,L,R,B}(x)
end
end
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | code | 9919 | # test/numbers
@testset verbose = true "BoundNumber" begin
@testset "Case №1: NumberPositive constructor" begin
@test NumberPositive{Float64}(10.0) == 10.0
@test NumberPositive{Float64}(10) == 10.0
@test_throws ConstraintError{<:NumberPositive} NumberPositive{Float64}(-10.0)
@test_throws ConstraintError{<:NumberPositive} NumberPositive{Float64}(-10)
@test_throws ConstraintError{<:NumberPositive} NumberPositive{Float64}(0)
end
@testset "Case №2: NumberNonPositive constructor" begin
@test NumberNonPositive{Float64}(-10.0) == -10.0
@test NumberNonPositive{Float64}(-10) == -10.0
@test NumberNonPositive{Float64}(0) == 0.0
@test_throws ConstraintError{<:NumberNonPositive} NumberNonPositive{Float64}(10.0)
@test_throws ConstraintError{<:NumberNonPositive} NumberNonPositive{Float64}(10)
end
@testset "Case №3: NumberNegative constructor" begin
@test NumberNegative{Float64}(-10.0) == -10.0
@test NumberNegative{Float64}(-10) == -10.0
@test_throws ConstraintError{<:NumberNegative} NumberNegative{Float64}(10.0)
@test_throws ConstraintError{<:NumberNegative} NumberNegative{Float64}(10)
@test_throws ConstraintError{<:NumberNegative} NumberNegative{Float64}(0)
end
@testset "Case №4: NumberNonNegative constructor" begin
@test NumberNonNegative{Float64}(10.0) == 10.0
@test NumberNonNegative{Float64}(10) == 10.0
@test NumberNonNegative{Float64}(0) == 0.0
@test_throws ConstraintError{<:NumberNonNegative} NumberNonNegative{Float64}(-10.0)
@test_throws ConstraintError{<:NumberNonNegative} NumberNonNegative{Float64}(-10)
end
@testset "Case №5: NumberGreater constructor" begin
@test NumberGreater{Float64,5}(10.0) == 10.0
@test NumberGreater{Float64,5.0}(10) == 10.0
@test_throws ConstraintError{<:NumberGreater} NumberGreater{Float64,5}(-10.0)
@test_throws ConstraintError{<:NumberGreater} NumberGreater{Float64,5}(-10)
@test_throws ConstraintError{<:NumberGreater} NumberGreater{Float64,5}(5)
end
@testset "Case №6: NumberGreaterOrEqual constructor" begin
@test NumberGreaterOrEqual{Float64,5}(10.0) == 10.0
@test NumberGreaterOrEqual{Float64,5.0}(10) == 10.0
@test NumberGreaterOrEqual{Float64,5}(5.0) == 5.0
@test_throws ConstraintError{<:NumberGreaterOrEqual} NumberGreaterOrEqual{Float64,5}(-10.0)
@test_throws ConstraintError{<:NumberGreaterOrEqual} NumberGreaterOrEqual{Float64,5}(-10)
end
@testset "Case №7: NumberLess constructor" begin
@test NumberLess{Float64,5}(-10.0) == -10.0
@test NumberLess{Float64,5.0}(-10) == -10.0
@test_throws ConstraintError{<:NumberLess} NumberLess{Float64,5}(10.0)
@test_throws ConstraintError{<:NumberLess} NumberLess{Float64,5}(10)
@test_throws ConstraintError{<:NumberLess} NumberLess{Float64,5}(5)
end
@testset "Case №8: NumberLessOrEqual constructor" begin
@test NumberLessOrEqual{Float64,5}(-10.0) == -10.0
@test NumberLessOrEqual{Float64,5.0}(-10) == -10.0
@test NumberLessOrEqual{Float64,5}(5.0) == 5.0
@test_throws ConstraintError{<:NumberLessOrEqual} NumberLessOrEqual{Float64,5}(10.0)
@test_throws ConstraintError{<:NumberLessOrEqual} NumberLessOrEqual{Float64,5}(10)
end
@testset "Case №9: NumberInterval constructor" begin
@test NumberInterval{Float64,5,<,<,15}(10.0) == 10.0
@test NumberInterval{Float64,5,<,<,15}(10) == 10.0
@test_throws ConstraintError{<:NumberInterval} NumberInterval{Float64,5,<,<,15}(5.0)
@test_throws ConstraintError{<:NumberInterval} NumberInterval{Float64,5,<,<,15}(15)
@test_throws ConstraintError{<:NumberInterval} NumberInterval{Float64,5,<,<,15}(0.0)
@test_throws ConstraintError{<:NumberInterval} NumberInterval{Float64,5,<,<,15}(20)
@test NumberInterval{Float64,5,<,<=,15}(10.0) == 10.0
@test NumberInterval{Float64,5,<,<=,15}(10) == 10.0
@test NumberInterval{Float64,5,<,<=,15}(15) == 15.0
@test_throws ConstraintError{<:NumberInterval} NumberInterval{Float64,5,<,<=,15}(5.0)
@test_throws ConstraintError{<:NumberInterval} NumberInterval{Float64,5,<,<=,15}(0.0)
@test_throws ConstraintError{<:NumberInterval} NumberInterval{Float64,5,<,<=,15}(20)
@test NumberInterval{Float64,5,<=,<,15}(10.0) == 10.0
@test NumberInterval{Float64,5,<=,<,15}(10) == 10.0
@test NumberInterval{Float64,5,<=,<,15}(5) == 5.0
@test_throws ConstraintError{<:NumberInterval} NumberInterval{Float64,5,<=,<,15}(15.0)
@test_throws ConstraintError{<:NumberInterval} NumberInterval{Float64,5,<=,<,15}(0.0)
@test_throws ConstraintError{<:NumberInterval} NumberInterval{Float64,5,<=,<,15}(20)
@test NumberInterval{Float64,5,<=,<=,15}(10.0) == 10.0
@test NumberInterval{Float64,5,<=,<=,15}(10) == 10.0
@test NumberInterval{Float64,5,<=,<=,15}(5.0) == 5.0
@test NumberInterval{Float64,5,<=,<=,15}(15) == 15.0
@test_throws ConstraintError{<:NumberInterval} NumberInterval{Float64,5,<=,<=,15}(0.0)
@test_throws ConstraintError{<:NumberInterval} NumberInterval{Float64,5,<=,<=,15}(20)
end
@testset "Case №10: NumberOdd constructor" begin
@test NumberOdd{Float64}(3.0) == 3.0
@test NumberOdd{Float64}(9) == 9.0
@test_throws ConstraintError{<:NumberOdd} NumberOdd{Float64}(4.0)
@test_throws ConstraintError{<:NumberOdd} NumberOdd{Float64}(10)
end
@testset "Case №11: NumberEven constructor" begin
@test NumberEven{Float64}(2.0) == 2.0
@test NumberEven{Float64}(4) == 4.0
@test_throws ConstraintError{<:NumberEven} NumberEven{Float64}(3.0)
@test_throws ConstraintError{<:NumberEven} NumberEven{Float64}(5)
end
@testset "Case №12: Nesting constructor" begin
@test NumberOdd{NumberPositive{NumberLess{Float64,10}}}(7) == 7.0
@test_throws ConstraintError{<:NumberLess} NumberOdd{NumberPositive{NumberLess{Float64,10}}}(29)
@test_throws ConstraintError{<:NumberPositive} NumberOdd{NumberPositive{NumberLess{Float64,10}}}(-7)
@test_throws ConstraintError{<:NumberOdd} NumberOdd{NumberPositive{NumberLess{Float64,10}}}(6)
@test NumberEven{NumberInterval{Int64,4,<,<,10}}(8) == 8
@test_throws ConstraintError{<:NumberInterval} NumberEven{NumberInterval{Int64,4,<,<,10}}(4)
@test_throws ConstraintError{<:NumberInterval} NumberEven{NumberInterval{Int64,4,<,<,10}}(10.0)
@test_throws ConstraintError{<:NumberEven} NumberEven{NumberInterval{Int64,4,<,<,10}}(9)
end
@testset "Case №13: Custom constructor" begin
@test NumberCustomBound{Float64,x -> x % 2 == 0 && x < 10}(6) == 6.0
@test_throws ConstraintError{<:NumberCustomBound} NumberCustomBound{Float64,x -> x % 2 == 0 && x < 10}(5)
@test_throws ConstraintError{<:NumberCustomBound} NumberCustomBound{Float64,x -> x % 2 == 0 && x < 10}(15)
@test NumberCustomBound{Int64,iseven}(4) == 4
@test_throws ConstraintError{<:NumberCustomBound} NumberCustomBound{Int64,iseven}(3)
end
@testset "Case №14: Basic methods" begin
a = NumberPositive{Float64}(10.0)
b = NumberGreater{Float64,0.0}(2.0)
@test a + a == 20.0
@test a + 10.0 == 20.0
@test 10.0 + a == 20.0
@test a + b == 12.0
@test a - a == 0.0
@test a - 10.0 == 0.0
@test 10.0 - a == 0.0
@test a - b == 8.0
@test a * a == 100.0
@test a * 10.0 == 100.0
@test 10.0 * a == 100.0
@test a * b == 20.0
@test a / a == 1.0
@test a / 10.0 == 1.0
@test 10.0 / a == 1.0
@test a / b == 5.0
@test a ^ a == 10000000000.0
@test a ^ 10.0 == 10000000000.0
@test 10.0 ^ a == 10000000000.0
@test a ^ b == 100.0
@test a == a
@test a == 10.0
@test 10.0 == a
@test a != b
@test a > b
@test a > 2.0
@test 2.0 < a
@test b <= a
@test div(a, b) == 5.0
@test div(10.0, b) == 5.0
@test div(a, 2.0) == 5.0
@test fld(a, b) == 5.0
@test fld(10.0, b) == 5.0
@test fld(a, 2.0) == 5.0
@test rem(a, b) == 0.0
@test rem(10.0, b) == 0.0
@test rem(a, 2.0) == 0.0
@test mod(a, b) == 0.0
@test mod(10.0, b) == 0.0
@test mod(a, 2.0) == 0.0
@test mod1(a, b) == 2.0
@test mod1(10.0, b) == 2.0
@test mod1(a, 2.0) == 2.0
@test atan(a, b) == atan(10.0, 2.0)
@test atan(10.0, b) == atan(10.0, 2.0)
@test atan(a, 2.0) == atan(10.0, 2.0)
@test atand(a, b) == atand(10.0, 2.0)
@test atand(10.0, b) == atand(10.0, 2.0)
@test atand(a, 2.0) == atand(10.0, 2.0)
@test isinf(a) == false
@test isnan(a) == false
@test iszero(a) == false
@test isreal(a) == true
@test isempty(a) == false
@test isodd(a) == false
@test iseven(a) == true
@test ispow2(a) == false
@test sqrt(a) == sqrt(10.0)
@test abs(a) == abs(10.0)
@test abs2(a) == abs2(10.0)
@test sign(a) == sign(10.0)
@test one(a) == one(10.0)
@test zero(a) == zero(10.0)
@test log(a) == log(10.0)
@test log2(a) == log2(10.0)
@test log1p(a) == log1p(10.0)
@test log10(a) == log10(10.0)
@test exp(a) == exp(10.0)
@test exp2(a) == exp2(10.0)
@test rad2deg(a) == rad2deg(10.0)
@test deg2rad(a) == deg2rad(10.0)
end
end
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | code | 6477 | # test/strings
@testset verbose = true "BoundString" begin
@testset "Case №1: StringLowerCase constructor" begin
@test StringLowerCase{String}("abcdef") == "abcdef"
@test StringLowerCase{String}("a.b/c#d_e f") == "a.b/c#d_e f"
@test StringLowerCase{String}("a1b2c3d4e5f") == "a1b2c3d4e5f"
@test StringLowerCase{String}(Vector{UInt8}("abcdef")) == "abcdef"
@test StringLowerCase{String}(Vector{UInt8}("a.b/c#d_e f")) == "a.b/c#d_e f"
@test StringLowerCase{String}(Vector{UInt8}("a1b2c3d4e5f")) == "a1b2c3d4e5f"
@test_throws ConstraintError{<:StringLowerCase} StringLowerCase{String}("abcdEf")
@test_throws ConstraintError{<:StringLowerCase} StringLowerCase{String}("./-_A")
@test_throws ConstraintError{<:StringLowerCase} StringLowerCase{String}("123Q456")
end
@testset "Case №2: StringUpperCase constructor" begin
@test StringUpperCase{String}("ABCDEF") == "ABCDEF"
@test StringUpperCase{String}("A.B/C#D_E F") == "A.B/C#D_E F"
@test StringUpperCase{String}("A1B2C3D4E5F") == "A1B2C3D4E5F"
@test StringUpperCase{String}(Vector{UInt8}("ABCDEF")) == "ABCDEF"
@test StringUpperCase{String}(Vector{UInt8}("A.B/C#D_E F")) == "A.B/C#D_E F"
@test StringUpperCase{String}(Vector{UInt8}("A1B2C3D4E5F")) == "A1B2C3D4E5F"
@test_throws ConstraintError{<:StringUpperCase} StringUpperCase{String}("ABCDeF")
@test_throws ConstraintError{<:StringUpperCase} StringUpperCase{String}("./-_a")
@test_throws ConstraintError{<:StringUpperCase} StringUpperCase{String}("123q456")
end
@testset "Case №3: StringMinLength constructor" begin
@test StringMinLength{String,4}("abcdef") == "abcdef"
@test StringMinLength{String,8}("a.b/c#d_e f") == "a.b/c#d_e f"
@test StringMinLength{String,11}("a1b2c3d4e5f") == "a1b2c3d4e5f"
@test StringMinLength{String,4}(Vector{UInt8}("abcdef")) == "abcdef"
@test StringMinLength{String,8}(Vector{UInt8}("a.b/c#d_e f")) == "a.b/c#d_e f"
@test StringMinLength{String,11}(Vector{UInt8}("a1b2c3d4e5f")) == "a1b2c3d4e5f"
@test_throws ConstraintError{<:StringMinLength} StringMinLength{String,10}("ABCDeF")
@test_throws ConstraintError{<:StringMinLength} StringMinLength{String,10}("./-_a")
@test_throws ConstraintError{<:StringMinLength} StringMinLength{String,10}("123q456")
end
@testset "Case №4: StringMaxLength constructor" begin
@test StringMaxLength{String,10}("abcdef") == "abcdef"
@test StringMaxLength{String,15}("a.b/c#d_e f") == "a.b/c#d_e f"
@test StringMaxLength{String,11}("a1b2c3d4e5f") == "a1b2c3d4e5f"
@test StringMaxLength{String,10}(Vector{UInt8}("abcdef")) == "abcdef"
@test StringMaxLength{String,15}(Vector{UInt8}("a.b/c#d_e f")) == "a.b/c#d_e f"
@test StringMaxLength{String,11}(Vector{UInt8}("a1b2c3d4e5f")) == "a1b2c3d4e5f"
@test_throws ConstraintError{<:StringMaxLength} StringMaxLength{String,3}("ABCDeF")
@test_throws ConstraintError{<:StringMaxLength} StringMaxLength{String,3}("./-_a")
@test_throws ConstraintError{<:StringMaxLength} StringMaxLength{String,3}("123q456")
end
@testset "Case №5: StringFixedLength constructor" begin
@test StringFixedLength{String,6}("abcdef") == "abcdef"
@test StringFixedLength{String,11}("a.b/c#d_e f") == "a.b/c#d_e f"
@test StringFixedLength{String,11}("a1b2c3d4e5f") == "a1b2c3d4e5f"
@test StringFixedLength{String,6}(Vector{UInt8}("abcdef")) == "abcdef"
@test StringFixedLength{String,11}(Vector{UInt8}("a.b/c#d_e f")) == "a.b/c#d_e f"
@test StringFixedLength{String,11}(Vector{UInt8}("a1b2c3d4e5f")) == "a1b2c3d4e5f"
@test_throws ConstraintError{<:StringFixedLength} StringFixedLength{String,2}("ABCDeF")
@test_throws ConstraintError{<:StringFixedLength} StringFixedLength{String,3}("./-_a")
@test_throws ConstraintError{<:StringFixedLength} StringFixedLength{String,20}("123q456")
end
@testset "Case №6: StringPattern constructor" begin
@test StringPattern{String,pattern"^[a-z]+$"}("abcdef") == "abcdef"
@test StringPattern{String,pattern"^[A-Z]+$"}("ABCDEF") == "ABCDEF"
@test StringPattern{String,pattern"^[a-z\d]+$"}("a1b2c3d4e5f") == "a1b2c3d4e5f"
@test StringPattern{String,pattern"^[a-z]+$"}(Vector{UInt8}("abcdef")) == "abcdef"
@test StringPattern{String,pattern"^[A-Z]+$"}(Vector{UInt8}("ABCDEF")) == "ABCDEF"
@test StringPattern{String,pattern"^[a-z\d]+$"}(Vector{UInt8}("a1b2c3d4e5f")) == "a1b2c3d4e5f"
@test_throws ConstraintError{<:StringPattern} StringPattern{String,pattern"^[a-z]+$"}("ab234def")
@test_throws ConstraintError{<:StringPattern} StringPattern{String,pattern"^[A-Z]+$"}("A!BC2D_EF")
@test_throws ConstraintError{<:StringPattern} StringPattern{String,pattern"^[a-z\d]+$"}("_a1b2c3d4e5f_")
end
@testset "Case №7: Nesting tests constructor" begin
@test StringLowerCase{StringMaxLength{String,5}}("abc") == "abc"
@test_throws ConstraintError{<:StringMaxLength} StringLowerCase{StringMaxLength{String,5}}("abcdef")
@test_throws ConstraintError{<:StringLowerCase} StringLowerCase{StringMaxLength{String,5}}("aBc")
@test StringUpperCase{StringMinLength{String,5}}("ABCDEF") == "ABCDEF"
@test_throws ConstraintError{<:StringMinLength} StringUpperCase{StringMinLength{String,5}}("ABC")
@test_throws ConstraintError{<:StringUpperCase} StringUpperCase{StringMinLength{String,5}}("AbC")
@test StringFixedLength{StringPattern{String,pattern"^[a-z]+$"},5}("abcde") == "abcde"
@test_throws ConstraintError{<:StringPattern} StringFixedLength{StringPattern{String,pattern"^[a-z]+$"},5}("ab1de")
@test_throws ConstraintError{<:StringFixedLength} StringFixedLength{StringPattern{String,pattern"^[a-z]+$"},5}("abcdef")
end
@testset "Case №8: Custom constructor" begin
@test StringCustomBound{String,x -> x <= "bbb" && length(x) < 5}("aaa") == "aaa"
@test_throws ConstraintError{<:StringCustomBound} StringCustomBound{String,x -> x <= "bbb" && length(x) < 5}("ccc")
@test_throws ConstraintError{<:StringCustomBound} StringCustomBound{String,x -> x <= "bbb" && length(x) < 5}("aaaaaa")
end
end
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | code | 10140 | # test/dates
using Test
using Dates
using BoundTypes
@testset verbose = true "BoundTime" begin
@testset "Case №1: TimeAfterNow constructor" begin
current_time = now()
@test TimeAfterNow{Time}(current_time + Minute(1)) == Time(current_time + Minute(1))
@test TimeAfterNow{Date}(current_time + Day(1)) == Date(current_time + Day(1))
@test TimeAfterNow{DateTime}(current_time + Day(1)) == DateTime(current_time + Day(1))
@test_throws ConstraintError TimeAfterNow{Time}(current_time - Minute(1))
@test_throws ConstraintError TimeAfterNow{Date}(current_time - Day(1))
@test_throws ConstraintError TimeAfterNow{DateTime}(current_time - Day(1))
end
@testset "Case №2: TimeAfter constructor" begin
@test TimeAfter{Time,Time(12)}(Time(13)) == Time(13)
@test TimeAfter{Date,Date(2024)}(Date(2025)) == Date(Date(2025))
@test TimeAfter{DateTime,DateTime(2024)}(DateTime(2025)) == DateTime(DateTime(2025))
@test_throws ConstraintError TimeAfter{Time,Time(12)}(Time(11))
@test_throws ConstraintError TimeAfter{Date,Date(2024)}(Date(2023))
@test_throws ConstraintError TimeAfter{DateTime,DateTime(2024)}(DateTime(2023))
@test_throws ConstraintError TimeAfter{Time,Time(12)}(Time(12))
@test_throws ConstraintError TimeAfter{Date,Date(2024)}(Date(2024))
@test_throws ConstraintError TimeAfter{DateTime,DateTime(2024)}(DateTime(2024))
end
@testset "Case №3: TimeAfterOrEqual constructor" begin
@test TimeAfterOrEqual{Time,Time(12)}(Time(13)) == Time(13)
@test TimeAfterOrEqual{Date,Date(2024)}(Date(2025)) == Date(Date(2025))
@test TimeAfterOrEqual{DateTime,DateTime(2024)}(DateTime(2025)) == DateTime(DateTime(2025))
@test TimeAfterOrEqual{Time,Time(12)}(Time(12)) == Time(12)
@test TimeAfterOrEqual{Date,Date(2024)}(Date(2024)) == Date(Date(2024))
@test TimeAfterOrEqual{DateTime,DateTime(2024)}(DateTime(2024)) == DateTime(DateTime(2024))
@test_throws ConstraintError TimeAfterOrEqual{Time,Time(12)}(Time(11))
@test_throws ConstraintError TimeAfterOrEqual{Date,Date(2024)}(Date(2023))
@test_throws ConstraintError TimeAfterOrEqual{DateTime,DateTime(2024)}(DateTime(2023))
end
@testset "Case №4: TimePeriodAfterNow constructor" begin
current_time = now()
@test TimePeriodAfterNow{Time,Hour(1)}(current_time + Minute(1)) == Time(current_time + Minute(1))
@test TimePeriodAfterNow{Date,Week(1)}(current_time + Day(1)) == Date(current_time + Day(1))
@test TimePeriodAfterNow{DateTime,Month(1)}(current_time + Week(1)) == DateTime(current_time + Week(1))
@test_throws ConstraintError TimePeriodAfterNow{Time,Hour(1)}(current_time - Hour(2))
@test_throws ConstraintError TimePeriodAfterNow{Date,Week(1)}(current_time - Month(1))
@test_throws ConstraintError TimePeriodAfterNow{DateTime,Month(1)}(current_time - Year(1))
end
@testset "Case №5: TimeBeforeNow constructor" begin
current_time = now()
@test TimeBeforeNow{Time}(current_time - Minute(1)) == Time(current_time - Minute(1))
@test TimeBeforeNow{Date}(current_time - Day(1)) == Date(current_time - Day(1))
@test TimeBeforeNow{DateTime}(current_time - Day(1)) == DateTime(current_time - Day(1))
@test_throws ConstraintError TimeBeforeNow{Time}(current_time + Minute(1))
@test_throws ConstraintError TimeBeforeNow{Date}(current_time + Day(1))
@test_throws ConstraintError TimeBeforeNow{DateTime}(current_time + Day(1))
end
@testset "Case №6: TimeBefore constructor" begin
@test TimeBefore{Time,Time(12)}(Time(11)) == Time(11)
@test TimeBefore{Date,Date(2024)}(Date(2023)) == Date(Date(2023))
@test TimeBefore{DateTime,DateTime(2024)}(DateTime(2023)) == DateTime(DateTime(2023))
@test_throws ConstraintError TimeBefore{Time,Time(12)}(Time(13))
@test_throws ConstraintError TimeBefore{Date,Date(2024)}(Date(2025))
@test_throws ConstraintError TimeBefore{DateTime,DateTime(2024)}(DateTime(2025))
@test_throws ConstraintError TimeBefore{Time,Time(12)}(Time(12))
@test_throws ConstraintError TimeBefore{Date,Date(2024)}(Date(2024))
@test_throws ConstraintError TimeBefore{DateTime,DateTime(2024)}(DateTime(2024))
end
@testset "Case №7: TimeBeforeOrEqual constructor" begin
@test TimeBeforeOrEqual{Time,Time(12)}(Time(11)) == Time(11)
@test TimeBeforeOrEqual{Date,Date(2024)}(Date(2023)) == Date(Date(2023))
@test TimeBeforeOrEqual{DateTime,DateTime(2024)}(DateTime(2023)) == DateTime(DateTime(2023))
@test TimeBeforeOrEqual{Time,Time(12)}(Time(12)) == Time(12)
@test TimeBeforeOrEqual{Date,Date(2024)}(Date(2024)) == Date(Date(2024))
@test TimeBeforeOrEqual{DateTime,DateTime(2024)}(DateTime(2024)) == DateTime(DateTime(2024))
@test_throws ConstraintError TimeBeforeOrEqual{Time,Time(12)}(Time(13))
@test_throws ConstraintError TimeBeforeOrEqual{Date,Date(2024)}(Date(2025))
@test_throws ConstraintError TimeBeforeOrEqual{DateTime,DateTime(2024)}(DateTime(2025))
end
@testset "Case №8: TimePeriodBeforeNow constructor" begin
current_time = now()
@test TimePeriodBeforeNow{Time,Hour(1)}(current_time - Minute(1)) == Time(current_time - Minute(1))
@test TimePeriodBeforeNow{Date,Week(1)}(current_time - Day(1)) == Date(current_time - Day(1))
@test TimePeriodBeforeNow{DateTime,Month(1)}(current_time - Week(1)) == DateTime(current_time - Week(1))
@test_throws ConstraintError TimePeriodBeforeNow{Time,Hour(1)}(current_time + Hour(2))
@test_throws ConstraintError TimePeriodBeforeNow{Date,Week(1)}(current_time + Month(1))
@test_throws ConstraintError TimePeriodBeforeNow{DateTime,Month(1)}(current_time + Year(1))
end
@testset "Case №9: TimeInterval constructor" begin
@test TimeInterval{Time,Time(5),<=,<,Time(15)}(Time(10)) == Time(10)
@test TimeInterval{Time,Time(5),<=,<,Time(15)}(Time(5)) == Time(5)
@test TimeInterval{Date,Date(2023),<=,<,Date(2025)}(Date(2024)) == Date(2024)
@test TimeInterval{Date,Date(2023),<=,<,Date(2025)}(Date(2023)) == Date(2023)
@test TimeInterval{DateTime,DateTime(2023),<=,<,DateTime(2025)}(DateTime(2024)) == DateTime(2024)
@test TimeInterval{DateTime,DateTime(2023),<=,<,DateTime(2025)}(DateTime(2023)) == DateTime(2023)
@test_throws ConstraintError TimeInterval{Time,Time(5),<=,<,Time(15)}(Time(15))
@test_throws ConstraintError TimeInterval{Time,Time(5),<=,<,Time(15)}(Time(1))
@test_throws ConstraintError TimeInterval{Time,Time(5),<=,<,Time(15)}(Time(20))
@test_throws ConstraintError TimeInterval{Date,Date(2023),<=,<,Date(2025)}(Date(2025))
@test_throws ConstraintError TimeInterval{Date,Date(2023),<=,<,Date(2025)}(Date(2020))
@test_throws ConstraintError TimeInterval{Date,Date(2023),<=,<,Date(2025)}(Date(2030))
@test_throws ConstraintError TimeInterval{DateTime,DateTime(2023),<=,<,DateTime(2025)}(DateTime(2025))
@test_throws ConstraintError TimeInterval{DateTime,DateTime(2023),<=,<,DateTime(2025)}(DateTime(2020))
@test_throws ConstraintError TimeInterval{DateTime,DateTime(2023),<=,<,DateTime(2025)}(DateTime(2030))
end
@testset "Case №10: Nested constructor" begin
@test TimeAfter{TimeBeforeOrEqual{Time,Time(4)},Time(2)}(Time(3)) == Time(3)
@test TimeAfter{TimeBeforeOrEqual{Time,Time(4)},Time(2)}(Time(4)) == Time(4)
@test_throws ConstraintError TimeAfter{TimeBeforeOrEqual{Time,Time(4)},Time(2)}(Time(1))
@test_throws ConstraintError TimeAfter{TimeBeforeOrEqual{Time,Time(4)},Time(2)}(Time(2))
@test_throws ConstraintError TimeAfter{TimeBeforeOrEqual{Time,Time(4)},Time(2)}(Time(5))
@test TimeAfterOrEqual{TimeBefore{Time,Time(4)},Time(2)}(Time(3)) == Time(3)
@test TimeAfterOrEqual{TimeBefore{Time,Time(4)},Time(2)}(Time(2)) == Time(2)
@test_throws ConstraintError TimeAfterOrEqual{TimeBefore{Time,Time(4)},Time(2)}(Time(1))
@test_throws ConstraintError TimeAfterOrEqual{TimeBefore{Time,Time(4)},Time(2)}(Time(4))
@test_throws ConstraintError TimeAfterOrEqual{TimeBefore{Time,Time(4)},Time(2)}(Time(5))
end
@testset "Case №11: Custom constructor" begin
@test TimeCustomBound{Time, x -> x > Time(2) && x <= Time(4)}(Time(3)) == Time(3)
@test TimeCustomBound{Time, x -> x > Time(2) && x <= Time(4)}(Time(4)) == Time(4)
@test_throws ConstraintError TimeCustomBound{Time, x -> x > Time(2) && x <= Time(4)}(Time(1))
@test_throws ConstraintError TimeCustomBound{Time, x -> x > Time(2) && x <= Time(4)}(Time(2))
@test_throws ConstraintError TimeCustomBound{Time, x -> x > Time(2) && x <= Time(4)}(Time(5))
end
@testset "Case №12: Basic methods" begin
a = TimeAfter{DateTime,DateTime(2024)}(DateTime(2025))
b = TimeBefore{DateTime,DateTime(2025)}(DateTime(2024))
c = TimeBefore{DateTime,DateTime(2025)}(DateTime(1, 2, 3, 4, 5, 6, 7))
@test a == a
@test a == DateTime(2025)
@test a != b
@test a > b
@test b <= a
@test a + Year(1) == DateTime(2026)
@test a - Year(1) == b
@test year(c) == 1
@test month(c) == 2
@test day(c) == 3
@test hour(c) == 4
@test minute(c) == 5
@test second(c) == 6
@test millisecond(c) == 7
@test Year(c) == Year(1)
@test Month(c) == Month(2)
@test Day(c) == Day(3)
@test Hour(c) == Hour(4)
@test Minute(c) == Minute(5)
@test Second(c) == Second(6)
@test Millisecond(c) == Millisecond(7)
end
end
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | code | 158 | using Test
using Dates
using Serde
using BoundTypes
include("bound_number.jl")
include("bound_string.jl")
include("bound_time.jl")
include("serde_usage.jl")
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | code | 13054 | # test/extensions
@testset verbose = true "Serde extension" begin
struct UserProfile
username::StringPattern{String,pattern"^[a-zA-Z0-9_]+$"}
password::StringFixedLength{String,12}
email::StringPattern{String,pattern"^\S+@\S+\.\S+$"}
age::NumberPositive{Int64}
bio::String
height_in_cm::NumberInterval{Float64,50,<,<,250}
weight_in_kg::NumberNonNegative{Float64}
account_creation_date::TimeBeforeNow{DateTime}
subscription_end_date::TimeAfter{DateTime,DateTime(2024,1,1)}
is_email_verified::Bool
end
function Serde.deser(::Type{<:UserProfile}, ::Type{<:TimeType}, x::String)
return DateTime(x)
end
correct_user_info = """
{
"username": "user123_",
"password": "Abc123!@#Def",
"email": "user123@example.com",
"age": 25,
"bio": "Just a simple bio.",
"height_in_cm": 175.5,
"weight_in_kg": 70.0,
"account_creation_date": "2023-01-15T14:22:00",
"subscription_end_date": "2030-01-15T00:00:00",
"is_email_verified": true
}
"""
@testset "Case №1: Deserialization" begin
@test UserProfile(
"user123_",
"Abc123!@#Def",
"user123@example.com",
25,
"Just a simple bio.",
175.5,
70.0,
DateTime("2023-01-15T14:22:00"),
DateTime("2030-01-15T00:00:00"),
true,
) == deser_json(UserProfile, correct_user_info)
null_bio = """
{
"username": "user123_",
"password": "Abc123!@#Def",
"email": "user123@example.com",
"age": 25,
"bio": null,
"height_in_cm": 175.5,
"weight_in_kg": 70.0,
"account_creation_date": "2023-01-15T14:22:00",
"subscription_end_date": "2030-01-15T00:00:00",
"is_email_verified": true
}
"""
@test_throws Serde.ParamError deser_json(UserProfile, null_bio)
incorrect_username = """
{
"username": "user@@@",
"password": "Abc123!@#Def",
"email": "user123@example.com",
"age": 25,
"bio": "A bio with special characters in the username.",
"height_in_cm": 175,
"weight_in_kg": 70,
"account_creation_date": "2023-01-15T14:22:00",
"subscription_end_date": "2024-01-15T00:00:00",
"is_email_verified": true
}
"""
@test_throws ConstraintError{<:StringPattern} deser_json(UserProfile, incorrect_username)
incorrect_password = """
{
"username": "user123_",
"password": "Short1!",
"email": "user123@example.com",
"age": 25,
"bio": "Password is too short.",
"height_in_cm": 175,
"weight_in_kg": 70,
"account_creation_date": "2023-01-15T14:22:00",
"subscription_end_date": "2024-01-15T00:00:00",
"is_email_verified": true
}
"""
@test_throws ConstraintError{<:StringFixedLength} deser_json(UserProfile, incorrect_password)
incorrect_age = """
{
"username": "user123_",
"password": "Abc123!@#Def",
"email": "user123@example.com",
"age": -5,
"bio": "Age cannot be negative.",
"height_in_cm": 175,
"weight_in_kg": 70,
"account_creation_date": "2023-01-15T14:22:00",
"subscription_end_date": "2024-01-15T00:00:00",
"is_email_verified": true
}
"""
@test_throws ConstraintError{NumberPositive} deser_json(UserProfile, incorrect_age)
incorrect_height = """
{
"username": "user123_",
"password": "Abc123!@#Def",
"email": "user123@example.com",
"age": 25,
"bio": "Height is too tall.",
"height_in_cm": 300,
"weight_in_kg": 70,
"account_creation_date": "2023-01-15T14:22:00",
"subscription_end_date": "2024-01-15T00:00:00",
"is_email_verified": true
}
"""
@test_throws ConstraintError{NumberInterval} deser_json(UserProfile, incorrect_height)
incorrect_sub_date = """
{
"username": "user123_",
"password": "Abc123!@#Def",
"email": "user123@example.com",
"age": 25,
"bio": "Subscription end date is in the past.",
"height_in_cm": 175,
"weight_in_kg": 70,
"account_creation_date": "2023-01-15T14:22:00",
"subscription_end_date": "2023-01-01T00:00:00",
"is_email_verified": true
}
"""
@test_throws ConstraintError{TimeAfter} deser_json(UserProfile, incorrect_sub_date)
end
@testset "Case №2: Serialization" begin
user = deser_json(UserProfile, correct_user_info)
@test to_json(user) ==
"""
{\
"username":"user123_",\
"password":"Abc123!@#Def",\
"email":"user123@example.com",\
"age":25,\
"bio":"Just a simple bio.",\
"height_in_cm":175.5,\
"weight_in_kg":70.0,\
"account_creation_date":"2023-01-15T14:22:00",\
"subscription_end_date":"2030-01-15T00:00:00",\
"is_email_verified":true\
}\
"""
@test to_csv([user]) == """
username,password,email,age,bio,height_in_cm,weight_in_kg,account_creation_date,subscription_end_date,is_email_verified
user123_,Abc123!@#Def,user123@example.com,25,Just a simple bio.,175.5,70.0,2023-01-15T14:22:00,2030-01-15T00:00:00,true
"""
@test to_query(user) == """
username=user123_&\
password=Abc123%21%40%23Def&\
email=user123%40example.com&\
age=25&\
bio=Just%20a%20simple%20bio.&\
height_in_cm=175.5&\
weight_in_kg=70.0&\
account_creation_date=2023-01-15T14%3A22%3A00&\
subscription_end_date=2030-01-15T00%3A00%3A00&\
is_email_verified=true\
"""
@test to_toml(user) == """
username = \"user123_\"
password = \"Abc123!@#Def\"
email = \"user123@example.com\"
age = 25
bio = \"Just a simple bio.\"
height_in_cm = 175.5
weight_in_kg = 70.0
account_creation_date = \"2023-01-15T14:22:00\"
subscription_end_date = \"2030-01-15T00:00:00\"
is_email_verified = true
"""
@test to_xml(user) == """
<xml username=\"user123_\" \
password=\"Abc123!@#Def\" \
email=\"user123@example.com\" \
age=\"25\" \
bio=\"Just a simple bio.\" \
height_in_cm=\"175.5\" \
weight_in_kg=\"70.0\" \
account_creation_date=\"2023-01-15T14:22:00\" \
subscription_end_date=\"2030-01-15T00:00:00\" \
is_email_verified=\"true\"/>
"""
end
@testset "Case №3: Nested boundbypes deserialization" begin
struct StringAndFloat
a::StringMaxLength{StringMinLength{StringLowerCase{String},10},20}
b::Float64
end
obj = StringAndFloat("1234567890a", 1)
json = "{\"a\":\"1234567890a\",\"b\":1.0}"
toml = "a = \"1234567890a\"\nb = 1.0\n"
csv = "a,b\n1234567890a,1.0\n"
query = "a=1234567890a&b=1.0"
xml = "<xml a=\"1234567890a\" b=\"1.0\"/>\n"
yaml = "a: \"1234567890a\"\nb: 1.0\n"
@test to_json(obj) == json
@test to_toml(obj) == toml
@test to_csv([obj]) == csv
@test to_query(obj) == query
@test to_xml(obj) == xml
@test to_yaml(obj) == yaml
@test Serde.deser_json(StringAndFloat, json) == obj
@test Serde.deser_toml(StringAndFloat, toml) == obj
@test Serde.deser_csv(StringAndFloat, csv)[1] == obj
@test Serde.deser_query(StringAndFloat, query) == obj
@test Serde.deser_xml(StringAndFloat, xml) == obj
@test Serde.deser_yaml(StringAndFloat, yaml) == obj
struct StringAndNumber
a::StringMaxLength{StringMinLength{StringLowerCase{String},10},20}
b::NumberPositive{Float64}
end
obj = StringAndNumber("1234567890a", 1)
json = "{\"a\":\"1234567890a\",\"b\":1.0}"
toml = "a = \"1234567890a\"\nb = 1.0\n"
csv = "a,b\n1234567890a,1.0\n"
query = "a=1234567890a&b=1.0"
xml = "<xml a=\"1234567890a\" b=\"1.0\"/>\n"
yaml = "a: \"1234567890a\"\nb: 1.0\n"
@test to_json(obj) == json
@test to_toml(obj) == toml
@test to_csv([obj]) == csv
@test to_query(obj) == query
@test to_xml(obj) == xml
@test to_yaml(obj) == yaml
@test Serde.deser_json(StringAndNumber, json) == obj
@test Serde.deser_toml(StringAndNumber, toml) == obj
@test Serde.deser_csv(StringAndNumber, csv)[1] == obj
@test Serde.deser_query(StringAndNumber, query) == obj
@test Serde.deser_xml(StringAndNumber, xml) == obj
@test Serde.deser_yaml(StringAndNumber, yaml) == obj
struct StringsAndNumber
a::StringMaxLength{StringMinLength{StringLowerCase{String},10},20}
b::StringMinLength{String,5}
c::NumberPositive{Float64}
end
obj = StringsAndNumber("1234567890a", "asdfdasf", 1.0)
json = "{\"a\":\"1234567890a\",\"b\":\"asdfdasf\",\"c\":1.0}"
toml = "a = \"1234567890a\"\nb = \"asdfdasf\"\nc = 1.0\n"
csv = "a,b,c\n1234567890a,asdfdasf,1.0\n"
query = "a=1234567890a&b=asdfdasf&c=1.0"
xml = "<xml a=\"1234567890a\" b=\"asdfdasf\" c=\"1.0\"/>\n"
yaml = "a: \"1234567890a\"\nb: \"asdfdasf\"\nc: 1.0\n"
@test to_json(obj) == json
@test to_toml(obj) == toml
@test to_csv([obj]) == csv
@test to_query(obj) == query
@test to_xml(obj) == xml
@test to_yaml(obj) == yaml
@test Serde.deser_json(StringsAndNumber, json) == obj
@test Serde.deser_toml(StringsAndNumber, toml) == obj
@test Serde.deser_csv(StringsAndNumber, csv)[1] == obj
@test Serde.deser_query(StringsAndNumber, query) == obj
@test Serde.deser_xml(StringsAndNumber, xml) == obj
@test Serde.deser_yaml(StringsAndNumber, yaml) == obj
struct TwoStrings
a::StringMaxLength{StringMinLength{StringLowerCase{String},10},20}
b::StringMinLength{String,5}
end
obj = TwoStrings("1234567890a", "asdfdasf")
json = "{\"a\":\"1234567890a\",\"b\":\"asdfdasf\"}"
toml = "a = \"1234567890a\"\nb = \"asdfdasf\"\n"
csv = "a,b\n1234567890a,asdfdasf\n"
query = "a=1234567890a&b=asdfdasf"
xml = "<xml a=\"1234567890a\" b=\"asdfdasf\"/>\n"
yaml = "a: \"1234567890a\"\nb: \"asdfdasf\"\n"
@test to_json(obj) == json
@test to_toml(obj) == toml
@test to_csv([obj]) == csv
@test to_query(obj) == query
@test to_xml(obj) == xml
@test to_yaml(obj) == yaml
@test Serde.deser_json(TwoStrings, json) == obj
@test Serde.deser_toml(TwoStrings, toml) == obj
@test Serde.deser_csv(TwoStrings, csv)[1] == obj
@test Serde.deser_query(TwoStrings, query) == obj
@test Serde.deser_xml(TwoStrings, xml) == obj
@test Serde.deser_yaml(TwoStrings, yaml) == obj
struct BasicTimeTypes
a::TimeAfter{Time,Time(10)}
b::TimeBefore{TimeAfter{Date,Date(2020)},Date(2025)}
c::TimeInterval{DateTime,DateTime(2020),<,<,DateTime(2025)}
end
Serde.deser(::Type{BasicTimeTypes}, ::Type{Time}, x::String) = Time(x)
Serde.deser(::Type{BasicTimeTypes}, ::Type{Date}, x::String) = Date(x)
Serde.deser(::Type{BasicTimeTypes}, ::Type{DateTime}, x::String) = DateTime(x)
function Serde.deser(::Type{BasicTimeTypes}, ::Type{T}, x::String) where {T<:BoundTime}
return T(Serde.deser(BasicTimeTypes, bound_type(T), x))
end
obj = BasicTimeTypes(Time(15), Date(2023), DateTime(2024))
json = "{\"a\":\"15:00:00\",\"b\":\"2023-01-01\",\"c\":\"2024-01-01T00:00:00\"}"
toml = "a = \"15:00:00\"\nb = \"2023-01-01\"\nc = \"2024-01-01T00:00:00\"\n"
csv = "a,b,c\n15:00:00,2023-01-01,2024-01-01T00:00:00\n"
query = "a=15%3A00%3A00&b=2023-01-01&c=2024-01-01T00%3A00%3A00"
xml = "<xml a=\"15:00:00\" b=\"2023-01-01\" c=\"2024-01-01T00:00:00\"/>\n"
yaml = "a: \"15:00:00\"\nb: \"2023-01-01\"\nc: \"2024-01-01T00:00:00\"\n"
@test to_json(obj) == json
@test to_toml(obj) == toml
@test to_csv([obj]) == csv
@test to_query(obj) == query
@test to_xml(obj) == xml
@test to_yaml(obj) == yaml
@test Serde.deser_json(BasicTimeTypes, json) == obj
@test Serde.deser_toml(BasicTimeTypes, toml) == obj
@test Serde.deser_csv(BasicTimeTypes, csv)[1] == obj
@test Serde.deser_query(BasicTimeTypes, query) == obj
@test Serde.deser_xml(BasicTimeTypes, xml) == obj
@test Serde.deser_yaml(BasicTimeTypes, yaml) == obj
end
end
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | docs | 175 | # BoundTypes.jl Changelog
The latest version of this file can be found at the master branch of the [BoundTypes.jl repository](https://github.com/bhftbootcamp/BoundTypes.jl).
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | docs | 2703 | ![animation](docs/src/assets/animation.gif)
# BoundTypes.jl
[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://bhftbootcamp.github.io/BoundTypes.jl/stable/)
[![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://bhftbootcamp.github.io/BoundTypes.jl/dev/)
[![Build Status](https://github.com/bhftbootcamp/BoundTypes.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/bhftbootcamp/BoundTypes.jl/actions/workflows/CI.yml?query=branch%3Amaster)
[![Coverage](https://codecov.io/gh/bhftbootcamp/BoundTypes.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/bhftbootcamp/BoundTypes.jl)
[![Registry](https://img.shields.io/badge/registry-General-4063d8)](https://github.com/JuliaRegistries/General)
The BoundTypes library helps you to seamlessly design and set rules for data types in your code, making it safer and more reliable.
## Installation
To install BoundTypes, simply use the Julia package manager:
```julia
] add BoundTypes
```
## Usage
Demonstrate value validation during object construction:
```julia
using BoundTypes
struct CoinInfo
asset::StringPattern{String,pattern"^([A-Z]+)$"}
network::StringMinLength{String,3}
address::StringFixedLength{StringPattern{String,pattern"^0x([abcdef0-9]+)$"},40}
deposit_fee::NumberNonNegative{Float64}
withdrawal_fee::NumberPositive{Float64}
end
julia> CoinInfo("ETH", "Ethereum", "0xc0ffee254729296a45a3885639ac7e10f9d549", 0.0, 0.01)
CoinInfo("ETH", "Ethereum", "0xc0ffee254729296a45a3885639ac7e10f9d549", 0.0, 0.01)
julia> CoinInfo("eth!", "EM", "0xc0FFE12A2", -1.0, 0.0)
Wrong value: "eth!" must match to regex pattern ^([A-Z]+)$.
```
Using BoundTypes for serialization and deserialization with [Serde.jl](https://github.com/bhftbootcamp/Serde.jl):
```julia
using Serde
using BoundTypes
struct User
name::StringMinLength{String,5}
pass::StringMaxLength{StringMinLength{StringPattern{String,pattern"^[\w@]+$"},10},20}
end
julia> Serde.deser_json(User, """ {"name": "Julia", "pass": "MyBestP@ssw0rdEv3r"} """)
User("Julia", "MyBestP@ssw0rdEv3r")
julia> Serde.deser_json(User, """ {"name": "Julia", "pass": "2ShrtP@ss"} """)
Wrong value: length of the "2ShrtP@ss" must be at least 10 characters (9).
julia> Serde.deser_json(User, """ {"name": "Julia", "pass": "Bad/Password#"} """)
Wrong value: "Bad/Password#" must match to regex pattern ^[\w@]+$.
julia> Serde.to_json(User("Julia", "MyBestP@ssw0rdEv3r"))
"{\"name\":\"Julia\",\"pass\":\"MyBestP@ssw0rdEv3r\"}"
```
## Contributing
Contributions to BoundTypes are welcome! If you encounter a bug, have a feature request, or would like to contribute code, please open an issue or a pull request on GitHub.
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | docs | 179 | ### Pull request checklist
- [ ] Did you bump the project version?
- [ ] Did you add a description to the Pull Request?
- [ ] Did you add new tests?
- [ ] Did you add reviewers?
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | docs | 712 | ---
name: 'Bug report'
about: Create a report to help us improve
title: ''
labels: bug
assignees: ''
---
Describe the bug
---
> A clear and concise description of what the bug is.
To Reproduce
---
> Add a Minimal, Complete, and Verifiable example (for more details, see e.g. https://stackoverflow.com/help/mcve)
>
> If the code is too long, feel free to put it in a public gist and link
it in the issue: https://gist.github.com
```julia
# Past your code here.
```
Expected behavior
---
> A clear and concise description of what you expected to happen.
Additional context
---
> Add any other context about the problem here.\
> Please include the output of\
> `julia> versioninfo()`\
> and\
> `pkg> st` | BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | docs | 618 | ---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: 'feature'
assignees: ''
---
Is your feature request related to a problem? Please describe.
---
> A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
Describe the solution you'd like
---
> A clear and concise description of what you want to happen.
Describe alternatives you've considered
---
> A clear and concise description of any alternative solutions or features you've considered.
Additional context
---
> Add any other context or screenshots about the feature request here.
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | docs | 1813 | ![animation](assets/animation.gif)
# BoundTypes.jl
The BoundTypes library helps you to seamlessly design and set rules for data types in your code, making it safer and more reliable.
## Installation
To install BoundTypes, simply use the Julia package manager:
```julia
] add BoundTypes
```
## Usage
Demonstrate value validation during object construction:
```julia
using BoundTypes
struct CoinInfo
asset::StringPattern{String,pattern"^([A-Z]+)$"}
network::StringMinLength{String,3}
address::StringFixedLength{StringPattern{String,pattern"^0x([abcdef0-9]+)$"},40}
deposit_fee::NumberNonNegative{Float64}
withdrawal_fee::NumberPositive{Float64}
end
julia> CoinInfo("ETH", "Ethereum", "0xc0ffee254729296a45a3885639ac7e10f9d549", 0.0, 0.01)
CoinInfo("ETH", "Ethereum", "0xc0ffee254729296a45a3885639ac7e10f9d549", 0.0, 0.01)
julia> CoinInfo("eth!", "EM", "0xc0FFE12A2", -1.0, 0.0)
Wrong value: "eth!" must match to regex pattern ^([A-Z]+)$.
```
Using BoundTypes for serialization and deserialization with [Serde.jl](https://github.com/bhftbootcamp/Serde.jl):
```julia
using Serde
using BoundTypes
struct User
name::StringMinLength{String,5}
pass::StringMaxLength{StringMinLength{StringPattern{String,pattern"^[\w@]+$"},10},20}
end
julia> Serde.deser_json(User, """ {"name": "Julia", "pass": "MyBestP@ssw0rdEv3r"} """)
User("Julia", "MyBestP@ssw0rdEv3r")
julia> Serde.deser_json(User, """ {"name": "Julia", "pass": "2ShrtP@ss"} """)
Wrong value: length of the "2ShrtP@ss" must be at least 10 characters (9).
julia> Serde.deser_json(User, """ {"name": "Julia", "pass": "Bad/Password#"} """)
Wrong value: "Bad/Password#" must match to regex pattern ^[\w@]+$.
julia> Serde.to_json(User("Julia", "MyBestP@ssw0rdEv3r"))
"{\"name\":\"Julia\",\"pass\":\"MyBestP@ssw0rdEv3r\"}"
```
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | docs | 624 | # BoundNumber
```@docs
BoundNumber
```
## NumberCustomBound
```@docs
NumberCustomBound
```
## NumberPositive
```@docs
NumberPositive
```
## NumberNegative
```@docs
NumberNegative
```
## NumberNonPositive
```@docs
NumberNonPositive
```
## NumberNonNegative
```@docs
NumberNonNegative
```
## NumberGreater
```@docs
NumberGreater
```
## NumberGreaterOrEqual
```@docs
NumberGreaterOrEqual
```
## NumberLess
```@docs
NumberLess
```
## NumberLessOrEqual
```@docs
NumberLessOrEqual
```
## NumberOdd
```@docs
NumberOdd
```
## NumberEven
```@docs
NumberEven
```
## NumberInterval
```@docs
NumberInterval
```
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | docs | 407 | # BoundString
```@docs
BoundString
```
## StringCustomBound
```@docs
StringCustomBound
```
## StringLowerCase
```@docs
StringLowerCase
```
## StringUpperCase
```@docs
StringUpperCase
```
## StringMinLength
```@docs
StringMinLength
```
## StringMaxLength
```@docs
StringMaxLength
```
## StringFixedLength
```@docs
StringFixedLength
```
## StringPattern
```@docs
StringPattern
@pattern_str
```
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | docs | 517 | # BoundTime
```@docs
BoundTime
```
## TimeCustomBound
```@docs
TimeCustomBound
```
## TimeAfter
```@docs
TimeAfter
```
## TimeAfterNow
```@docs
TimeAfterNow
```
## TimeAfterOrEqual
```@docs
TimeAfterOrEqual
```
## TimePeriodAfterNow
```@docs
TimePeriodAfterNow
```
## TimeBefore
```@docs
TimeBefore
```
## TimeBeforeNow
```@docs
TimeBeforeNow
```
## TimeBeforeOrEqual
```@docs
TimeBeforeOrEqual
```
## TimePeriodBeforeNow
```@docs
TimePeriodBeforeNow
```
## TimeInterval
```@docs
TimeInterval
``` | BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | docs | 2176 | # For Developers
## Define custom bound type
A user can define his own boundary types:
```julia
struct SomeBound{T<:ElType} <: SomeExistingBoundType{T}
value::T
function SomeBound{T}(x::AbstractString) where {T<:AbstractString}
!condition_1(x) && throw(ConstraintError{SomeBound}("Error message 1"))
!condition_2(x) && throw(ConstraintError{SomeBound}("Error message 2"))
# other conditions ...
return new{T}(x)
end
end
```
Here are some guidelines for defining your own bound types:
- Names of new boundary types should characterize them (for example `NumberPositive`, `StringUpperCase` or `TimeInterval`).
- The element type and supertype must correspond to the same data class:
- `ELTYPE` must be a `Number`, `AbstractString` or `TimeType`.
- Respectively `BOUNDTYPE` might be a [`BoundNumber`](@ref), [`BoundString`](@ref) or [`BoundTime`](@ref).
- Next, inside the constructor you need to perform a bounds check:
- Formulate simple and easy to understand checks, i.e. if you want to allow numbers that are greater than 0, then you would have an expression like this `x <= 0 && throw(...)`.
- If any of the conditions are violated then error [`ConstraintError`](@ref) should be thrown.
### Example
```julia
using BoundTypes
struct StringValidAddress{T<:AbstractString} <: BoundString{T}
value::T
function StringValidAddress{T}(x::AbstractString) where {T<:AbstractString}
length(x) != 40 && throw(
ConstraintError{StringFixedLength}(
"length of the \"$x\" must be equal to 40 characters ($(length(x))).",
),
)
isnothing(match(r"^0x([abcdef0-9])+$", x)) && throw(
ConstraintError{StringPattern}(
"\"$x\" must match to regex pattern /^0x([abcdef0-9])+\$./",
),
)
return new{T}(x)
end
end
```
```@julia-repl
julia> StringValidAddress{String}("0xf343a817e5f5243190d3c52bf347daf876de1d")
"0xf343a817e5f5243190d3c52bf347daf876de1d"
julia> StringValidAddress{String}("0x14__1ylad2g_-as2@>>")
Wrong value: "0x14__1ylad2g_-as2@>>" must match to regex pattern /^0x([abcdef0-9])+$/.
```
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 1.0.3 | 4313f4d37ec6b34bb53214759f8a0df02458b6e9 | docs | 107 | # Utils
## Getter functions
```@docs
bound_type
bound_value
```
## Errors
```@docs
ConstraintError
```
| BoundTypes | https://github.com/bhftbootcamp/BoundTypes.jl.git |
|
[
"MIT"
] | 0.1.1 | cdded46ce7b0a2716f0cd4b37933b968fb8b58fd | code | 194 | module ESAInterpolationFiles
using Mmap
using PreallocationTools
include("utils.jl")
include("header.jl")
include("block.jl")
include("interp.jl")
include("file.jl")
include("compute.jl")
end | ESAInterpolationFiles | https://github.com/andreapasquale94/ESAInterpolationFiles.jl.git |
|
[
"MIT"
] | 0.1.1 | cdded46ce7b0a2716f0cd4b37933b968fb8b58fd | code | 874 | struct IPFBlockInfo
start_key::Float64
end_key::Float64
offset::Int
n_records::Int
header::Vector{Int32}
end
function Base.show(io::IO, b::IPFBlockInfo)
print(io, "IPFBlockInfo(")
print(io, "header=$(Int.(b.header)), "),
print(io, "$(b.start_key), ")
print(io, "$(b.end_key), ")
print(io, "$(b.offset), ")
print(io, "$(b.n_records)")
print(io, ")")
end
@inbounds function IPFBlockInfo(array, offset, block_header_size, bend)
block_start_key = get_float(array, offset, bend)
block_end_key = get_float(array, offset+8, bend)
block_offset = get_int64(array, offset+16, bend)
n_records = get_int64(array, offset+24, bend)
@views header = reinterpret(UInt32, array[block_offset+1 : block_offset+block_header_size*4])
return IPFBlockInfo(block_start_key, block_end_key, block_offset, n_records, header)
end | ESAInterpolationFiles | https://github.com/andreapasquale94/ESAInterpolationFiles.jl.git |
|
[
"MIT"
] | 0.1.1 | cdded46ce7b0a2716f0cd4b37933b968fb8b58fd | code | 1967 | export compute, compute_derivative
"""
compute(file::IPF, key::Number)
Compute Interpolation File value at the given `key` value.
"""
function compute(file::IPF, key::Number)
return compute(file, get_block(file, key), key)
end
"""
compute_derivative(file::IPF, key::Number)
Compute Interpolation File derivative value at the given `key` value.
!!! warning
To use this function the `IPF` file shall contains derivatives.
"""
function compute_derivative(file::IPF, key::Number)
return compute_derivative(file, get_block(file, key), key)
end
function _update_cache!(file::IPF, block::IPFBlockInfo, key::Number)
header = file.header
cache = file.cache
# Get maximum order
order = header.user_header[2]
n_records = block.n_records
# Find record
rid = find_record(file, block, key)
if n_records ≤ order+1
left, right = 1, n_records
else
# Find left and right records
left = max(1, rid - (order÷2))
right = min(n_records, rid + (order+1)÷2 + 1)
end
# Number of points/interpolation order
points = right - left
order = points - 1
get_records!(
cache.y, file, block, left, points,
header.n_columns * (1 + header.n_derivatives) + 1
)
return header, cache, order
end
function compute(file::IPF, block::IPFBlockInfo, key::Number)
header, cache, order = _update_cache!(file, block, key)
if header.n_derivatives > 0
return hermite(cache, order, header.n_columns, key)
else
return lagrange(cache, order, header.n_columns, key)
end
end
function compute_derivative(file::IPF, block::IPFBlockInfo, key::Number)
header, cache, order = _update_cache!(file, block, key)
if header.n_derivatives == 0
throw(
ErrorException("Cannot compute derivatives as they are not present!")
)
end
return lagrange(cache, order, header.n_columns, key, header.n_columns+1)
end | ESAInterpolationFiles | https://github.com/andreapasquale94/ESAInterpolationFiles.jl.git |
|
[
"MIT"
] | 0.1.1 | cdded46ce7b0a2716f0cd4b37933b968fb8b58fd | code | 6008 | export IPF, get_block, get_record, get_records
"""
IPF{C, V}
Struct to store ESA/ESOC Interpolation File data.
- `filepath::String`: The path to the IPF file.
- `header::IPFHeader`: The header information of the IPF file.
- `blocks::Vector{IPFBlockInfo}`: Information about the blocks within the IPF file.
- `first_key::V`: The first key value stored in the IPF file.
- `last_key::V`: The last key value stored in the IPF file.
- `array::Vector{UInt8}`: An array containing the binary data of the IPF file.
- `cache::InterpCache{C, V}`: Cache for interpolation data.
Here the parameters are the cache-type `C` and the value type `V`.
## Constructors
- `IPF{C, V}(filepath::String)`: Constructs an `IPF` object from the specified file path,
with the option to specify the types for cache (`C`) and values (`V`).
- `IPF(filepath::String)`: Constructs an `IPF` object with default types
`Float64` for both cache and values.
"""
struct IPF{cType, vType}
filepath::String
header::IPFHeader
blocks::Vector{IPFBlockInfo}
first_key::vType
last_key::vType
array::Vector{UInt8}
cache::InterpCache{cType, vType}
end
function IPF{cType, vType}(filepath::String) where {cType, vType}
array = Mmap.mmap(filepath)
# Construct header
header = IPFHeader(array)
# Read first and last key
first_key = get_float(array, 52, header.bigend)
last_key = get_float(array, 60, header.bigend)
# Build blocks info
blocks = blocks_info(array, header.tail_offset, header)
cache = InterpCache{cType, vType}(
header.user_header[2]+1,
header.n_columns*(1 + header.n_derivatives) + 1,
header.n_derivatives > 0 ? 2 : 1
)
# Create Ipf file
return IPF{cType, vType}(filepath, header, blocks, first_key, last_key, array, cache)
end
function IPF(filepath::String)
return IPF{Float64, Float64}(filepath)
end
function blocks_info(array::Vector{UInt8}, offset, header)
# Construct all the ipfblockinfo structures found in the file
blocks = Vector{IPFBlockInfo}(undef, header.n_blocks)
step = 2*8 + 2*8
for i in eachindex(blocks)
blocks[i] = IPFBlockInfo(array, offset, header.block_header_size, header.bigend)
offset += step
end
return blocks
end
function Base.show(io::IO, f::IPF)
print(io, "IPF(")
print(io, "file='$(f.filepath)', ")
print(io, "n_blocks=$(f.header.n_blocks), ")
print(io, "first_key=$(f.first_key), ")
print(io, "last_key=$(f.last_key)")
print(io, ")")
end
function find_block(file::IPF, key::Number)
# binary search to find the block that contains the key inside
lo = 1
hi = length(file.blocks)
while lo ≤ hi
mid = lo + (hi - lo) ÷ 2
block = file.blocks[mid]
if key ≥ block.start_key && key < block.end_key
return (key ≥ block.start_key && key < block.end_key) ? mid : @goto err
elseif key < block.start_key
hi = mid - 1
else
lo = mid + 1
end
end
@label err
throw(ErrorException("Cannot find any block that contains key = $(key)."))
end
function get_block(file::IPF, key::Number)
bid = find_block(file, key)
return file.blocks[bid]
end
function get_record!(cache::AbstractVector, file::IPF, bid::Integer, rid::Integer)
block = file.blocks[bid]
# Offset to record start
# this include the block offset, the block header size and the previous records size
offset = block.offset + file.header.block_header_size*4 + (rid-1)*file.header.record_size
# Dimension of the record (in Float64)
dim = file.header.record_size ÷ 8
@assert length(cache) ≥ dim "not enough space in the cache to get the required record"
for i in 1:dim
cache[i] = get_float(file.array, offset + (i-1)*8, file.header.bigend)
end
nothing
end
function get_record(file::IPF, bid::Integer, rid::Integer)
dim = file.header.record_size ÷ 8
cache = zeros(Float64, dim)
get_record!(cache, file, bid, rid)
return cache
end
function get_records!(
out, file::IPF, b::IPFBlockInfo, first::Int, count::Int,
maxdim::Int, initdim::Int = 1
)
# Find offset of the first element
offset = b.offset + file.header.block_header_size*4
offset += (first-1)*file.header.record_size
for i in 1:count
k = offset + (i-1)*file.header.record_size
for j in initdim:maxdim
out[i][j] = get_float(
file.array, k+(j-1)*8, file.header.bigend
)
end
end
nothing
end
function get_records!(out, file::IPF, bid::Int, first::Int, count::Int)
get_records!(out, file, file.blocks[bid], first, count)
nothing
end
function get_records(file::IPF, block::IPFBlockInfo)
records = Vector{Vector{Float64}}()
for i in 1:block.n_records
offset = block.offset + file.header.block_header_size*4 + (i-1)*file.header.record_size
push!(
records,
reinterpret(Float64, file.array[offset+1 : offset+file.header.record_size])
)
end
return records
end
function get_records(file::IPF, bid::Integer)
block = file.blocks[bid]
return get_records(file, block)
end
function find_record(file::IPF, block::IPFBlockInfo, key::Number)
# binary search to find the closest record
lo = 1
hi = block.n_records
while lo ≤ hi
mid = lo + (hi - lo) ÷ 2
offset = block.offset + file.header.block_header_size*4 + (mid-1)*file.header.record_size
val = get_float(file.array, offset, file.header.bigend)
if key < val
hi = mid - 1
else
lo = mid + 1
end
end
return lo-1
end
function find_record(file::IPF, bid::Integer, key::Number)
block = file.blocks[bid]
return find_record(file, block, key)
end
function get_block_maxsize(file::IPF)
maxs = 0
for b in file.blocks
b.n_records > maxs ? maxs = b.n_records : nothing
end
return maxs
end | ESAInterpolationFiles | https://github.com/andreapasquale94/ESAInterpolationFiles.jl.git |
|
[
"MIT"
] | 0.1.1 | cdded46ce7b0a2716f0cd4b37933b968fb8b58fd | code | 2704 |
struct IPFHeader
type::Int
version::Int
n_columns::Int
n_derivatives::Int
n_blocks::Int
user_header::Vector{Int32}
tail_offset::Int
block_header_size::Int
bigend::Bool
record_size::UInt
end
function Base.show(io::IO, h::IPFHeader)
print(io, "IPFHeader(")
print(io, "type=$(h.type), ")
print(io, "version=$(h.version), ")
print(io, "n_columns=$(h.n_columns), ")
print(io, "n_derivatives=$(h.n_derivatives), ")
print(io, "n_blocks=$(h.n_blocks), ")
print(io, "user_header=$(Int.(h.user_header)), ")
print(io, "tail_offset=$(h.tail_offset), ")
print(io, "block_header_size=$(h.block_header_size), ")
print(io, "bigend=$(h.bigend), ")
print(io, "record_size=$(h.record_size)")
print(io, ")")
end
@inbounds function IPFHeader(array::Vector{UInt8})
# Read the magic string (8 bytes)
@views magic = String(array[1:8])
if magic != "ESAFDIPF"
throw(
ErrorException("Corrupted file, magic number is wrong!")
)
end
# Read endianness indicator (4 bytes)
tmp = get_int32(array, 8, false)
bend = !(tmp == 1)
if tmp == (1 << 24)
bend = true
end
# Read version number (uint32, 4 bytes)
version = get_int32(array, 12, bend)
# Read key type (int32, 4 bytes)
key_type = get_int32(array, 16, bend)
# Read value type (int32, 4 bytes)
value_type = get_int32(array, 20, bend)
if key_type != 3 || value_type != 3
throw(
ErrorException("Type not handles. Only doubles are handled (i.e. type = 3).")
)
end
# byte size of keys and values
key_bsize = 8
value_bsize = 8
# Read other entries
n_cols = get_int32(array, 24, bend)
if n_cols == 0
error("The file has no columns and is invalid!")
end
n_der = get_int32(array, 28, bend)
file_type = get_int32(array, 32, bend)
n_blocks = get_int64(array, 36, bend)
tail_offset = get_int64(array, 44, bend)
if tail_offset > length(array)
throw(
ErrorException("Corrupted file: file tail offset is larger than file size!")
)
end
padding = 2*key_bsize # 2*sizeof(double)
off = 52 + padding
user_file_header_size = get_int32(array, off, bend)
user_block_header_size = get_int32(array, off+4, bend)
Δ = user_file_header_size * 4 - 1
@views user_header = reinterpret(Int32, array[77:77+Δ])
record_size = key_bsize + n_cols*(n_der+1)*value_bsize # this depends on key/value types
return IPFHeader(
file_type, version, n_cols, n_der, n_blocks, user_header, tail_offset,
user_block_header_size, bend, record_size
)
end | ESAInterpolationFiles | https://github.com/andreapasquale94/ESAInterpolationFiles.jl.git |
|
[
"MIT"
] | 0.1.1 | cdded46ce7b0a2716f0cd4b37933b968fb8b58fd | code | 1983 | struct InterpCache{cType, vType}
y::Vector{Vector{vType}}
# buffers
l::Vector{DiffCache{Vector{cType}, Vector{cType}}}
buff::DiffCache{Vector{cType}, Vector{cType}}
function InterpCache{cType, vType}(max_dim::Int, cols::Int, diff::Int) where {cType, vType}
v = [zeros(vType, cols+1) for _ in 1:max_dim]
l = [DiffCache(ones(cType, max_dim)) for _ in 1:diff]
buff = DiffCache(zeros(cType, cols))
return new{cType, vType}(v, l, buff)
end
end
@inbounds function lagrange(
cache::InterpCache{cType, vType}, order::Int, cols::Int, x::Number, offset::Int = 1
) where {cType, vType}
n = order+1
# get and reset caches
l = get_tmp(cache.l[1], x)
fill!(l, cType(1))
buff = get_tmp(cache.buff, x)
fill!(buff, cType(0))
# update basis
for j in 1:n, i in 1:n
if i ≠ j
l[j] *= (x - cache.y[i][1])/(cache.y[j][1] - cache.y[i][1])
end
end
# update buffer
for k in offset:offset+cols-1, j in 1:n
buff[k] += l[j] * cache.y[j][k+1]
end
return @views buff[offset:offset+cols-1]
end
@inbounds function hermite(
cache::InterpCache{cType, vType}, order::Int, cols::Int, x::Number, offset::Int = 1
) where {cType, vType}
n = order+1
# get and reset caches
l1 = get_tmp(cache.l[1], x)
fill!(l1, cType(1))
l2 = get_tmp(cache.l[2], x)
fill!(l2, cType(0))
buff = get_tmp(cache.buff, x)
fill!(buff, cType(0))
# update basis
for j in 1:n, i in 1:n
if i ≠ j
Δx = cache.y[j][1] - cache.y[i][1]
l1[j] *= (x - cache.y[i][1])/Δx
l2[j] += 1/Δx
end
end
# update buffer
for k in offset:offset+cols-1, j in 1:n
Δx = x - cache.y[j][1]
l² = l1[j] * l1[j]
ϕ = (1 - 2*Δx*l2[j]) * l²
ψ = Δx * l²
buff[k] += ϕ * cache.y[j][k+1] + ψ * cache.y[j][offset+cols+k]
end
return @views buff[offset:offset+cols-1]
end | ESAInterpolationFiles | https://github.com/andreapasquale94/ESAInterpolationFiles.jl.git |
|
[
"MIT"
] | 0.1.1 | cdded46ce7b0a2716f0cd4b37933b968fb8b58fd | code | 852 |
# Read from array the string at address with given length
function get_string(array, address::Integer, bytes::Integer)
# address is in 0-index notation!
@inbounds rstrip(String(@view(array[address+1:address+bytes])))
end
@inline get_num(x::Number, bend::Bool) = bend ? hton(x) : htol(x)
function get_int32(array, address::Integer, bend::Bool)
# address is in 0-index notation!
ptr = unsafe_load(Ptr{Int32}(pointer(array, address+1)))
get_num(ptr, bend)
end
function get_int64(array, address::Integer, bend::Bool)
# address is in 0-index notation!
ptr = unsafe_load(Ptr{Int64}(pointer(array, address+1)))
get_num(ptr, bend)
end
function get_float(array, address::Integer, bend::Bool)
# address is in 0-index notation!
ptr = unsafe_load(Ptr{Float64}(pointer(array, address+1)))
get_num(ptr, bend)
end
| ESAInterpolationFiles | https://github.com/andreapasquale94/ESAInterpolationFiles.jl.git |
|
[
"MIT"
] | 0.1.1 | cdded46ce7b0a2716f0cd4b37933b968fb8b58fd | docs | 1030 | # ESAInterpolationFiles.jl
_ESA Interpolation Files made easy._
ESAInterpolationFiles.jl is a Julia library that provides fast and allocation-free access to binary ESA/ESOC interpolation files or IPF. Completely written in Julia, it enables Automatic-Differentiation (AD) via [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) and [TaylorSeries.jl](https://github.com/JuliaDiff/TaylorSeries.jl) across all of its function calls.
## Usage
The `compute` and `compute_derivative` functions can be used to perform interpolation and compute derivatives from an IPF file.
### Example Usage:
```julia
using ESAInterpolationFiles: IPF, compute, compute_derivatives
# Load an IPF file
file = IPF("example.ipf")
# Compute interpolated value for a given key
value = compute(file, 10.5)
# Compute derivative for a given key
derivative = compute_derivative(file, 10.5)
```
## Support
If you found this package useful, please consider starring the repository.
## Disclaimer
This package is not affiliated with ESA/ESOC. | ESAInterpolationFiles | https://github.com/andreapasquale94/ESAInterpolationFiles.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 720 | using LibAwsChecksums
using Documenter
DocMeta.setdocmeta!(LibAwsChecksums, :DocTestSetup, :(using LibAwsChecksums); recursive=true)
makedocs(;
modules=[LibAwsChecksums],
repo="https://github.com/JuliaServices/LibAwsChecksums.jl/blob/{commit}{path}#{line}",
sitename="LibAwsChecksums.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://github.com/JuliaServices/LibAwsChecksums.jl",
assets=String[],
size_threshold=2_000_000, # 2 MB, we generate about 1 MB page
size_threshold_warn=2_000_000,
),
pages=["Home" => "index.md"],
)
deploydocs(; repo="github.com/JuliaServices/LibAwsChecksums.jl", devbranch="main")
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 3001 | using Clang.Generators
using Clang.JLLEnvs
using JLLPrefixes
import aws_c_common_jll, aws_checksums_jll
using LibAwsCommon
cd(@__DIR__)
# This is called if the docs generated from the extract_c_comment_style method did not generate any lines.
# We need to generate at least some docs so that cross-references work with Documenter.jl.
function get_docs(node, docs)
# The macro node types (except for MacroDefault) seem to not generate code, but they will still emit docs and then
# you end up with docs stacked on top of each other, which is a Julia LoadError.
if node.type isa Generators.AbstractMacroNodeType && !(node.type isa Generators.MacroDefault)
return String[]
end
# don't generate empty docs because it makes Documenter.jl mad
if isempty(docs)
return ["Documentation not found."]
end
return docs
end
function should_skip_target(target)
# aws_c_common_jll does not support i686 windows https://github.com/JuliaPackaging/Yggdrasil/blob/bbab3a916ae5543902b025a4a873cf9ee4a7de68/A/aws_c_common/build_tarballs.jl#L48-L49
return target == "i686-w64-mingw32"
end
const deps_jlls = [aws_c_common_jll]
const deps = [LibAwsCommon]
const deps_names = sort(collect(Iterators.flatten(names.(deps))))
# clang can emit code for forward declarations of structs defined in our dependencies. we need to skip those, otherwise
# we'll have duplicate struct definitions.
function skip_nodes_in_dependencies!(dag::ExprDAG)
replace!(get_nodes(dag)) do node
if insorted(node.id, deps_names)
return ExprNode(node.id, Generators.Skip(), node.cursor, Expr[], node.adj)
end
return node
end
end
# download toolchains in parallel
Threads.@threads for target in JLLEnvs.JLL_ENV_TRIPLES
if should_skip_target(target)
continue
end
get_default_args(target) # downloads the toolchain
end
for target in JLLEnvs.JLL_ENV_TRIPLES
if should_skip_target(target)
continue
end
options = load_options(joinpath(@__DIR__, "generator.toml"))
options["general"]["output_file_path"] = joinpath(@__DIR__, "..", "lib", "$target.jl")
options["general"]["callback_documentation"] = get_docs
args = get_default_args(target)
for dep in deps_jlls
inc = JLLEnvs.get_pkg_include_dir(dep, target)
push!(args, "-isystem$inc")
end
header_dirs = []
inc = JLLEnvs.get_pkg_include_dir(aws_checksums_jll, target)
push!(args, "-I$inc")
push!(header_dirs, inc)
headers = String[]
for header_dir in header_dirs
for (root, dirs, files) in walkdir(header_dir)
for file in files
if endswith(file, ".h")
push!(headers, joinpath(root, file))
end
end
end
end
unique!(headers)
ctx = create_context(headers, args, options)
build!(ctx, BUILDSTAGE_NO_PRINTING)
skip_nodes_in_dependencies!(ctx.dag)
build!(ctx, BUILDSTAGE_PRINTING_ONLY)
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 1258 | using CEnum
"""
aws_checksums_crc32(input, length, previousCrc32)
The entry point function to perform a CRC32 (Ethernet, gzip) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32(input, length, previousCrc32)
ccall((:aws_checksums_crc32, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
"""
aws_checksums_crc32c(input, length, previousCrc32)
The entry point function to perform a Castagnoli CRC32c (iSCSI) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32c(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32c(input, length, previousCrc32)
ccall((:aws_checksums_crc32c, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 1258 | using CEnum
"""
aws_checksums_crc32(input, length, previousCrc32)
The entry point function to perform a CRC32 (Ethernet, gzip) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32(input, length, previousCrc32)
ccall((:aws_checksums_crc32, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
"""
aws_checksums_crc32c(input, length, previousCrc32)
The entry point function to perform a Castagnoli CRC32c (iSCSI) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32c(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32c(input, length, previousCrc32)
ccall((:aws_checksums_crc32c, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 1258 | using CEnum
"""
aws_checksums_crc32(input, length, previousCrc32)
The entry point function to perform a CRC32 (Ethernet, gzip) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32(input, length, previousCrc32)
ccall((:aws_checksums_crc32, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
"""
aws_checksums_crc32c(input, length, previousCrc32)
The entry point function to perform a Castagnoli CRC32c (iSCSI) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32c(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32c(input, length, previousCrc32)
ccall((:aws_checksums_crc32c, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 1258 | using CEnum
"""
aws_checksums_crc32(input, length, previousCrc32)
The entry point function to perform a CRC32 (Ethernet, gzip) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32(input, length, previousCrc32)
ccall((:aws_checksums_crc32, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
"""
aws_checksums_crc32c(input, length, previousCrc32)
The entry point function to perform a Castagnoli CRC32c (iSCSI) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32c(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32c(input, length, previousCrc32)
ccall((:aws_checksums_crc32c, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 1258 | using CEnum
"""
aws_checksums_crc32(input, length, previousCrc32)
The entry point function to perform a CRC32 (Ethernet, gzip) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32(input, length, previousCrc32)
ccall((:aws_checksums_crc32, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
"""
aws_checksums_crc32c(input, length, previousCrc32)
The entry point function to perform a Castagnoli CRC32c (iSCSI) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32c(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32c(input, length, previousCrc32)
ccall((:aws_checksums_crc32c, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 1258 | using CEnum
"""
aws_checksums_crc32(input, length, previousCrc32)
The entry point function to perform a CRC32 (Ethernet, gzip) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32(input, length, previousCrc32)
ccall((:aws_checksums_crc32, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
"""
aws_checksums_crc32c(input, length, previousCrc32)
The entry point function to perform a Castagnoli CRC32c (iSCSI) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32c(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32c(input, length, previousCrc32)
ccall((:aws_checksums_crc32c, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 1258 | using CEnum
"""
aws_checksums_crc32(input, length, previousCrc32)
The entry point function to perform a CRC32 (Ethernet, gzip) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32(input, length, previousCrc32)
ccall((:aws_checksums_crc32, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
"""
aws_checksums_crc32c(input, length, previousCrc32)
The entry point function to perform a Castagnoli CRC32c (iSCSI) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32c(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32c(input, length, previousCrc32)
ccall((:aws_checksums_crc32c, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 1258 | using CEnum
"""
aws_checksums_crc32(input, length, previousCrc32)
The entry point function to perform a CRC32 (Ethernet, gzip) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32(input, length, previousCrc32)
ccall((:aws_checksums_crc32, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
"""
aws_checksums_crc32c(input, length, previousCrc32)
The entry point function to perform a Castagnoli CRC32c (iSCSI) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32c(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32c(input, length, previousCrc32)
ccall((:aws_checksums_crc32c, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 1258 | using CEnum
"""
aws_checksums_crc32(input, length, previousCrc32)
The entry point function to perform a CRC32 (Ethernet, gzip) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32(input, length, previousCrc32)
ccall((:aws_checksums_crc32, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
"""
aws_checksums_crc32c(input, length, previousCrc32)
The entry point function to perform a Castagnoli CRC32c (iSCSI) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32c(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32c(input, length, previousCrc32)
ccall((:aws_checksums_crc32c, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 1258 | using CEnum
"""
aws_checksums_crc32(input, length, previousCrc32)
The entry point function to perform a CRC32 (Ethernet, gzip) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32(input, length, previousCrc32)
ccall((:aws_checksums_crc32, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
"""
aws_checksums_crc32c(input, length, previousCrc32)
The entry point function to perform a Castagnoli CRC32c (iSCSI) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32c(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32c(input, length, previousCrc32)
ccall((:aws_checksums_crc32c, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 1258 | using CEnum
"""
aws_checksums_crc32(input, length, previousCrc32)
The entry point function to perform a CRC32 (Ethernet, gzip) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32(input, length, previousCrc32)
ccall((:aws_checksums_crc32, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
"""
aws_checksums_crc32c(input, length, previousCrc32)
The entry point function to perform a Castagnoli CRC32c (iSCSI) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32c(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32c(input, length, previousCrc32)
ccall((:aws_checksums_crc32c, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 1258 | using CEnum
"""
aws_checksums_crc32(input, length, previousCrc32)
The entry point function to perform a CRC32 (Ethernet, gzip) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32(input, length, previousCrc32)
ccall((:aws_checksums_crc32, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
"""
aws_checksums_crc32c(input, length, previousCrc32)
The entry point function to perform a Castagnoli CRC32c (iSCSI) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32c(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32c(input, length, previousCrc32)
ccall((:aws_checksums_crc32c, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 1258 | using CEnum
"""
aws_checksums_crc32(input, length, previousCrc32)
The entry point function to perform a CRC32 (Ethernet, gzip) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32(input, length, previousCrc32)
ccall((:aws_checksums_crc32, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
"""
aws_checksums_crc32c(input, length, previousCrc32)
The entry point function to perform a Castagnoli CRC32c (iSCSI) computation. Selects a suitable implementation based on hardware capabilities. Pass 0 in the previousCrc32 parameter as an initial value unless continuing to update a running crc in a subsequent call.
### Prototype
```c
uint32_t aws_checksums_crc32c(const uint8_t *input, int length, uint32_t previousCrc32);
```
"""
function aws_checksums_crc32c(input, length, previousCrc32)
ccall((:aws_checksums_crc32c, libaws_checksums), UInt32, (Ptr{UInt8}, Cint, UInt32), input, length, previousCrc32)
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 1933 | module LibAwsChecksums
using aws_checksums_jll
using LibAwsCommon
const IS_LIBC_MUSL = occursin("musl", Base.BUILD_TRIPLET)
if Sys.isapple() && Sys.ARCH === :aarch64
include("../lib/aarch64-apple-darwin20.jl")
elseif Sys.islinux() && Sys.ARCH === :aarch64 && !IS_LIBC_MUSL
include("../lib/aarch64-linux-gnu.jl")
elseif Sys.islinux() && Sys.ARCH === :aarch64 && IS_LIBC_MUSL
include("../lib/aarch64-linux-musl.jl")
elseif Sys.islinux() && startswith(string(Sys.ARCH), "arm") && !IS_LIBC_MUSL
include("../lib/armv7l-linux-gnueabihf.jl")
elseif Sys.islinux() && startswith(string(Sys.ARCH), "arm") && IS_LIBC_MUSL
include("../lib/armv7l-linux-musleabihf.jl")
elseif Sys.islinux() && Sys.ARCH === :i686 && !IS_LIBC_MUSL
include("../lib/i686-linux-gnu.jl")
elseif Sys.islinux() && Sys.ARCH === :i686 && IS_LIBC_MUSL
include("../lib/i686-linux-musl.jl")
elseif Sys.iswindows() && Sys.ARCH === :i686
error("LibAwsCommon.jl does not support i686 windows https://github.com/JuliaPackaging/Yggdrasil/blob/bbab3a916ae5543902b025a4a873cf9ee4a7de68/A/aws_c_common/build_tarballs.jl#L48-L49")
elseif Sys.islinux() && Sys.ARCH === :powerpc64le
include("../lib/powerpc64le-linux-gnu.jl")
elseif Sys.isapple() && Sys.ARCH === :x86_64
include("../lib/x86_64-apple-darwin14.jl")
elseif Sys.islinux() && Sys.ARCH === :x86_64 && !IS_LIBC_MUSL
include("../lib/x86_64-linux-gnu.jl")
elseif Sys.islinux() && Sys.ARCH === :x86_64 && IS_LIBC_MUSL
include("../lib/x86_64-linux-musl.jl")
elseif Sys.isbsd() && !Sys.isapple()
include("../lib/x86_64-unknown-freebsd13.2.jl")
elseif Sys.iswindows() && Sys.ARCH === :x86_64
include("../lib/x86_64-w64-mingw32.jl")
else
error("Unknown platform: $(Base.BUILD_TRIPLET)")
end
# exports
for name in names(@__MODULE__; all=true)
if name == :eval || name == :include || contains(string(name), "#")
continue
end
@eval export $name
end
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | code | 609 | using Test, Aqua, LibAwsChecksums, LibAwsCommon, CRC32c
@testset "LibAwsChecksums" begin
@testset "aqua" begin
Aqua.test_all(LibAwsChecksums, ambiguities=false)
Aqua.test_ambiguities(LibAwsChecksums)
end
@testset "basic usage to test the library loads" begin
alloc = aws_default_allocator() # important! this shouldn't need to be qualified! if we generate a definition for it in LibAwsChecksums that is a bug.
input = rand(UInt8, 10)
actual = aws_checksums_crc32c(input, 10, 0)
expected = crc32c(input)
@test actual == expected
end
end
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | docs | 513 | [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaServices.github.io/LibAwsChecksums.jl/stable)
[![](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaServices.github.io/LibAwsChecksums.jl/dev)
[![CI](https://github.com/JuliaServices/LibAwsChecksums.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/JuliaServices/LibAwsChecksums.jl/actions/workflows/ci.yml)
# LibAwsChecksums.jl
Julia bindings for the [aws-checksums](https://github.com/awslabs/aws-checksums) library.
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 1.1.0 | b974d55cbe0aec030b1985cfb0d396aae5f56195 | docs | 216 | ```@meta
CurrentModule = LibAwsChecksums
```
# LibAwsChecksums
Documentation for [LibAwsChecksums](https://github.com/JuliaServices/LibAwsChecksums.jl).
```@index
```
```@autodocs
Modules = [LibAwsChecksums]
```
| LibAwsChecksums | https://github.com/JuliaServices/LibAwsChecksums.jl.git |
|
[
"MIT"
] | 0.1.0 | b3603370187989e1e57d512450f6e0016c838289 | code | 739 | using ArrayInitializers
using Documenter
DocMeta.setdocmeta!(ArrayInitializers, :DocTestSetup, :(using ArrayInitializers); recursive=true)
makedocs(;
modules=[ArrayInitializers],
authors="Mark Kittisopikul <kittisopikulm@janelia.hhmi.org> and contributors",
repo="https://github.com/mkitti/ArrayInitializers.jl/blob/{commit}{path}#{line}",
sitename="ArrayInitializers.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://mkitti.github.io/ArrayInitializers.jl",
edit_link="main",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/mkitti/ArrayInitializers.jl",
devbranch="main",
)
| ArrayInitializers | https://github.com/mkitti/ArrayInitializers.jl.git |
|
[
"MIT"
] | 0.1.0 | b3603370187989e1e57d512450f6e0016c838289 | code | 13556 | module ArrayInitializers
using Random
export init, undeftype, zeroinit, oneinit, randinit
const NArray{N} = Array{T,N} where T
const NAbstractArray{N} = AbstractArray{T,N} where T
abstract type AbstractArrayInitializer{T} end
"""
FillArrayInitializer{T}(value::T)
When passed to an `AbstractArray` constructor as the first argument,
the constructed array will be filled with value via `fill!`.
"""
struct FillArrayInitializer{T} <: AbstractArrayInitializer{T}
value::T
end
"""
init(value::T)
Create a `FillArrayInitializer{T}`. When passed to an `AbstractArray`
constructor as the first argument, the constructed array will be filled
with `value` via `fill!`.
Also the result can be called with an array argument. It will `fill!`
the array.
```julia
julia> const threes = init(3)
ArrayInitializers.FillArrayInitializer{Int64}(3)
julia> Array(threes, 5)
5-element Vector{Int64}:
3
3
3
3
3
julia> const fives! = init(5)
ArrayInitializers.FillArrayInitializer{Int64}(5)
julia> fives!(ones(3))
3-element Vector{Float64}:
5.0
5.0
5.0
```
"""
init(value::T) where T = FillArrayInitializer{T}(value)
@inline (fai::FillArrayInitializer)(array) = Base.fill!(array, fai.value)
@inline (fai::FillArrayInitializer{T})(dims::Dims{N}) where {T,N} = Base.fill!(Array{T,N}(undef, dims), fai.value)
@inline (fai::FillArrayInitializer{T})(dims::Vararg{<: Integer}) where {T} = Base.fill!(Array{T}(undef, dims), fai.value)
# Does not override Base.fill!, no type piracy
"""
ArrayInitializers.fill!(value)
Alias for [`ArrayInitializers.init`](@ref).
```julia
julia> import ArrayInitializers: fill!
julia> const fives = fill!(5)
ArrayInitializers.FillArrayInitializer{Int64}(5)
julia> Matrix(fives, 5, 9)
5×9 Matrix{Int64}:
5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5
```
"""
@inline fill!(value) = init(value)
@inline fill!(array, args...) = Base.fill!(array, args...)
"""
ZeroInitializer{T}
When passed as the first argument of an `AbstractArray` constructor,
fill the constructed array with zeros. This will also add a type to
an untyped array.
"""
struct ZeroInitializer{T} <: AbstractArrayInitializer{T} end
ZeroInitializer(::Type{T}) where T = ZeroInitializer{T}()
"""
zeroinit
zeroinit(::Type{T})
Singleton instance of `ZeroInitializer{Any}`. The instance can be
called with a type argument to create a typed zero initializer.
```julia
julia> Vector{Int}(zeroinit, 5)
5-element Vector{Int64}:
0
0
0
0
0
julia> Matrix(zeroinit(Rational), 4, 2)
4×2 Matrix{Rational}:
0//1 0//1
0//1 0//1
0//1 0//1
0//1 0//1
```
"""
const zeroinit = ZeroInitializer{Any}()
(::ZeroInitializer{Any})(::Type{T}) where T = ZeroInitializer{T}()
"""
OneInitializer{T}
When passed as the first argument of an `AbstractArray` constructor,
fill the constructed array with ones. This will also add a type to
an untyped array.
"""
struct OneInitializer{T} <: AbstractArrayInitializer{T} end
OneInitializer(::Type{T}) where T = OneInitializer{T}()
"""
oneinit
oneinit(::Type{T})
Singleton instance of `oneInitializer{Any}`. The instance can be
called with a type argument to create a typed one initializer.
```julia
julia> Matrix(oneinit(Rational), 3, 6)
3×6 Matrix{Rational}:
1//1 1//1 1//1 1//1 1//1 1//1
1//1 1//1 1//1 1//1 1//1 1//1
1//1 1//1 1//1 1//1 1//1 1//1
julia> Matrix{Number}(oneinit, 3, 6)
3×6 Matrix{Number}:
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
```
"""
const oneinit = OneInitializer{Any}()
(::OneInitializer{Any})(::Type{T}) where T = OneInitializer{T}()
"""
UndefTypeArrayInitializer{T}
When passed as the first argument of an `AbstractArray` constructor,
confer the type `T` if the `AbstractArray` is not typed. The array
is not initialized.
See [`undeftype`](@ref)
"""
struct UndefTypeArrayInitializer{T} <: AbstractArrayInitializer{T} end
"""
undeftype(::Type{T})
When passed as the first argument of an `AbstractArray` constructor,
confer the type `T` if the `AbstractArray` is not typed. The array
is not initialized.
```
julia> Matrix(undeftype(Float64), 3, 6)
3×6 Matrix{Float64}:
1.5e-323 2.0e-323 7.0e-323 2.5e-323 3.5e-323 3.0e-323
1.0e-323 1.5e-323 2.0e-323 2.0e-323 2.5e-323 2.5e-323
1.13396e-311 6.95272e-310 6.95272e-310 1.13394e-311 6.95272e-310 6.95272e-310
julia> Matrix(undeftype(Number), 3, 6)
3×6 Matrix{Number}:
#undef #undef #undef #undef #undef #undef
#undef #undef #undef #undef #undef #undef
#undef #undef #undef #undef #undef #undef
```
"""
undeftype(::Type{T}) where T = UndefTypeArrayInitializer{T}()
# Array(init(2), (3,))
@inline (::Type{A})(fai::FillArrayInitializer{T}, dims::Dims{N}) where {T, N, A <: AbstractArray} = Base.fill!(A{T,N}(undef, dims...), fai.value)
# Array(init(2), 1, 2)
@inline (::Type{A})(fai::FillArrayInitializer{T}, dims...) where {T, A <: AbstractArray} = Base.fill!(A{T,length(dims)}(undef, dims...), fai.value)
# e.g. Array{Float64}(fai, 1, 2)
@inline (::Type{A})(fai::FillArrayInitializer{T}, dims...) where {T, T2, A <: AbstractArray{T2}} = Base.fill!(A{length(dims)}(undef, dims...), fai.value)
# e.g. Vector(fai, 1)
@inline (::Type{A})(fai::FillArrayInitializer{T}, dims...) where {T, N, A <: NAbstractArray{N}} = Base.fill!(A{T}(undef, dims...), fai.value)
# e.g. Vector{T}(fai::FillArrayInitializer{T}, 1)
@inline (::Type{A})(fai::FillArrayInitializer, dims...) where {T, N, A <: AbstractArray{T,N}} = Base.fill!(A(undef, dims...), fai.value)
@inline (::Type{A})(oi::ZeroInitializer{T}, dims::Dims{N}) where {T, N, A <: AbstractArray} = Base.fill!(A{T,N}(undef, dims...), zero(T))
@inline (::Type{A})(oi::ZeroInitializer{T}, dims...) where {T, A <: AbstractArray} = Base.fill!(A{T,length(dims)}(undef, dims...), zero(T))
@inline (::Type{A})(oi::ZeroInitializer{T}, dims...) where {T, N, A <: NAbstractArray{N}} = Base.fill!(A{T}(undef, dims...), zero(T))
@inline (::Type{A})(oi::ZeroInitializer, dims...) where {T, A <: AbstractArray{T}} = Base.fill!(A{length(dims)}(undef, dims...), zero(T))
@inline (::Type{A})(oi::ZeroInitializer, dims...) where {T, N, A <: AbstractArray{T,N}} = Base.fill!(A(undef, dims...), zero(T))
@inline (::Type{A})(oi::OneInitializer{T}, dims::Dims{N}) where {T, N, A <: AbstractArray} = Base.fill!(A{T,N}(undef, dims...), oneunit(T))
@inline (::Type{A})(oi::OneInitializer{T}, dims...) where {T, A <: AbstractArray} = Base.fill!(A{T,length(dims)}(undef, dims...), oneunit(T))
@inline (::Type{A})(oi::OneInitializer{T}, dims...) where {T, N, A <: NAbstractArray{N}} = Base.fill!(A{T}(undef, dims...), oneunit(T))
@inline (::Type{A})(oi::OneInitializer, dims...) where {T, A <: AbstractArray{T}} = Base.fill!(A{length(dims)}(undef, dims...), oneunit(T))
@inline (::Type{A})(oi::OneInitializer, dims...) where {T, N, A <: AbstractArray{T,N}} = Base.fill!(A(undef, dims...), oneunit(T))
@inline (::Type{A})(::UndefTypeArrayInitializer{T}, dims::Dims{N}) where {T, N, A <: AbstractArray} = A{T,N}(undef, dims...)
@inline (::Type{A})(::UndefTypeArrayInitializer{T}, dims...) where {T, A <: AbstractArray} = A{T,length(dims)}(undef, dims...)
@inline (::Type{A})(::UndefTypeArrayInitializer{T}, dims...) where {T, T2, A <: AbstractArray{T2}} = throw(ArgumentError("Tried to initialize $A with a $(UndefTypeArrayInitializer{T})"))
@inline (::Type{A})(::UndefTypeArrayInitializer{T}, dims...) where {T, N, A <: NAbstractArray{N} where T2} = A{T}(undef, dims...)
abstract type AbstractRandomArrayInitializer{T} <: AbstractArrayInitializer{T} end
struct RandomTypeInitializer{T} <: AbstractArrayInitializer{T} end
"""
randinit
Initialize array with random values.
```julia
julia> Array{UInt8}(randinit, 5)
5-element Vector{UInt8}:
0x91
0xcb
0xf0
0xa5
0x9e
julia> Array(randinit(1:3), 5)
5-element Vector{Int64}:
3
3
2
2
3
julia> ri = randinit(MersenneTwister(1234), Int8)
ArrayInitializers.RNGArrayInitializer{Int8, Type{Int8}, MersenneTwister}(Int8, MersenneTwister(1234))
julia> Matrix(ri, 2, 3)
2×3 Matrix{Int8}:
-20 75 126
-105 115 -42
```
"""
const randinit = RandomTypeInitializer{Any}()
(::RandomTypeInitializer{Any})(::Type{T}) where T = RandomTypeInitializer{T}()
@inline (::Type{A})(ri::RandomTypeInitializer{T}, dims::Dims{N}) where {T, N, A <: Array} = rand(T, dims...)
@inline (::Type{A})(ri::RandomTypeInitializer{T}, dims...) where {T, A <: Array} = rand(T, dims...)
@inline (::Type{A})(ri::RandomTypeInitializer{T}, dims...) where {T, N, A <: NArray{N}} = rand(T, dims...)
@inline (::Type{A})(ri::RandomTypeInitializer, dims...) where {T, A <: Array{T}} = rand(T, dims...)
@inline (::Type{A})(ri::RandomTypeInitializer, dims...) where {T, N, A <: Array{T,N}} = rand(T, dims...)
@inline (::Type{A})(ri::RandomTypeInitializer{T}, dims::Dims{N}) where {T, N, A <: AbstractArray} = rand!(A{T,N}(undef, dims))
@inline (::Type{A})(ri::RandomTypeInitializer{T}, dims...) where {T, A <: AbstractArray} = rand!(A{T,length(dims)}(undef, dims...))
@inline (::Type{A})(ri::RandomTypeInitializer{T}, dims...) where {T, N, A <: NAbstractArray{N}} = rand!(A{T}(undef, dims...))
@inline (::Type{A})(ri::RandomTypeInitializer, dims...) where {T, A <: AbstractArray{T}} = rand!(A{length(dims)}(undef, dims...))
@inline (::Type{A})(ri::RandomTypeInitializer, dims...) where {T, N, A <: AbstractArray{T,N}} = rand!(A(undef, dims...))
struct RandomCollectionInitializer{T,C} <: AbstractArrayInitializer{T}
S::C
end
(::RandomTypeInitializer{Any})(S::C) where C = RandomCollectionInitializer{eltype(C), C}(S)
@inline (::Type{A})(ri::RandomCollectionInitializer{T}, dims::Dims{N}) where {T, N, A <: Array} = Base.rand(ri.S, dims...)
@inline (::Type{A})(ri::RandomCollectionInitializer{T}, dims...) where {T, A <: Array} = Base.rand(ri.S, dims...)
@inline (::Type{A})(ri::RandomCollectionInitializer{T}, dims...) where {T, N, A <: NArray{N}} = Base.rand(ri.S, dims...)
@inline (::Type{A})(ri::RandomCollectionInitializer, dims...) where {T, A <: Array{T}} = Base.rand(ri.S, dims...)
@inline (::Type{A})(ri::RandomCollectionInitializer, dims...) where {T, N, A <: Array{T,N}} = Base.rand(ri.S, dims...)
@inline (::Type{A})(ri::RandomCollectionInitializer{T}, dims::Dims{N}) where {T, N, A <: AbstractArray} = Random.rand!(A{T,N}(undef, dims), ri.S)
@inline (::Type{A})(ri::RandomCollectionInitializer{T}, dims...) where {T, A <: AbstractArray} = Random.rand!(A{T,length(dims)}(undef, dims...), ri.S)
@inline (::Type{A})(ri::RandomCollectionInitializer{T}, dims...) where {T, N, A <: NAbstractArray{N}} = Random.rand!(A{T}(undef, dims...), ri.S)
@inline (::Type{A})(ri::RandomCollectionInitializer, dims...) where {T, A <: AbstractArray{T}} = Random.rand!(A{length(dims)}(undef, dims...), ri.S)
@inline (::Type{A})(ri::RandomCollectionInitializer, dims...) where {T, N, A <: AbstractArray{T,N}} = Random.rand!(A(undef, dims...), ri.S)
struct RNGArrayInitializer{T, C, RNG} <: AbstractArrayInitializer{T}
S::C
rng::RNG
end
(::RandomTypeInitializer{Any})(rng::RNG, S::C) where {RNG, C} = RNGArrayInitializer{eltype(C), C, RNG}(S, rng)
(::RandomTypeInitializer{Any})(rng::RNG, T::Type{TY}) where {RNG, TY} = RNGArrayInitializer{T, Type{TY}, RNG}(T, rng)
@inline (::Type{A})(ri::RNGArrayInitializer{T}, dims::Dims{N}) where {T, N, A <: Array} = Base.rand(ri.rng, ri.S, dims...)
@inline (::Type{A})(ri::RNGArrayInitializer{T}, dims...) where {T, A <: Array} = Base.rand(ri.rng, ri.S, dims...)
@inline (::Type{A})(ri::RNGArrayInitializer{T}, dims...) where {T, N, A <: NArray{N}} = Base.rand(ri.rng, ri.S, dims...)
@inline (::Type{A})(ri::RNGArrayInitializer, dims...) where {T, A <: Array{T}} = Base.rand(ri.rng, ri.S, dims...)
@inline (::Type{A})(ri::RNGArrayInitializer, dims...) where {T, N, A <: Array{T,N}} = Base.rand(ri.rng, ri.S, dims...)
@inline (::Type{A})(ri::RNGArrayInitializer{T}, dims::Dims{N}) where {T, N, A <: AbstractArray} = Random.rand!(ri.rng, A{T,N}(undef, dims), ri.S)
@inline (::Type{A})(ri::RNGArrayInitializer{T}, dims...) where {T, A <: AbstractArray} = Random.rand!(ri.rng, A{T,length(dims)}(undef, dims...), ri.S)
@inline (::Type{A})(ri::RNGArrayInitializer{T}, dims...) where {T, N, A <: NAbstractArray{N}} = Random.rand!(ri.rng, A{T}(undef, dims...), ri.S)
@inline (::Type{A})(ri::RNGArrayInitializer, dims...) where {T, A <: AbstractArray{T}} = Random.rand!(ri.rng, A{length(dims)}(undef, dims...), ri.S)
@inline (::Type{A})(ri::RNGArrayInitializer, dims...) where {T, N, A <: AbstractArray{T,N}} = Random.rand!(ri.rng, A(undef, dims...), ri.S)
"""
SizedArrayInitializer(initializer, dims)
`Array` initializer with dimensions. Construct using `Base.reshape`
```julia
julia> twos = init(2)
ArrayInitializers.FillArrayInitializer{Int64}(2)
julia> twos_3x5 = reshape(twos, 3, 5)
ArrayInitializers.SizedArrayInitializer{Int64, ArrayInitializers.FillArrayInitializer{Int64}, Tuple{Int64, Int64}}(ArrayInitializers.FillArrayInitializer{Int64}(2), (3, 5))
julia> Array(twos_3x5)
3×5 Matrix{Int64}:
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
```
"""
struct SizedArrayInitializer{T, I <: AbstractArrayInitializer{T}, D} <: AbstractArrayInitializer{T}
initializer::I
dims::D
end
Base.reshape(aai::AbstractArrayInitializer{T}, dims) where T = SizedArrayInitializer(aai, dims)
Base.reshape(aai::AbstractArrayInitializer{T}, dims...) where T = SizedArrayInitializer(aai, dims)
@inline (::Type{A})(si::SizedArrayInitializer) where {A <: AbstractArray} = A(si.initializer, si.dims...)
end
| ArrayInitializers | https://github.com/mkitti/ArrayInitializers.jl.git |
|
[
"MIT"
] | 0.1.0 | b3603370187989e1e57d512450f6e0016c838289 | code | 4799 | using ArrayInitializers
using ArrayInitializers: fill!
using OffsetArrays
using Random
using Test
@testset "ArrayInitializers.jl" begin
# FillArrayInitializer
fives = init(5)
@test Array(fives, 3) == Base.fill!(Vector{Int}(undef, 3), 5)
@test Array(fives, 3) |> typeof == Vector{Int}
@test Array{Float64}(fives, 3) == Base.fill!(Vector{Float64}(undef, 3), 5.0)
@test typeof(Array{Float64}(fives, 3)) == Vector{Float64}
@test Array{Any}(fives, 3) == Base.fill!(Vector{Float64}(undef, 3), 5.0)
@test typeof(Array{Any}(fives, 3)) == Vector{Any}
@test Vector(fives, 9) == Base.fill!(Vector{Int}(undef, 9), 5)
@test typeof(Vector(fives, 9)) == Vector{Int}
@test Matrix(fives, 3, 6) == Base.fill!(Matrix{Int}(undef, 3, 6), 5)
@test typeof(Matrix(fives, 3, 6)) == Matrix{Int}
@test fives(3, 6, 9) == Base.fill!(Array{Int}(undef, 3, 6, 9), 5)
@test typeof(fives(3, 6, 9)) == Array{Int, 3}
@test OffsetArray(fives, 5:9, 2:3) == Base.fill!(OffsetArray{Int}(undef, 5:9, 2:3), 5)
@test OffsetArray(fives, 5:9, 2:3) |> typeof == OffsetMatrix{Int, Matrix{Int}}
@test OffsetMatrix(fives, 5:9, 2:3) == Base.fill!(OffsetArray{Int}(undef, 5:9, 2:3), 5)
@test OffsetMatrix(fives, 5:9, 2:3) |> typeof == OffsetMatrix{Int, Matrix{Int}}
@test OffsetMatrix{Float64}(fives, 5:9, 2:3) == Base.fill!(OffsetArray{Float64}(undef, 5:9, 2:3), 5)
@test OffsetVector(fives, 5:9) |> typeof == OffsetVector{Int, Vector{Int}}
# fill! alias
@test Array(fill!(3), 5) == Base.fill!(Vector{Int}(undef, 5), 3)
@test Array(fill!(3.5), 5) == Base.fill!(Vector{Float64}(undef, 5), 3.5)
# ZeroInitializer
@test Array{Int}(zeroinit, 5) == zeros(Int, 5)
@test Array(zeroinit(Int), 5) == zeros(Int, 5)
@test Matrix(zeroinit(Int), 5, 3) == zeros(Int, 5, 3)
@test Matrix{Float64}(zeroinit(Int), 5, 3) == zeros(Float64, 5, 3)
@test Matrix{Float64}(zeroinit(Int), 5, 3) |> typeof == Matrix{Float64}
@test Array{Float64}(zeroinit(Int), 3, 2, 1) == zeros(Float64, 3, 2, 1)
@test Array{Float64}(zeroinit(Int), 3, 2, 1) |> typeof == Array{Float64, 3}
@test OffsetVector{Rational}(zeroinit, 2:5) == Base.fill!(OffsetVector{Rational}(undef, 2:5), 0)
@test OffsetVector{Rational}(zeroinit, 2:5) |> typeof == OffsetVector{Rational, Vector{Rational}}
# OneInitializer
@test Array{Int}(oneinit, 5) == ones(Int, 5)
@test Array(oneinit(Int), 5) == ones(Int, 5)
@test Matrix(oneinit(Int), 5, 3) == ones(Int, 5, 3)
@test Matrix{Float64}(oneinit(Int), 5, 3) == ones(Float64, 5, 3)
@test Matrix{Float64}(oneinit(Int), 5, 3) |> typeof == Matrix{Float64}
@test Array{Float64}(oneinit(Int), 3, 2, 1) == ones(Float64, 3, 2, 1)
@test Array{Float64}(oneinit(Int), 3, 2, 1) |> typeof == Array{Float64, 3}
@test OffsetVector{Number}(oneinit, 2:5) == Base.fill!(OffsetVector{Number}(undef, 2:5), 1)
@test OffsetVector{Number}(oneinit, 2:5) |> typeof == OffsetVector{Number, Vector{Number}}
# UndefTypeArrayInitializer
A = Array(undeftype(Int), 5)
@test typeof(A) == Vector{Int}
@test size(A) == (5,)
B = Vector(undeftype(Float64), 9)
@test typeof(B) == Vector{Float64}
@test size(B) == (9,)
C = Matrix(undeftype(Float64), 9, 6)
@test typeof(C) == Matrix{Float64}
@test size(C) == (9,6)
@test_throws ArgumentError Array{Int}(undeftype(Float64), 3, 6)
@test_throws MethodError Matrix{Int}(undeftype(Float64), 3, 6)
D = OffsetMatrix(undeftype(Int), 1:3, 2:5)
@test size(D) == (3,4)
@test typeof(D) == OffsetMatrix{Int, Matrix{Int}}
# RandomTypeInitializer
E = Array{Int}(randinit, 3, 5)
@test size(E) == (3,5)
@test typeof(E) == Matrix{Int}
F = Array(randinit(Float64), 7, 9)
@test size(F) == (7,9)
@test typeof(F) == Matrix{Float64}
# RandomCollectionInitializer
G = Array(randinit(1:10), 8, 2)
@test size(G) == (8,2)
@test typeof(G) == Matrix{Int}
# SizedArrayInitializer
szinit = reshape(fives, 3, 8)
H = Array(szinit)
@test size(H) == (3,8)
@test typeof(H) == Matrix{Int}
@test all(==(5), H)
I = OffsetArray(szinit)
@test size(I) == (3,8)
@test typeof(I) == OffsetMatrix{Int, Matrix{Int}}
@test all(==(5), I)
offset_sz_init = reshape(randinit(1:10), 2:5, 8:9)
J = OffsetArray(offset_sz_init)
@test size(J) == (4, 2)
@test typeof(I) == OffsetMatrix{Int, Matrix{Int}}
@test all(in(1:10), J)
# RNGArrayInitializer
ri = randinit(MersenneTwister(1234), 3:5)
K = Array(ri, 2, 3)
@test size(K) == (2,3)
@test typeof(K) == Matrix{Int}
@test all(in(3:5), K)
ri = randinit(MersenneTwister(1234), Float64)
L = Array(ri, 2, 3)
@test size(L) == (2,3)
@test typeof(L) == Matrix{Float64}
end
| ArrayInitializers | https://github.com/mkitti/ArrayInitializers.jl.git |
|
[
"MIT"
] | 0.1.0 | b3603370187989e1e57d512450f6e0016c838289 | docs | 1423 | # ArrayInitializers.jl
[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://mkitti.github.io/ArrayInitializers.jl/stable/)
[![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://mkitti.github.io/ArrayInitializers.jl/dev/)
[![Build Status](https://github.com/mkitti/ArrayInitializers.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/mkitti/ArrayInitializers.jl/actions/workflows/CI.yml?query=branch%3Amain)
Create array initializers and allocate arrays without curly braces in Julia.
The initializer instances can be passed as the first argument of an `AbstractArray` constructor to initialize the array.
If the initializer is typed, the element type of the `AbstractArray` constructor is optional.
Compatible with `OffsetArrays` and other subtypes of Julia arrays that implement `Base.fill!`.
```julia
julia> using ArrayInitializers
julia> fives = init(5)
ArrayInitializers.FillArrayInitializer{Int64}(5)
julia> Array(fives, 3)
3-element Vector{Int64}:
5
5
5
julia> Vector(fives, 3)
3-element Vector{Any}:
5
5
5
julia> Array{Float64}(fives, 3)
3-element Vector{Float64}:
5.0
5.0
5.0
julia> Array(oneinit(Int), 5)
5-element Vector{Int64}:
1
1
1
1
1
julia> Array(zeroinit(Float64), 5)
5-element Vector{Float64}:
0.0
0.0
0.0
0.0
0.0
julia> Array(undeftype(Rational), 3, 2)
3×2 Matrix{Rational}:
#undef #undef
#undef #undef
#undef #undef
``` | ArrayInitializers | https://github.com/mkitti/ArrayInitializers.jl.git |
|
[
"MIT"
] | 0.1.0 | b3603370187989e1e57d512450f6e0016c838289 | docs | 219 | ```@meta
CurrentModule = ArrayInitializers
```
# ArrayInitializers
Documentation for [ArrayInitializers](https://github.com/mkitti/ArrayInitializers.jl).
```@index
```
```@autodocs
Modules = [ArrayInitializers]
```
| ArrayInitializers | https://github.com/mkitti/ArrayInitializers.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 243 | module AccurateArithmetic
include("EFT.jl")
using .EFT
export two_sum, two_prod
include("Summation.jl")
using .Summation
export sum_naive, sum_kbn, sum_oro, sum_mixed
export dot_naive, dot_oro, dot_mixed
include("Test.jl")
end # module
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 127 | module EFT
export two_sum, fast_two_sum, two_prod
using VectorizationBase: ifelse, AbstractSIMD
include("errorfree.jl")
end
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 4948 | module Summation
export sum_naive, sum_kbn, sum_oro, sum_mixed
export dot_naive, dot_oro, dot_mixed
import VectorizationBase
using VectorizationBase: Vec, vload, vsum, vzero, AbstractSIMD, MM
fptype(::Type{V}) where {W, T, V <: AbstractSIMD{W, T}} = T
@inline f64(x::Number) = convert(Float64, x)
using ..EFT: two_sum, fast_two_sum, two_prod
include("accumulators/sum.jl")
include("accumulators/dot.jl")
include("accumulators/compSum.jl")
include("accumulators/compDot.jl")
include("accumulators/mixedSum.jl")
include("accumulators/mixedDot.jl")
# T. Ogita, S. Rump and S. Oishi, "Accurate sum and dot product",
# SIAM Journal on Scientific Computing, 6(26), 2005.
# DOI: 10.1137/030601818
@generated function accumulate(x::NTuple{A, AbstractArray{T}},
accType::F,
rem_handling = Val(:scalar),
::Val{Ushift} = Val(2),
::Val{Prefetch} = Val(0),
) where {F, A, T <: Union{Float32,Float64}, Ushift, Prefetch}
@assert 0 ≤ Ushift < 6
U = 1 << Ushift
W, shift = VectorizationBase.pick_vector_width_shift(T)
WU = W * U
V = Vec{Int(W),T}
quote
$(Expr(:meta,:inline))
px = VectorizationBase.zstridedpointer.(x)
N = length(first(x))
Base.Cartesian.@nexprs $U u -> begin
acc_u = accType($V)
end
Nshift = N >> $(shift + Ushift)
offset = MM{$(Int(W))}(0)
for n in 1:Nshift
if $Prefetch > 0
# VectorizationBase.prefetch.(px.+offset.+$(Prefetch*WT), Val(3), Val(0))
VectorizationBase.prefetch0.(px, offset + $(Prefetch*W))
end
Base.Cartesian.@nexprs $U u -> begin
xi = vload.(px, tuple(tuple(offset))) # vload expects the index to be wrapped in a tuple, and broadcasting strips one layer
add!(acc_u, xi...)
offset += $W
end
end
rem = N & $(WU-1)
for n in 1:(rem >> $shift)
xi = vload.(px, tuple(tuple(offset)))
add!(acc_1, xi...)
offset += $W
end
if $rem_handling <: Val{:mask}
rem &= $(W-1)
if rem > 0
mask = VectorizationBase.mask($W, rem)
xi = vload.(px, tuple(tuple(offset)), mask)
add!(acc_1, xi...)
end
end
Base.Cartesian.@nexprs $(U-1) u -> begin
add!(acc_1, acc_{u+1})
end
acc = sum(acc_1)
if $rem_handling <: Val{:scalar}
_offset = VectorizationBase.data(offset)
while _offset < N
_offset += 1
Base.Cartesian.@nexprs $A a -> begin
@inbounds xi_a = getindex(x[a], _offset)
end
Base.Cartesian.@ncall $A add! acc xi
end
end
sum(acc)
end
end
# Default values for unrolling
@inline default_ushift(::SumAcc) = Val(3)
@inline default_ushift(::CompSumAcc) = Val(2)
@inline default_ushift(::MixedSumAcc) = Val(3)
@inline default_ushift(::DotAcc) = Val(3)
@inline default_ushift(::CompDotAcc) = Val(2)
@inline default_ushift(::MixedDotAcc) = Val(3)
# dispatch
# either default_ushift(x, acc)
# or default_ushift((x,), acc)
@inline default_ushift(x::AbstractArray, acc) = default_ushift(acc(eltype(x)))
@inline default_ushift(x::NTuple, acc) = default_ushift(first(x), acc)
# Default values for cache prefetching
@inline default_prefetch(::SumAcc) = Val(0)
@inline default_prefetch(::CompSumAcc) = Val(35)
@inline default_prefetch(::MixedSumAcc) = Val(0)
@inline default_prefetch(::DotAcc) = Val(0)
@inline default_prefetch(::CompDotAcc) = Val(20)
@inline default_prefetch(::MixedDotAcc) = Val(0)
# dispatch
# either default_prefetch(x, acc)
# or default_prefetch((x,), acc)
@inline default_prefetch(x::AbstractArray, acc) = default_prefetch(acc(eltype(x)))
@inline default_prefetch(x::NTuple, acc) = default_prefetch(first(x), acc)
@inline _sum(x, acc) = if length(x) < 500
# no cache prefetching for small vectors
accumulate((x,), acc, Val(:scalar), default_ushift(x, acc), Val(0))
else
accumulate((x,), acc, Val(:scalar), default_ushift(x, acc), default_prefetch(x, acc))
end
sum_naive(x) = _sum(x, sumAcc)
sum_kbn(x) = _sum(x, compSumAcc(fast_two_sum))
sum_oro(x) = _sum(x, compSumAcc(two_sum))
sum_mixed(x) = _sum(x, mixedSumAcc)
@inline _dot(x, y, acc) = if length(x) < 500
# no cache prefetching for small vectors
accumulate((x,y), acc, Val(:scalar), default_ushift(x, acc), Val(0))
else
accumulate((x,y), acc, Val(:scalar), default_ushift(x, acc), default_prefetch(x, acc))
end
dot_naive(x, y) = _dot(x, y, dotAcc)
dot_oro(x, y) = _dot(x, y, compDotAcc)
dot_mixed(x, y) = _dot(x, y, mixedDotAcc)
end
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 3140 | module Test
export generate_dot, generate_sum
using LinearAlgebra, Random
using ..EFT: two_prod
"""
(x, y, d, c) = generate_dot(n, c)
Generate two Float64 vectors whose dot product is ill-conditioned.
Inputs:
n -- vectors size
c -- target condition number (must be >1)
rng -- (pseudo-)random number generator
Results:
x, y -- vectors of size n
d -- accurate dot product, rounded to nearest
c -- actual condition number of the dot product
"""
function generate_dot(n, c::T; rng=Random.GLOBAL_RNG) where {T}
generate(c, 100, "dot product") do c1
generate_dot_(n, T(c1), rng)
end
end
"""
(x, s, c) = generate_sum(n, c)
Generate a Float64 vectors whose sum is ill-conditioned.
Inputs:
n -- vectors size
c -- target condition number (must be >1)
rng -- (pseudo-)random number generator
Results:
x -- vector of size n
s -- accurate sum, rounded to nearest
c -- actual condition number of the sum
"""
function generate_sum(n, c::T; rng=Random.GLOBAL_RNG) where {T}
generate(c, 10, "sum") do c1
generate_sum_(n, T(c1), rng)
end
end
function generate(f, c, cmin, title)
c1 = c
c = max(c, cmin)
for i in 1:100
res = f(c1)
c_ = last(res)
# println("$i -> $c1 \t $c_")
if c_ > 3*c
c1 = max(1.01, 0.8*c1)
elseif c_ < c/3
c1 *= 1.1
else
return res
end
end
@error "Could not generate $title with requested condition number"
end
function generate_dot_(n, c::T, rng) where {T}
R = Rational{BigInt}
# Initialization
x = zeros(T, n)
y = zeros(T, n)
# First half of the vectors:
# random numbers within a large exponent range
n2 = div(n, 2)
b = log2(c)
e = rand(rng, n2) .* b/2
e[1] = b/2 + 1 # Make sure exponents b/2
e[n2] = 0 # and 0 actually occur
for i in 1:n2
x[i] = (2*rand(rng, T)-1) * 2^(e[i])
y[i] = (2*rand(rng, T)-1) * 2^(e[i])
end
# Second half of the vectors such that
# (*) log2( dot (x[1:i], y[1:i]) ) decreases from b/2 to 0
δe = -b/(2*(n-n2-1))
e = b/2:δe:0
for i in eachindex(e)
# Random x[i]
cx = (2*rand(rng)-1) * 2^(e[i])
x[i+n2] = cx
# y[i] chosen according to (*)
cy = (2*rand(rng)-1) * 2^(e[i])
y[i+n2] = (cy - T(dot(R.(x), R.(y)))) / cx
end
# Random permutation of x and y
perm = randperm(rng, n)
X = x[perm]
Y = y[perm]
# Dot product, rounded to nearest
d = T(dot(R.(X), R.(Y)))
# Actual condition number
c_ = 2 * dot(abs.(X), abs.(Y)) / abs(d)
(X,Y,d,c_)
end
function generate_sum_(n, c::T, rng) where {T}
R = Rational{BigInt}
(x, y, _, _) = generate_dot_(n÷2, c, rng)
z = (two_prod.(x, y)
|> Iterators.flatten
|> collect)
# Complete if necessary
if length(z) < n
push!(z, rand(rng))
end
z = shuffle(z)
# Sum, rounded to nearest
s = T(sum(R.(z)))
# Actual condition number
c_ = sum(abs.(z)) / abs(s)
(z, s, c_)
end
end
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 1337 | @inline function two_inv(b::T) where {T}
hi = inv(b)
lo = fma(-hi, b, one(T))
lo /= b
return hi, lo
end
@inline function two_div(a::T, b::T) where {T}
hi = a / b
lo = fma(-hi, b, a)
lo /= b
return hi, lo
end
@inline function two_sqrt(a::T) where {T}
hi = sqrt(a)
lo = fma(-hi, hi, a)
lo /= 2
lo /= hi
return hi, lo
end
"""
ad_minus_bc(a, b, c, d)
Computes the determinant of a 2x2 matrix.
"""
function ad_minus_bc(a::T, b::T, c::T, d::T) where {T}
adhi, adlo = two_prod(a,d)
bchi, bclo = two_prod(b,c)
return four_sum(adhi, adlo, -bchi, -bclo)
end
#=
"Concerning the division, the elementary rounding error is
generally not a floating point number, so it cannot be computed
exactly. Hence we cannot expect to obtain an error
free transformation for the xdivision. ...
This means that the computed approximation is as good as
we can expect in the working precision."
-- http://perso.ens-lyon.fr/nicolas.louvet/LaLo05.pdf
While the sqrt algorithm is not strictly an errorfree transformation,
it is known to be reliable and is recommended for general use.
"Augmented precision square roots, 2-D norms and
discussion on correctly reounding xsqrt(x^2 + y^2)"
by Nicolas Brisebarre, Mioara Joldes, Erik Martin-Dorel,
Hean-Michel Muller, Peter Kornerup
=#
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 9665 | """
two_sum(a, b)
Computes `hi = fl(a+b)` and `lo = err(a+b)`, using the algorithm by D. E. Knuth,
"The Art of Computer Programming: Seminumerical Algorithms", 1969.
This algorithm does not use any branch. See also `fast_two_sum` for an
alternative algorithm which branches but does fewer arithmetic operations.
"""
@inline function two_sum(a::T, b::T) where {T}
@fastmath hi = a + b
v = hi - a
lo = (a - (hi - v)) + (b - v)
return hi, lo
end
"""
fast_two_sum(a, b)
Computes `hi = fl(a+b)` and `lo = err(a+b)`, using the algorithm by
T. J. Dekker, "A Floating-Point Technique for Extending the Available
Precision", 1971
Despite its name, this algorithm may not be as fast as expected on all hardware
architectures because it branches. See also `two_sum` for an alternative
algorithm which performs more arithmetic operations, but does not branch.
"""
@inline function fast_two_sum(a::T, b::T) where T <: Real
x = a + b
if abs(a) < abs(b)
(a_,b_) = (b,a)
else
(a_,b_) = (a,b)
end
z = x - a_
e = b_ - z
x, e
end
@inline function fast_two_sum(a::T, b::T) where T <: AbstractSIMD
x = a + b
t = abs(a) < abs(b)
a_ = ifelse(t, b, a)
b_ = ifelse(t, a, b)
z = x - a_
e = b_ - z
x, e
end
"""
three_sum(a, b, c)
Computes `hi = fl(a+b+c)` and `md = err(a+b+c), lo = err(md)`.
"""
function three_sum(a::T,b::T,c::T) where {T}
s, t = two_sum(b, c)
hi, u = two_sum(a, s)
md, lo = two_sum(u, t)
hi, md = two_hilo_sum(hi, md)
return hi, md, lo
end
"""
two_sum(a, b, c)
Computes `hi = fl(a+b+c)` and `lo = err(a+b+c)`.
"""
function two_sum(a::T,b::T,c::T) where {T}
s, t = two_sum(b, c)
hi, u = two_sum(a, s)
lo = u + t
hi, lo = two_hilo_sum(hi, lo)
return hi, lo
end
"""
four_sum(a, b, c, d)
Computes `s1 = fl(a+b+c+d)` and `s2 = err(a+b+c+d), s3 = err(himd), s4 = err(lomd)`.
- Unchecked Precondition: !(isinf(a) | isinf(b) | isinf(c) | isinf(d))
"""
function four_sum(a::T,b::T,c::T,d::T) where {T}
t0, t1 = two_sum(a, b)
t2, t3 = two_sum(c, d)
hi, t4 = two_sum(t0, t2)
t5, lo = two_sum(t1, t3)
hm, ml = two_sum(t4, t5)
ml, lo = two_hilo_sum(ml, lo)
hm, ml = two_hilo_sum(hm, ml)
hi, hm = two_hilo_sum(hi,hm)
return hi, hm, ml, lo
end
"""
three_sum(a, b, c, d)
Computes `hi = fl(a+b+c+d)` and `md = err(a+b+c+d), lo = err(md)`.
"""
function three_sum(a::T,b::T,c::T,d::T) where {T}
t0, t1 = two_sum(a , b)
t0, t2 = two_sum(t0, c)
hi, t3 = two_sum(t0, d)
t0, t1 = two_sum(t1, t2)
hm, t2 = two_sum(t0, t3) # here, t0 >= t3
ml = t1 + t2
return hi, hm, ml
end
"""
two_sum(a, b, c, d)
Computes `hi = fl(a+b+c+d)` and `lo = err(a+b+c+d)`.
"""
function two_sum(a::T,b::T,c::T,d::T) where {T}
t0, t1 = two_sum(a , b)
t0, t2 = two_sum(t0, c)
hi, t3 = two_sum(t0, d)
t0, t1 = two_sum(t1, t2)
lo = t0 + t3
return hi, lo
end
"""
five_sum(a, b, c, d, e)
Computes `s = fl(a+b+c+d+e)` and
`e1 = err(a+b+c+d), e2 = err(e1), e3 = err(e2), e4 = err(e3)`.
"""
function five_sum(v::T, w::T, x::T, y::T, z::T) where {T}
t0, t4 = two_sum(y, z)
t0, t3 = two_sum(x, t0)
t0, t2 = two_sum(w, t0)
a, t1 = two_sum(v, t0)
t0, t3 = two_sum(t3, t4)
t0, t2 = two_sum(t2, t0)
b, t1 = two_sum(t1, t0)
t0, t2 = two_sum(t2, t3)
c, t1 = two_sum(t1, t0)
d, e = two_sum(t1, t2)
return a, b, c, d, e
end
"""
two_diff(a, b)
Computes `s = fl(a-b)` and `e = err(a-b)`.
"""
@inline function two_diff(a::T, b::T) where {T}
hi = a - b
a1 = hi + b
b1 = hi - a1
lo = (a - a1) - (b + b1)
return hi, lo
end
"""
three_diff(a, b, c)
Computes `s = fl(a-b-c)` and `e1 = err(a-b-c), e2 = err(e1)`.
"""
function three_diff(a::T,b::T,c::T) where {T}
s, t = two_diff(-b, c)
x, u = two_sum(a, s)
y, z = two_sum(u, t)
x, y = two_hilo_sum(x, y)
return x, y, z
end
"""
four_diff(a, b, c, d)
Computes `hi = fl(a-b-c-d)` and `hm = err(a-b-c-d), ml = err(hm), lo = err(ml)`.
"""
function four_diff(a::T,b::T,c::T,d::T) where {T}
t0, t1 = two_diff(a , b)
t0, t2 = two_diff(t0, c)
hi, t3 = two_diff(t0, d)
t0, t1 = two_sum(t1, t2)
hm, t2 = two_sum(t0, t3) # here, t0 >= t3
ml, lo = two_sum(t1, t2)
return hi, hm, ml, lo
end
"""
two_square(a)
Computes `s = fl(a*a)` and `e = err(a*a)`.
"""
@inline function two_square(a::T) where {T}
p = a * a
e = fma(a, a, -p)
p, e
end
"""
two_prod(a, b)
Computes `s = fl(a*b)` and `e = err(a*b)`.
"""
@inline function two_prod(a::T, b::T) where {T}
p = a * b
e = fma(a, b, -p)
p, e
end
"""
three_prod(a, b, c)
Computes `hi = fl(a*b*c)` and `md = err(a*b*c), lo = err(md)`.
"""
function three_prod(a::T, b::T, c::T) where {T}
abhi, ablo = two_prod(a, b)
hi, abhiclo = two_prod(abhi, c)
ablochi, abloclo = two_prod(ablo, c)
md, lo, tmp = three_sum(ablochi, abhiclo, abloclo)
return hi, md, lo
end
#=
three_fma algorithm from
Sylvie Boldo and Jean-Michel Muller
Some Functions Computable with a Fused-mac
=#
"""
three_fma(a, b, c)
Computes `s = fl(fma(a,b,c))` and `e1 = err(fma(a,b,c)), e2 = err(e1)`.
"""
function three_fma(a::T, b::T, c::T) where {T}
x = fma(a, b, c)
y, z = two_prod(a, b)
t, z = two_sum(c, z)
t, u = two_sum(y, t)
y = ((t - x) + u)
y, z = two_hilo_sum(y, z)
return x, y, z
end
# with arguments sorted by magnitude
"""
two_hilo_sum(a, b)
*unchecked* requirement `|a| ≥ |b|`
Computes `hi = fl(a+b)` and `lo = err(a+b)`.
"""
@inline function two_hilo_sum(a::T, b::T) where {T}
hi = a + b
lo = b - (hi - a)
return hi, lo
end
"""
two_lohi_sum(a, b)
*unchecked* requirement `|b| ≥ |a|`
Computes `hi = fl(a+b)` and `lo = err(a+b)`.
"""
@inline function two_lohi_sum(a::T, b::T) where {T}
hi = b + a
lo = a - (hi - b)
return hi, lo
end
"""
two_hilo_diff(a, b)
*unchecked* requirement `|a| ≥ |b|`
Computes `hi = fl(a-b)` and `lo = err(a-b)`.
"""
@inline function two_hilo_diff(a::T, b::T) where {T}
hi = a - b
lo = (a - hi) - b
hi, lo
end
"""
two_lohi_diff(a, b)
*unchecked* requirement `|b| ≥ |a|`
Computes `hi = fl(a-b)` and `lo = err(a-b)`.
"""
@inline function two_lohi_diff(a::T, b::T) where {T}
hi = b - a
lo = (b - hi) - a
hi, lo
end
"""
three_hilo_sum(a, b, c)
*unchecked* requirement `|a| ≥ |b| ≥ |c|`
Computes `x = fl(a+b+c)` and `y = err(a+b+c), z = err(y)`.
"""
function three_hilo_sum(a::T,b::T,c::T) where {T}
s, t = two_hilo_sum(b, c)
x, u = two_hilo_sum(a, s)
y, z = two_hilo_sum(u, t)
x, y = two_hilo_sum(x, y)
return x, y, z
end
"""
three_lohi_sum(a, b, c)
*unchecked* requirement `|c| ≥ |b| ≥ |a|`
Computes `x = fl(a+b+c)` and `y = err(a+b+c), z = err(y)`.
"""
function three_lohi_sum(a::T,b::T,c::T) where {T}
s, t = two_hilo_sum(b, a)
x, u = two_hilo_sum(c, s)
y, z = two_hilo_sum(u, t)
x, y = two_hilo_sum(x, y)
return x, y, z
end
"""
three_hilo_diff(a, b, c)
*unchecked* requirement `|a| ≥ |b| ≥ |c|`
Computes `x = fl(a-b-c)` and `y = err(a-b-c), z = err(y)`.
"""
function three_hilo_diff(a::T,b::T,c::T) where {T}
s, t = two_hilo_diff(b, -c)
x, u = two_hilo_sum(a, s)
y, z = two_hilo_sum(u, t)
x, y = two_hilo_sum(x, y)
return x, y, z
end
"""
three_lohi_diff(a, b, c)
*unchecked* requirement `|c| ≥ |b| ≥ |a|`
Computes `x = fl(a-b-c)` and `y = err(a-b-c), z = err(y)`.
"""
function three_lohi_diff(c::T,b::T,a::T) where {T}
s, t = two_hilo_diff(b, -c)
x, u = two_hilo_sum(a, s)
y, z = two_hilo_sum(u, t)
x, y = two_hilo_sum(x, y)
return x, y, z
end
"""
four_hilo_sum(a, b, c, d)
*unchecked* requirement `|a| ≥ |b| ≥ |c| ≥ |d|`
Computes `hi = fl(a+b+c+d)` and `hm = err(a+b+c+d), ml = err(hm), lo = err(ml)`.
"""
function four_hilo_sum(a::T,b::T,c::T,d::T) where {T}
t0, t1 = two_hilo_sum(a , b)
t0, t2 = two_hilo_sum(t0, c)
hi, t3 = two_hilo_sum(t0, d)
t0, t1 = two_hilo_sum(t1, t2)
hm, t2 = two_hilo_sum(t0, t3) # here, t0 >= t3
ml, lo = two_hilo_sum(t1, t2)
return hi, hm, ml, lo
end
"""
four_lohi_sum(a, b, c, d)
*unchecked* requirement `|d| ≥ |c| ≥ |b| ≥ |a|`
Computes `hi = fl(a+b+c+d)` and `hm = err(a+b+c+d), ml = err(hm), lo = err(ml)`.
"""
function four_lohi_sum(d::T,c::T,b::T,a::T) where {T}
t0, t1 = two_hilo_sum(a , b)
t0, t2 = two_hilo_sum(t0, c)
hi, t3 = two_hilo_sum(t0, d)
t0, t1 = two_hilo_sum(t1, t2)
hm, t2 = two_hilo_sum(t0, t3)
ml, lo = two_hilo_sum(t1, t2)
return hi, hm, ml, lo
end
"""
four_hilo_diff(a, b, c, d)
*unchecked* requirement `|a| ≥ |b| ≥ |c| ≥ |d|`
Computes `hi = fl(a-b-c-d)` and `hm = err(a-b-c-d), ml = err(hm), lo = err(ml)`.
"""
function four_hilo_diff(a::T,b::T,c::T,d::T) where {T}
t0, t1 = two_hilo_diff(a, b)
t0, t2 = two_hilo_diff(t0, c)
hi, t3 = two_hilo_diff(t0, d)
t0, t1 = two_hilo_sum(t1, t2)
hm, t2 = two_hilo_sum(t0, t3) # here, t0 >= t3
ml, lo = two_hilo_sum(t1, t2)
return hi, hm, ml, lo
end
"""
four_hilo_diff(a, b, c, d)
*unchecked* requirement `|d| ≥ |c| ≥ |b| ≥ |a|`
Computes `hi = fl(a-b-c-d)` and `hm = err(a-b-c-d), ml = err(hm), lo = err(ml)`.
"""
function four_lohi_diff(d::T,c::T,b::T,a::T) where {T}
t0, t1 = two_hilo_diff(a, b)
t0, t2 = two_hilo_diff(t0, c)
hi, t3 = two_hilo_diff(t0, d)
t0, t1 = two_hilo_sum(t1, t2)
hm, t2 = two_hilo_sum(t0, t3) # here, t0 >= t3
ml, lo = two_hilo_sum(t1, t2)
return hi, hm, ml, lo
end
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 1316 | @inline function signbit(x::Tuple{T,T}) where T<:AbstractFloat
return signbit(x[1])
end
@inline function (-)(x::Tuple{T,T}) where T<:AbstractFloat
return -x[1], -x[2]
end
@inline function abs(x::Tuple{T,T}) where T<:AbstractFloat
return signbit(x[1]) ? -x : x
end
@inline function flipsign(x::Tuple{T,T}, y::Tuple{T,T}) where T<:AbstractFloat
return signbit(y[1]) ? -x : x
end
@inline function copysign(x::Tuple{T,T}, y::Tuple{T,T}) where T<:AbstractFloat
return signbit(y[1]) ? -abs(x) : abs(x)
end
function (+)(x::Tuple{T,T}, y::Tuple{T,T}) where T<:AbstractFloat
hi, lo = two_sum(x[1], y[1])
lohi, lolo = two_sum(x[2], y[2])
lohi += lo
hi, lo = fast_two_sum(hi, lohi)
lolo += lo
hi, lo = fast_two_sum(hi, lolo)
return hi, lo
end
function (-)(x::Tuple{T,T}, y::Tuple{T,T}) where T<:AbstractFloat
hi, lo = two_diff(x[1], y[1])
lohi, lolo = two_diff(x[2], y[2])
lohi += lo
hi, lo = fast_two_sum(hi, lohi)
lolo += lo
hi, lo = fast_two_sum(hi, lolo)
return hi, lo
end
function (*)(x::Tuple{T,T}, y::Tuple{T,T}) where T<:AbstractFloat
lo = two_prod(x[2], y[2])
hi = two_prod(x[1], y[2])
hilo = lo + hi
hi = two_prod(x[2], y[1])
hilo = hilo + hi
hi = two_prod(x[1], y[1])
hilo = hilo + hi
return hilo
end
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 729 | mutable struct CompDotAcc{T}
s :: T
e :: T
end
compDotAcc(T) = CompDotAcc{T}(vzero(T), vzero(T))
@inline function add!(acc::CompDotAcc{T}, x::T, y::T) where {T}
p, ep = two_prod(x, y)
acc.s, es = two_sum(acc.s, p)
@fastmath acc.e += ep + es
end
@inline function add!(acc::A, x::A) where {A<:CompDotAcc}
acc.s, e = two_sum(acc.s, x.s)
@fastmath acc.e += x.e + e
end
@inline function Base.sum(acc::CompDotAcc{T}) where {W, T<:Vec{W}}
acc_r = compDotAcc(fptype(T))
acc_r.e = vsum(acc.e)
for w in 1:W
acc_r.s, ei = two_sum(acc_r.s, acc.s(w))
acc_r.e += ei
end
acc_r
end
@inline function Base.sum(acc::CompDotAcc{T}) where {T<:Real}
acc.s + acc.e
end
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 796 | mutable struct CompSumAcc{T, EFT}
s :: T
e :: T
end
@inline compSumAcc(EFT) = T->compSumAcc(EFT, T)
@inline compSumAcc(EFT, T) = CompSumAcc{T, EFT}(vzero(T), vzero(T))
@inline function add!(acc::CompSumAcc{T, EFT}, x::T) where {T, EFT}
acc.s, e = EFT(acc.s, x)
@fastmath acc.e += e
end
@inline function add!(acc::A, x::A) where {A<:CompSumAcc{T, EFT}} where {T, EFT}
acc.s, e = EFT(acc.s, x.s)
@fastmath acc.e += x.e + e
end
@inline function Base.sum(acc::CompSumAcc{T, EFT}) where {W, T<:Vec{W}, EFT}
acc_r = compSumAcc(EFT, fptype(T))
acc_r.e = vsum(acc.e)
for w in 1:W
acc_r.s, ei = EFT(acc_r.s, acc.s(w))
acc_r.e += ei
end
acc_r
end
@inline function Base.sum(acc::CompSumAcc{T, EFT}) where {T<:Real, EFT}
acc.s + acc.e
end
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 339 | mutable struct DotAcc{T}
s :: T
end
dotAcc(T) = DotAcc{T}(vzero(T))
function add!(acc::DotAcc, x, y)
@fastmath acc.s += x * y
end
function add!(acc::DotAcc{T}, x::DotAcc{T}) where {T}
@fastmath acc.s += x.s
end
Base.sum(acc::DotAcc{T}) where {T<:Vec} = DotAcc(vsum(acc.s))
Base.sum(acc::DotAcc{T}) where {T<:Real} = acc.s
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 510 | mutable struct MixedDotAcc{T}
s :: T
end
mixedDotAcc(::Type{Float32}) = MixedDotAcc(Float64(0))
mixedDotAcc(::Type{Vec{N, Float32}}) where {N} = MixedDotAcc(vzero(Vec{N, Float64}))
function add!(acc::MixedDotAcc, x, y)
@fastmath acc.s += f64(x) * f64(y)
end
function add!(acc::MixedDotAcc{T}, x::MixedDotAcc{T}) where {T}
@fastmath acc.s += x.s
end
Base.sum(acc::MixedDotAcc{T}) where {T<:Vec} = MixedDotAcc(vsum(acc.s))
Base.sum(acc::MixedDotAcc{T}) where {T<:Real} = acc.s
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 498 | mutable struct MixedSumAcc{T}
s :: T
end
mixedSumAcc(::Type{Float32}) = MixedSumAcc(Float64(0))
mixedSumAcc(::Type{Vec{N, Float32}}) where {N} = MixedSumAcc(vzero(Vec{N, Float64}))
function add!(acc::MixedSumAcc, x)
@fastmath acc.s += f64(x)
end
function add!(acc::MixedSumAcc{T}, x::MixedSumAcc{T}) where {T}
@fastmath acc.s += x.s
end
Base.sum(acc::MixedSumAcc{T}) where {T<:Vec} = MixedSumAcc(vsum(acc.s))
Base.sum(acc::MixedSumAcc{T}) where {T<:Real} = acc.s
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 329 | mutable struct SumAcc{T}
s :: T
end
sumAcc(T) = SumAcc(vzero(T))
function add!(acc::SumAcc, x)
@fastmath acc.s += x
end
function add!(acc::SumAcc{T}, x::SumAcc{T}) where {T}
@fastmath acc.s += x.s
end
Base.sum(acc::SumAcc{T}) where {T<:Vec} = SumAcc(vsum(acc.s))
Base.sum(acc::SumAcc{T}) where {T<:Real} = acc.s
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 2019 | println("Loading required packages...")
using Plots, JSON
function plot_results()
println("Generating plots...")
for filename in readdir()
endswith(filename, ".json") || continue
plot_results(replace(filename, ".json" => ""))
end
end
function plot_results(filename)
results = JSON.parsefile(filename*".json")
if get(results, "type", nothing) == nothing
@warn "Badly formatted file: `$filename.json'"
return
end
println("-> $filename")
plot_results(Val(Symbol(results["type"])), filename, results)
end
function plot_results(::Val{:accuracy}, filename, results)
title = results["title"]
labels = results["labels"]
data = results["data"]
scatter(title=title,
xscale=:log10, yscale=:log10,
xlabel="Condition number",
ylabel="Relative error")
markers = Symbol[:circle, :+, :rect, :x, :utriangle]
for i in 1:length(labels)
scatter!(Float64.(data[1]), Float64.(data[i+1]), label=labels[i], markershape=markers[i])
end
savefig(filename*".pdf")
savefig(filename*".svg")
end
function plot_results(::Val{:ushift}, filename, results)
title = results["title"]
labels = results["labels"]
data = results["data"]
p = plot(title=title,
xlabel="log2(U)",
ylabel="Time [ns/elem]")
for i in 1:length(labels)
plot!(Float64.(data[1]), Float64.(data[i+1]), label="2^$(Int(round(log2(labels[i])))) elems")
end
savefig(filename*".pdf")
savefig(filename*".svg")
end
function plot_results(::Val{:performance}, filename, results)
title = results["title"]
labels = results["labels"]
data = results["data"]
p = plot(title=title,
xscale=:log10,
xlabel="Vector size",
ylabel="Time [ns/elem]")
for i in 1:length(labels)
plot!(Float64.(data[1]), Float64.(data[i+1]), label=labels[i])
end
savefig(filename*".pdf")
savefig(filename*".svg")
end
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 11164 | import Pkg
Pkg.activate(joinpath(@__DIR__, ".."))
println("Loading required packages...")
using LinearAlgebra, Random, Printf, Statistics
using BenchmarkTools, JSON
using AccurateArithmetic
using AccurateArithmetic.Summation: accumulate, two_sum, fast_two_sum
using AccurateArithmetic.Summation: sumAcc, compSumAcc, mixedSumAcc
using AccurateArithmetic.Summation: dotAcc, compDotAcc, mixedDotAcc
using AccurateArithmetic.Summation: default_ushift
using AccurateArithmetic.Test
output(x) = @printf "%.2e " x
err(val, ref::T) where {T} = min(1, max(eps(T), abs((val-ref)/ref)))
FAST_TESTS = false
FLOAT_TYPE = Float64
# * Accuracy
cond_max(::Type{Float64}) = 1e45
cond_max(::Type{Float32}) = 1f21
function run_accuracy(gen, funs, labels, title, filename)
println("-> $title")
n = 100 # Vector size
c1 = FLOAT_TYPE(2) # Condition number (min)
c2 = cond_max(FLOAT_TYPE) # - (max)
logstep = 2 # Step for condition number increase (log scale)
data = [FLOAT_TYPE[] for _ in 1:(1+length(funs))]
c = c1
while c < c2
i = 1
(x, d, C) = gen(rand(n:n+10), c)
output(C)
push!(data[i], C)
for fun in funs
i += 1
r = fun(x...)
ε = err(r, d)
output(ε)
push!(data[i], ε)
end
println()
c *= logstep
end
open(filename*".json", "w") do f
JSON.print(f, Dict(
:type => :accuracy,
:title => title,
:labels => labels,
:data => data))
end
end
function run_accuracy()
println("Running accuracy tests...")
function gen_sum(n, c)
(x, d, c) = generate_sum(n, c)
((x,), d, c)
end
funs = [sum, sum_naive, sum_oro, sum_kbn]
labels = ["pairwise", "naive", "oro", "kbn"]
if FLOAT_TYPE === Float32
push!(funs, sum_mixed)
push!(labels, "mixed")
end
run_accuracy(gen_sum, funs, labels,
"Error of summation algorithms",
"sum_accuracy")
function gen_dot(n, c)
(x, y, d, c) = generate_dot(n, c)
((x, y), d, c)
end
funs = [dot, dot_naive, dot_oro]
labels = ["blas", "naive", "oro"]
if FLOAT_TYPE === Float32
push!(funs, dot_mixed)
push!(labels, "mixed")
end
run_accuracy(gen_dot, funs, labels,
"Error of dot product algorithms",
"dot_accuracy")
end
# * Optimal u_shift
function run_ushift(gen, acc, title, filename)
println("-> $title")
if FAST_TESTS
title *= " [FAST]"
sizes = [2^(3*i) for i in 3:4]
ushifts = (0,2)
BenchmarkTools.DEFAULT_PARAMETERS.evals = 1
BenchmarkTools.DEFAULT_PARAMETERS.seconds = 0.5
else
sizes = [2^(3*i) for i in 2:6]
ushifts = 0:4
BenchmarkTools.DEFAULT_PARAMETERS.evals = 2
BenchmarkTools.DEFAULT_PARAMETERS.seconds = 5.0
end
data = [[] for _ in 1:(1+length(sizes))]
for ushift in ushifts
i = 1
print(ushift, " ")
push!(data[i], ushift)
for n in sizes
i += 1
x = gen(n)
b = @benchmark accumulate($x, $acc, $(Val(:scalar)), $(Val(ushift)))
t = minimum(b.times) / n
output(t)
push!(data[i], t)
end
println()
end
open(filename*".json", "w") do f
JSON.print(f, Dict(
:type => :ushift,
:title => title,
:labels => sizes,
:data => data))
end
end
function run_ushift()
BenchmarkTools.DEFAULT_PARAMETERS.evals = 2
println("Finding optimal ushift...")
gen_sum(n) = (rand(FLOAT_TYPE, n),)
run_ushift(gen_sum, sumAcc,
"Performance of naive summation",
"sum_naive_ushift")
run_ushift(gen_sum, compSumAcc(two_sum),
"Performance of ORO summation",
"sum_oro_ushift")
run_ushift(gen_sum, compSumAcc(fast_two_sum),
"Performance of KBN summation",
"sum_kbn_ushift")
if FLOAT_TYPE === Float32
run_ushift(gen_sum, mixedSumAcc,
"Performance of mixed summation",
"sum_mixed_ushift")
end
gen_dot(n) = (rand(FLOAT_TYPE, n), rand(FLOAT_TYPE, n))
run_ushift(gen_dot, dotAcc,
"Performance of naive dot product",
"dot_naive_ushift")
run_ushift(gen_dot, compDotAcc,
"Performance of compensated dot product",
"dot_oro_ushift")
if FLOAT_TYPE === Float32
run_ushift(gen_dot, mixedDotAcc,
"Performance of mixed dot product",
"dot_mixed_ushift")
end
end
# * Optimal prefetch
function run_prefetch(gen, acc, title, filename)
println("-> $title")
if FAST_TESTS
title *= " [FAST]"
sizes = [2^(3*i) for i in (3,5,7)]
prefetch = [0, 20, 40]
BenchmarkTools.DEFAULT_PARAMETERS.evals = 1
BenchmarkTools.DEFAULT_PARAMETERS.seconds = 0.5
else
sizes = [2^(3*i) for i in 2:8]
prefetch = 0:4:60
BenchmarkTools.DEFAULT_PARAMETERS.evals = 2
BenchmarkTools.DEFAULT_PARAMETERS.seconds = 5.0
end
println(" sizes: $sizes")
data = [[] for _ in 1:(1+length(sizes))]
for pref in prefetch
i = 1
print(pref, " ")
push!(data[i], pref)
for n in sizes
i += 1
x = gen(n)
ushift = AccurateArithmetic.Summation.default_ushift(x, acc)
b = @benchmark accumulate($x, $acc, $(Val(:scalar)), $ushift, $(Val(pref)))
t = minimum(b.times) / n
output(t)
push!(data[i], t)
end
println()
end
open(filename*".json", "w") do f
JSON.print(f, Dict(
:type => :prefetch,
:title => title,
:labels => sizes,
:data => data))
end
end
function run_prefetch()
BenchmarkTools.DEFAULT_PARAMETERS.evals = 2
println("Finding optimal prefetch...")
gen_sum(n) = (rand(FLOAT_TYPE, n),)
run_prefetch(gen_sum, sumAcc,
"Performance of naive summation",
"sum_naive_prefetch")
run_prefetch(gen_sum, compSumAcc(two_sum),
"Performance of ORO summation",
"sum_oro_prefetch")
run_prefetch(gen_sum, compSumAcc(fast_two_sum),
"Performance of KBN summation",
"sum_kbn_prefetch")
if FLOAT_TYPE === Float32
run_prefetch(gen_sum, mixedSumAcc,
"Performance of mixed summation",
"sum_mixed_prefetch")
end
gen_dot(n) = (rand(FLOAT_TYPE, n), rand(FLOAT_TYPE, n))
run_prefetch(gen_dot, dotAcc,
"Performance of naive dot product",
"dot_naive_prefetch")
run_prefetch(gen_dot, compDotAcc,
"Performance of compensated dot product",
"dot_oro_prefetch")
if FLOAT_TYPE === Float32
run_prefetch(gen_dot, mixedDotAcc,
"Performance of mixed dot product",
"dot_mixed_prefetch")
end
end
# * Performance comparisons
function run_performance(n2, gen, funs, labels, title, filename)
println("-> $title")
if FAST_TESTS
title *= " [FAST]"
logstep = 100.
BenchmarkTools.DEFAULT_PARAMETERS.evals = 1
BenchmarkTools.DEFAULT_PARAMETERS.seconds = 0.5
else
logstep = 1.1
BenchmarkTools.DEFAULT_PARAMETERS.evals = 2
BenchmarkTools.DEFAULT_PARAMETERS.seconds = 5.0
end
data = [Float64[] for _ in 1:(1+length(funs))]
n = 32
while n < n2
i = 1
x = gen(n)
output(n)
push!(data[i], n)
for fun in funs
i += 1
b = @benchmark $fun($(x)...)
t = minimum(b.times) / n
output(t)
push!(data[i], t)
end
println()
N = Int(round(n*logstep))
N = 32*div(N, 32)
n = max(N, n+32)
end
elemsize = sizeof.(eltype.(gen(1))) |> sum
open(filename*".json", "w") do f
JSON.print(f, Dict(
:type => :performance,
:title => title,
:labels => labels,
:elem_size => elemsize,
:data => data))
end
end
function run_performance()
println("Running performance tests...")
gen_sum(n) = (rand(FLOAT_TYPE, n),)
funs = [sum, sum_naive, sum_oro, sum_kbn]
labels = ["pairwise", "naive", "oro", "kbn"]
if FLOAT_TYPE === Float32
push!(funs, sum_mixed)
push!(labels, "mixed")
end
run_performance(1e8, gen_sum, funs, labels,
"Performance of summation implementations",
"sum_performance")
BLAS.set_num_threads(1)
gen_dot(n) = (rand(FLOAT_TYPE, n), rand(FLOAT_TYPE, n))
funs = [dot, dot_naive, dot_oro]
labels = ["blas", "naive", "oro"]
if FLOAT_TYPE === Float32
push!(funs, dot_mixed)
push!(labels, "mixed")
end
run_performance(3e7, gen_dot, funs, labels,
"Performance of dot product implementations",
"dot_performance")
end
# * All tests
function run_tests(fast=false, precision=64)
global FAST_TESTS = fast
global FLOAT_TYPE = if precision==64
Float64
else
Float32
end
print("Running tests")
FAST_TESTS && print(" in FAST mode")
println("...\n")
run_accuracy()
sleep(5)
run_ushift()
sleep(5)
run_prefetch()
sleep(5)
run_performance()
println("Normal end of the performance tests")
end
if abspath(PROGRAM_FILE) == @__FILE__
fast = get(ARGS, 1, "")=="fast"
prec = parse(Int, get(ARGS, 2, "64"))
date = open(readline, `git show --no-patch --pretty="%cd" --date="format:%Y-%m-%d.%H%M%S" HEAD`)
sha1 = open(readline, `git show --no-patch --pretty="%h" HEAD`) |> String
cpu = open(read, `lscpu`) |> String
cpu = match(r"Model name:\s*(.*)\s+CPU", cpu)[1]
cpu = replace(cpu, r"\(\S+\)" => "")
cpu = replace(strip(cpu), r"\s+" => ".")
blas = BLAS.vendor() |> String
jobname = "$(date)_$(sha1)_$(VERSION)_$(cpu)_$(blas)_F$(prec)"
open("jobname", "w") do f
write(f, jobname)
end
open("info.json", "w") do f
JSON.print(f, Dict(
:job => jobname,
:date => date,
:sha1 => sha1,
:julia => string(VERSION),
:cpu => cpu,
:blas => blas,
:prec => prec))
end
println("\nJob name: $jobname")
println("\nGit commit: $sha1 ($date)"); run(`git show --no-patch --oneline HEAD`)
println("\nJulia version: $VERSION"); println(Base.julia_cmd())
println("\nCPU: $cpu"); run(`lscpu`)
println("\nBLAS vendor: $blas")
println("\nFP precision: $prec bits")
run_tests(fast, prec)
end
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | code | 10527 | using AccurateArithmetic
using Test
using AccurateArithmetic.Summation: accumulate
using AccurateArithmetic.Summation: sumAcc, compSumAcc, mixedSumAcc
using AccurateArithmetic.Summation: dotAcc, compDotAcc, mixedDotAcc
using AccurateArithmetic.Test: generate_sum, generate_dot
using LinearAlgebra
using StableRNGs
@testset "AccurateArithmetic" begin
rng = StableRNG(42)
@testset "Tests" begin
@testset "generate_sum" begin
@testset "vector length" begin
@testset "F64" begin
for n in 100:110
let (x, s, c_) = generate_sum(n, 1e10; rng=rng)
@test eltype(x) === Float64
@test s isa Float64
@test length(x) == n
end
end
end
@testset "F32" begin
for n in 100:110
let (x, s, c_) = generate_sum(n, 1f5; rng=rng)
@test eltype(x) === Float32
@test s isa Float32
@test length(x) == n
end
end
end
end
@testset "condition number" begin
@testset "F64" begin
for c in (1e10, 1e20)
let (x, s, c_) = generate_sum(101, c; rng=rng)
@test eltype(x) === Float64
@test s isa Float64
@test c/3 < c_ < 3c
end
end
end
@testset "F32" begin
for c in (1f5, 1f10)
let (x, s, c_) = generate_sum(101, c; rng=rng)
@test eltype(x) === Float32
@test s isa Float32
@test c/3 < c_ < 3c
end
end
end
end
end
@testset "generate_dot" begin
@testset "vector length" begin
@testset "F64" begin
for n in 100:110
let (x, y, s, c_) = generate_dot(n, 1e10; rng=rng)
@test eltype(x) === Float64
@test s isa Float64
@test length(x) == n
@test length(y) == n
end
end
end
@testset "F32" begin
for n in 100:110
let (x, y, s, c_) = generate_dot(n, 1f5; rng=rng)
@test eltype(x) === Float32
@test s isa Float32
@test length(x) == n
@test length(y) == n
end
end
end
end
@testset "condition number" begin
@testset "F64" begin
for c in (1e10, 1e20)
let (x, y, s, c_) = generate_dot(101, c; rng=rng)
@test s isa Float64
@test c/3 < c_ < 3c
end
end
end
@testset "F32" begin
for c in (1f5, 1f10)
let (x, y, s, c_) = generate_dot(101, c; rng=rng)
@test s isa Float32
@test c/3 < c_ < 3c
end
end
end
end
end
end
@testset "summation" begin
@testset "naive" begin
@testset "F64" begin
for N in 100:110
x = rand(rng, N)
ref = sum(x)
@test ref isa Float64
@test ref ≈ sum_naive(x)
acc = sumAcc
@test ref ≈ accumulate((x,), acc, Val(:scalar), Val(2))
@test ref ≈ accumulate((x,), acc, Val(:mask), Val(2))
end
end
@testset "F32" begin
for N in 100:110
x = rand(rng, Float32, N)
ref = sum(x)
@test ref isa Float32
@test ref ≈ sum_naive(x)
acc = sumAcc
@test ref ≈ accumulate((x,), acc, Val(:scalar), Val(2))
@test ref ≈ accumulate((x,), acc, Val(:mask), Val(2))
end
end
end
@testset "compensated" begin
@testset "F64" begin
for N in 100:110
x, ref, _ = generate_sum(N, 1e10; rng=rng)
@test ref isa Float64
@test ref == sum_oro(x)
@test ref == sum_kbn(x)
acc = compSumAcc(two_sum)
@test ref == accumulate((x,), acc, Val(:scalar), Val(2))
@test ref == accumulate((x,), acc, Val(:mask), Val(2))
end
end
@testset "F32" begin
for N in 100:110
x, ref, _ = generate_sum(N, 1f5; rng=rng)
@test ref isa Float32
@test ref == sum_oro(x)
@test ref == sum_kbn(x)
acc = compSumAcc(two_sum)
@test ref == accumulate((x,), acc, Val(:scalar), Val(2))
@test ref == accumulate((x,), acc, Val(:mask), Val(2))
end
end
end
@testset "mixed" begin
for N in 100:110
# Only test for approximate equality here, since sum_mixed
# returns a Float64 whereas the reference value is a Float32
x, ref, _ = generate_sum(N, 1f7; rng=rng)
@test ref isa Float32
@test ref ≈ sum_mixed(x)
acc = mixedSumAcc
@test ref ≈ accumulate((x,), acc, Val(:scalar), Val(2))
@test ref ≈ accumulate((x,), acc, Val(:mask), Val(2))
end
end
end
@testset "dot product" begin
@testset "naive" begin
@testset "F64" begin
for N in 100:110
x = rand(rng, N)
y = rand(rng, N)
ref = dot(x, y)
@test ref isa Float64
@test ref ≈ dot_naive(x, y)
acc = dotAcc
@test ref ≈ accumulate((x,y), acc, Val(:scalar), Val(2))
@test ref ≈ accumulate((x,y), acc, Val(:mask), Val(2))
end
end
@testset "F32" begin
for N in 100:110
x = rand(rng, Float32, N)
y = rand(rng, Float32, N)
ref = dot(x, y)
@test ref isa Float32
@test ref ≈ dot_naive(x, y)
acc = dotAcc
@test ref ≈ accumulate((x,y), acc, Val(:scalar), Val(2))
@test ref ≈ accumulate((x,y), acc, Val(:mask), Val(2))
end
end
end
@testset "compensated" begin
@testset "F64" begin
for N in 100:110
x, y, ref, _ = generate_dot(N, 1e10; rng=rng)
@test ref isa Float64
@test ref == dot_oro(x, y)
acc = compDotAcc
@test ref == accumulate((x,y), acc, Val(:scalar), Val(2))
@test ref == accumulate((x,y), acc, Val(:mask), Val(2))
end
end
@testset "F32" begin
for N in 100:110
x, y, ref, _ = generate_dot(N, 1f5; rng=rng)
@test ref isa Float32
@test ref == dot_oro(x, y)
acc = compDotAcc
@test ref == accumulate((x,y), acc, Val(:scalar), Val(2))
@test ref == accumulate((x,y), acc, Val(:mask), Val(2))
end
end
end
@testset "mixed" begin
for N in 100:110
# Only test for approximate equality here, since dot_mixed
# returns a Float64 whereas the reference value is a Float32
x, y, ref, _ = generate_dot(N, 1f7; rng=rng)
@test ref isa Float32
@test ref ≈ dot_mixed(x, y)
acc = mixedDotAcc
@test ref ≈ accumulate((x,y), acc, Val(:scalar), Val(2))
@test ref ≈ accumulate((x,y), acc, Val(:mask), Val(2))
end
end
end
end
using BenchmarkTools
BLAS.set_num_threads(1)
BenchmarkTools.DEFAULT_PARAMETERS.evals = 1000
println("\nsize 32")
x = rand(32)
y = rand(32)
print(" sum_kbn "); @btime sum_kbn($x)
print(" sum_oro "); @btime sum_oro($x)
print(" sum_naive"); @btime sum_naive($x)
print(" sum "); @btime sum($x)
println()
print(" dot_oro "); @btime dot_oro($x, $y)
print(" dot_naive"); @btime dot_naive($x, $y)
print(" dot "); @btime dot($x, $y)
println("\nsize 10_000")
x = rand(10_000)
y = rand(10_000)
print(" sum_kbn "); @btime sum_kbn($x)
print(" sum_oro "); @btime sum_oro($x)
print(" sum_naive"); @btime sum_naive($x)
print(" sum "); @btime sum($x)
println()
print(" dot_oro "); @btime dot_oro($x, $y)
print(" dot_naive"); @btime dot_naive($x, $y)
print(" dot "); @btime dot($x, $y)
BenchmarkTools.DEFAULT_PARAMETERS.evals = 10
println("\nsize 1_000_000")
x = rand(1_000_000)
y = rand(1_000_000)
print(" sum_kbn "); @btime sum_kbn($x)
print(" sum_oro "); @btime sum_oro($x)
print(" sum_naive"); @btime sum_naive($x)
print(" sum "); @btime sum($x)
println()
print(" dot_oro "); @btime dot_oro($x, $y)
print(" dot_naive"); @btime dot_naive($x, $y)
print(" dot "); @btime dot($x, $y)
println("\nsize 100_000_000")
x = rand(100_000_000)
y = rand(100_000_000)
print(" sum_kbn "); @btime sum_kbn($x)
print(" sum_oro "); @btime sum_oro($x)
print(" sum_naive"); @btime sum_naive($x)
print(" sum "); @btime sum($x)
println()
print(" dot_oro "); @btime dot_oro($x, $y)
print(" dot_naive"); @btime dot_naive($x, $y)
print(" dot "); @btime dot($x, $y)
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | docs | 8717 | # AccurateArithmetic.jl
## Floating point math with error-free, faithful, and compensated transforms.
[travis-img]: https://travis-ci.org/JuliaMath/AccurateArithmetic.jl.svg?branch=master
[travis-url]: https://travis-ci.org/JuliaMath/AccurateArithmetic.jl
[pkgeval-img]: https://juliaci.github.io/NanosoldierReports/pkgeval_badges/A/AccurateArithmetic.svg
[pkgeval-url]: https://juliaci.github.io/NanosoldierReports/pkgeval_badges/report.html
![Lifecycle](https://img.shields.io/badge/lifecycle-maturing-blue.svg)
[![Build Status][travis-img]][travis-url]
[![PkgEval][pkgeval-img]][pkgeval-url]
### Error-free and faithful transforms
`AccurateArithmetic.jl` provides a set of error-free transforms (EFTs), which
allow getting not only the rounded result of a floating-point computation, but
also the accompanying rounding error:
```julia
julia> using AccurateArithmetic
# WARNING: a is not really 1/10, as this value is not representable as a Float64
# (and similarly for b)
julia> (a, b) = (0.1, 0.2)
julia> (s, e) = AccurateArithmetic.two_sum(a, b)
(0.30000000000000004, -2.7755575615628914e-17)
```
In the above example, `s` is the result of the floating-point addition
`0.1+0.2`, rounded to the nearest representable floating-point number, exactly
what you would get from a standard addition. `e` is the rounding error
associated to `s`. In other words, it is guaranteed that a + b = s + e, in a
strict mathematical sense (i.e. when the `+` operate on real numbers and are not
rounded).
Similar EFTs are provided for the binary subtraction (`two_diff`) and
multiplication (`two_prod`). Some operations of higher arity are also supported,
such as `three_sum`, `four_sum` or `three_prod`.
### Compensated algorithms
EFTs can be leveraged to build "compensated algorithms", which compute a result
as if the basic algorithm had been run using a higher precision.
```julia
# By construction, this vector sums to 1
julia> x = 5000 |> N->randn(N) .* exp.(10 .* randn(N)) |> x->[x;-x;1.0] |> x->x[sortperm(rand(length(x)))];
julia> sum(big.(x))
1.0
# But the standard summation algorithms computes this sum very inaccurately
# (not even the sign is correct)
julia> sum(x)
-8.0
# Compensated summation algorithms should compute this more accurately
julia> using AccurateArithmetic
# Algorithm by Ogita, Rump and Oishi
julia> sum_oro(x)
1.0000000000000084
# Algorithm by Kahan, Babuska and Neumaier
julia> sum_kbn(x)
1.0000000000000084
```
![](test/figs/sum_accuracy.svg)
![](test/figs/dot_accuracy.svg)
In the graphs above, we see the relative error vary as a function of the
condition number, in a log-log scale. Errors lower than ϵ are arbitrarily set to
ϵ; conversely, when the relative error is more than 100% (i.e no digit is
correctly computed anymore), the error is capped there in order to avoid
affecting the scale of the graph too much. What we see on the left is that the pairwise
summation algorithm (as implemented in Base.sum) starts losing accuracy as soon
as the condition number increases, computing only noise when the condition
number exceeds 1/ϵ≃10¹⁶. The same goes for the naive summation algorithm.
In contrast, both compensated algorithms
(Kahan–Babuska–Neumaier and Ogita–Rump–Oishi) still accurately compute the
result at this point, and start losing accuracy there, computing meaningless
results when the condition nuber reaches 1/ϵ²≃10³². In effect these (simply)
compensated algorithms produce the same results as if a naive summation had been
performed with twice the working precision (128 bits in this case), and then
rounded to 64-bit floats.
The same comments can be made for the dot product implementations shown on the
right. Uncompensated algorithms, as implemented in
`AccurateArithmetic.dot_naive` or `Base.dot` (which internally calls BLAS in
this case) exhibit typical loss of accuracy. In contrast, the implementation of
Ogita, Rump & Oishi's compentated algorithm effectively doubles the working
precision.
<br/>
Performancewise, compensated algorithms perform a lot better than alternatives
such as arbitrary precision (`BigFloat`) or rational arithmetic (`Rational`) :
```julia
julia> using BenchmarkTools
julia> length(x)
10001
julia> @btime sum($x)
1.320 μs (0 allocations: 0 bytes)
-8.0
julia> @btime sum_naive($x)
1.026 μs (0 allocations: 0 bytes)
-1.121325337906356
julia> @btime sum_oro($x)
3.348 μs (0 allocations: 0 bytes)
1.0000000000000084
julia> @btime sum_kbn($x)
3.870 μs (0 allocations: 0 bytes)
1.0000000000000084
julia> @btime sum($(big.(x)))
437.495 μs (2 allocations: 112 bytes)
1.0
julia> @btime sum($(Rational{BigInt}.(x)))
10.894 ms (259917 allocations: 4.76 MiB)
1//1
```
However, compensated algorithms perform a larger number of elementary operations
than their naive floating-point counterparts. As such, they usually perform
worse. However, leveraging the power of modern architectures via vectorization,
the slow down can be kept to a small value.
![](test/figs/sum_performance.svg)
![](test/figs/dot_performance.svg)
Benchmarks presented in the above graphs were obtained in an Intel® Xeon® Gold
6128 CPU @ 3.40GHz. The time spent in the summation (renormalized per element)
is plotted against the vector size. What we see with the standard summation is
that, once vectors start having significant sizes (say, more than a few
thousands of elements), the implementation is memory bound (as expected of a
typical BLAS1 operation). Which is why we see significant decreases in the
performance when the vector can’t fit into the L1, L2 or L3 cache.
On this AVX512-enabled system, the Kahan–Babuska–Neumaier implementation tends
to be a little more efficient than the Ogita–Rump–Oishi algorithm (this would
generally the opposite for AVX2 systems). When implemented with a suitable
unrolling level and cache prefetching, these implementations are CPU-bound when
vectors fit inside the L1 or L2 cache. However, when vectors are too large to
fit into the L2 cache, the implementation becomes memory-bound again (on this
system), which means we get the same performance as the standard
summation. Again, the same could be said as well for dot product calculations
(graph on the right), where the implementations from `AccurateArithmetic.jl`
compete against MKL's dot product.
In other words, the improved accuracy is free for sufficiently large
vectors. For smaller vectors, the accuracy comes with a slow-down by a factor of
approximately 3 in the L2 cache.
### Mixed-precision algorithms
When working with single-precision floating-point numbers (`Float32`), it is far
more efficient to rely on the possibility to internally use double-precision
numbers in places where more accuracy is needed. Such mixed-precision
implementations are also provided in this package for convenience:
```
# Generate an ill-conditioned sum of 100 Float32 numbers
# (requested condition number 1f10)
julia> (x, _, _) = generate_sum(100, 1f10);
# Reference result
julia> sum(big.(x))
-0.784491270104194171608469332568347454071044921875
# Standard algorithm -> 100% error
julia> sum(x)
42.25f0
# Mixed-precision implementation
julia> sum_mixed(x)
-0.7844913924050729
```
Mixed-precision summation implementations should perform approximately as well
as naive ones:
```
julia> x = rand(Float32, 10_000);
julia> @btime sum($x)
1.273 μs (0 allocations: 0 bytes)
5022.952f0
julia> using AccurateArithmetic
julia> @btime sum_mixed($x)
1.109 μs (0 allocations: 0 bytes)
5022.952363848686
```
Depending on the system, mixed-precision implementations of the dot product
might not be as competitive (especially on AVX2 systems; this is much better on
AVX512 CPUs), but are still faster than compensated algorithms:
```
julia> x = rand(Float32, 10_000);
julia> y = rand(Float32, 10_000);
julia> using LinearAlgebra
julia> @btime dot($x, $y)
1.178 μs (0 allocations: 0 bytes)
2521.3572f0
julia> using AccurateArithmetic
julia> @btime dot_mixed($x, $y)
2.027 μs (0 allocations: 0 bytes)
2521.356998107087
julia> @btime dot_oro($x, $y)
3.402 μs (0 allocations: 0 bytes)
2521.357f0
```
### Tests
The graphs above can be reproduced using the `test/perftests.jl` script in this
repository. Before running them, be aware that it takes a few hours to generate
the performance graphs, during which the benchmark machine should be as
low-loaded as possible in order to avoid perturbing performance measurements.
### References
- C. Elrod and F. Févotte, "Accurate and Efficient Sums and Dot Products in
Julia". [preprint](https://hal.archives-ouvertes.fr/hal-02265534)
- T. Ogita, S. Rump and S. Oishi, "Accurate sum and dot product", SIAM Journal
on Scientific Computing, 6(26), 2005. DOI: 10.1137/030601818
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 0.3.8 | 07af26e8d08c211ef85918f3e25d4c0990d20d70 | docs | 859 | ## References
```
[Building Blocks]
M. Joldes, V. Popescu, and J.-M. Muller.
Tight and rigourous error bounds for basic building blocks of double-word arithmetic
2016, working paper.
```
→ https://hal.archives-ouvertes.fr/hal-013515
```
[Multiple Precision]
V. Popescu.
Towards fast and certified multiple-precision librairies.
2017, thesis.
```
→ https://hal.archives-ouvertes.fr/tel-01534090/document
```
[Faithful Floats]
M. Lange and S.M. Rump.
Faithfully Rounded Floating-point Computations
2017, preprint.
```
→ http://www.ti3.tu-harburg.de/paper/rump/LaRu2017b.pdf
```
J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefevre,
G. Melquiond, N. Revol, D. Stehle, and S. Torres.
Handbook of Floating-Point Arithmetic
Birkhauser Boston, 2010, book
```
| AccurateArithmetic | https://github.com/JuliaMath/AccurateArithmetic.jl.git |
|
[
"MIT"
] | 1.4.0 | ef85ef8b9985f2f9245fad4bea24e6a8b85f4dd8 | code | 456 | using Documenter
using PolynomialGTM
makedocs(
sitename = "PolynomialGTM",
format = Documenter.HTML(),
modules = [PolynomialGTM],
pages = [
"Quick Start" => "index.md",
"Docstrings" => "docstrings.md"
]
)
deploydocs(
target = "build",
repo = "github.com/cadojo/PolynomialGTM.jl.git",
branch = "gh-pages",
devbranch = "main",
versions = ["stable" => "v^", "manual", "v#.#", "v#.#.#"],
)
| PolynomialGTM | https://github.com/cadojo/PolynomialGTM.jl.git |
|
[
"MIT"
] | 1.4.0 | ef85ef8b9985f2f9245fad4bea24e6a8b85f4dd8 | code | 7724 | """
Provides unofficial implementations (in the form of `ODESystem` and
`ODEFunction` instances) of a polynomial approximation for longitudinal
aircraft dynamics. Specifically, these models approximate NASA's
Generic Transport Model – a radio-controlled, sub-scale model aircraft which
is used flight control research. These publicly available equations were published by
[Chakraborty et al](https://www.sciencedirect.com/science/article/abs/pii/S0967066110002595).
# Extended help
## License
$(LICENSE)
## Exports
$(EXPORTS)
## Imports
$(IMPORTS)
"""
module PolynomialGTM
using Memoize
using Symbolics
using LinearAlgebra
using ModelingToolkit
using DocStringExtensions
@template (FUNCTIONS, METHODS, MACROS) = """
$(SIGNATURES)
$(DOCSTRING)
"""
@template (TYPES, CONSTANTS) = """
$(TYPEDEF)
$(DOCSTRING)
"""
export GTM, GTMFunction
"""
NASA's Generic Transport Model can be approximated
(near select flight conditions) as a polynomial model.
Here, `GTM` is a `ModelingToolkit.ODESystem` which
provides publicly available polynomial approximations
for GTM longitudinal flight dynamics.
# Extended Help
## Initial Conditions
The default initial conditions are one trim condition.
Two trim conditions for these polynomial-approximated
dynamics are shown below.
```julia
trim₁ = [[29.6, deg2rad(9), 0.0, deg2rad(9)], [deg2rad(0.68), 12.7]]
trim₂ = [[25.0, deg2rad(18), 0.0, deg2rad(18)], [deg2rad(-7.2), 59]]
```
## Usage
```julia
model = GTM()
```
## References:
- [Chakraborty et al](https://www.sciencedirect.com/science/article/abs/pii/S0967066110002595)
- [Joe Carpinelli](https://github.com/cadojo/Replicated-ROA-Analysis)
"""
@memoize function GTM(; stm=false, name=:GTM)
# First, let's define the necessary parameters
# and variables for modeling the longitudinal
# dynamics for NASA's Generic Transport Model
@parameters t δₑ δₜ
@variables V(t) α(t) q(t) θ(t)
δ = Differential(t)
x = [V, α, q, θ]
p = [δₑ, δₜ]
# Great! Now, we'll need to hard-code in the polynomial
# approximations the longitudinal dynamics.
eqs = [
# Damn Unicode and its variable character font width!!!
δ(V) ~ 1.233e-8 * V^4 * q^2 + 4.853e-9 * α^3 * δₜ^3 +
3.705e-5 * V^3 * α * q - 2.184e-6 * V^3 * q^2 +
2.203e-2 * V^2 * α^3 - 2.836e-6 * α^3 * δₜ^2 +
3.885e-7 * α^2 * δₜ^3 - 1.069e-6 * V^3 * q -
4.517e-2 * V^2 * α^2 - 2.140e-3 * V^2 * α * δₑ -
3.282e-3 * V^2 * α * q - 8.901e-4 * V^2 * δₑ^2 +
9.677e-5 * V^2 * q^2 - 2.037e-4 * α^3 * δₜ -
2.270e-4 * α^2 * δₜ^2 - 2.912e-8 * α * δₜ^3 +
1.591e-3 * V^2 * α - 4.077e-4 * V^2 * δₑ +
9.475e-5 * V^2 * q - 1.637 * α^3 -
1.631e-2 * α^2 * δₜ + 4.903 * α^2 * θ -
4.903 * α * θ^2 + 1.702e-5 * α * δₜ^2 -
7.771e-7 * δₜ^3 + 1.634 * θ^3 - 4.319e-4 * V^2 -
2.142e-1 * α^2 + 1.222e-3 * α * δₜ +
4.541e-4 * δₜ^2 + 9.823 * α + 3.261e-2 * δₜ -
9.807 * θ + 4.282e-1,
δ(α) ~ -3.709e-11 * V^5 * q^2 + 6.869e-11 * V * α^3 * δₜ^3 +
7.957e-10 * V^4 * α * q + 9.860e-9 * V^4 * q^2 +
1.694e-5 * V^3 * α^3 - 4.015e-8 * V * α^3 * δₜ^2 -
7.722e-12 * V * α^2 * δₜ^3 - 6.086e-9 * α^3 * δₜ^3 -
2.013e-8 * V^4 * q - 5.180e-5 * V^3 * α^2 -
2.720e-6 * V^3 * α * δₑ - 1.410e-7 * V^3 * α * q +
7.352e-7 * V^3 * δₑ^2 - 8.736e-7 * V^3 * q^2 -
1.501e-3 * V^2 * α^3 - 2.883e-6 * V * α^3 * δₜ +
4.513e-9 * V * α^2 * δₜ^2 - 4.121e-10 * V * α * δₜ^3 +
3.557e-6 * α^3 * δₜ^2 + 6.841e-10 * α^2 * δₜ^3 +
4.151e-5 * V^3 * α + 3.648e-6 * V^3 * δₑ +
3.566e-6 * V^3 * q + 6.246e-6 * V^2 * α * q +
4.589e-3 * V^2 * α^2 + 2.410e-74 * V^2 * α * δₑ -
6.514e-5 * V^2 * δₑ^2 + 2.580e-5 * V^2 * q^2 -
3.787e-5 * V * α^3 + 3.241e-7 * V * α^2 * δₜ +
2.409e-7 * V * α * δₜ^2 + 1.544e-11 * V * δₜ^3 +
2.554e-4 * α^3 * δₜ - 3.998e-7 * α^2 * δₜ^2 +
3.651e-8 * α * δₜ^3 + 4.716e-7 * V^3 -
3.677e-3 * V^2 * α - 3.231e-4 * V^2 * δₑ -
1.579e-4 * V^2 * q + 2.605e-3 * V * α^2 +
1.730e-5 * V * α * δₜ - 5.201e-3 * V * α * θ -
9.026e-9 * V * δₜ^2 + 2.601e-3 * V * θ^2 +
3.355e-3 * α^3 - 2.872e-5 * α^2 * δₜ -
2.134e-5 * α * δₜ^2 - 1.368e-9 * δₜ^3 -
4.178e-5 * V^2 + 2.272e-4 * V * α -
6.483e-7 * V * δₜ - 2.308e-1 * α^2 -
1.532e-3 * α * δₜ + 4.608e-1 * α * θ - 2.304e-1 * θ^2 +
7.997e-7 * δₜ^2 - 5.210e-3 * V - 2.013e-2 * α +
5.744e-5 * δₜ + q + 4.616e-1,
δ(q) ~ -6.573e-9 * V^5 * q^3 + 1.747e-6 * V^4 * q^3 -
1.548e-4 * V^3 * q^3 - 3.569e-3 * V^2 * α^3 +
4.571e-3 * V^2 * q^3 + 4.953e-5 * V^3 * q +
9.596e-3 * V^2 * α^2 + 2.049e-2 * V^2 * α * δₑ -
2.431e-2 * V^2 * α - 3.063e-2 * V^2 * δₑ -
4.388e-3 * V^2 * q - 2.594e-7 * δₜ^3 +
2.461e-3 * V^2 + 1.516e-4 * δₜ^2 + 1.089e-2 * δₜ +
1.430e-1,
δ(θ) ~ q
]
# Let's set some default values, so we can plug this system directly
# into `ODEProblem` and perform quick analysis. Note that what we're
# doing here is setting one equilibrium position as a default
# initial condition if no arguments are provided to `ODEProblem`!
defaults = Dict(
V => 29.6,
α => deg2rad(9),
q => 0.0,
θ => deg2rad(0),
δₑ => deg2rad(0.68),
δₜ => 12.7
)
# If state transition matrix dynamics are enabled, append
# the dynamics to our equations of motion, append the
# state variables to our state vector, and append default
# values (the identity matrix) to the defaults field!
if stm
@variables (Φ(t))[1:4, 1:4]
Φ = Symbolics.scalarize(Φ)
A = Symbolics.jacobian(map(el -> el.rhs, eqs), x)
LHS = map(δ, Φ)
RHS = map(simplify, A * Φ)
eqs = vcat(eqs, [LHS[i] ~ RHS[i] for i in 1:length(LHS)])
for ϕ in vec(Φ)
push!(x, ϕ)
end
for (ϕ, i) in zip(vec(Φ), vec(Matrix(I(4))))
defaults[ϕ] = i
end
end
# Model name
if string(name) == "GTM" && stm
modelname = Symbol("GTMWithSTM")
else
modelname = name
end
# Make the model and return
return ODESystem(eqs, t, x, p; defaults=defaults, name=Symbol(modelname))
end
"""
Returns a `DifferentialEquations`-compatible `ODEFunction` for GTM dynamics.
The `stm`, and `name` keyword arguments are passed to `GTM`. All other
keyword arguments are passed directly to `ODEFunction`.
# Extended Help
## Usage
Note that this `ODEFunction` output has several methods, including an in-place
method! Function signatures follow `ModelingToolkit` and `DifferentialEquations`
conventions.
```julia
f = GTMFunction()
let u = randn(4), p = randn(2), t = rand()
f(u,p,t)
end
```
"""
@memoize function GTMFunction(; stm=false, name=:GTM, kwargs...)
defaults = (; jac=true)
options = merge(defaults, kwargs)
model = complete(GTM(; stm=stm, name=name); split=false)
return ODEFunction(model, unknowns(model), ModelingToolkit.parameters(model); options...)
end
end # module
| PolynomialGTM | https://github.com/cadojo/PolynomialGTM.jl.git |
|
[
"MIT"
] | 1.4.0 | ef85ef8b9985f2f9245fad4bea24e6a8b85f4dd8 | code | 799 | module PolynomialGTMTests
using PolynomialGTM, Test
@testset "Constructors" begin
try
GTM()
@test true
catch e
@test throw(e)
end
try
GTM(; stm=true)
@test true
catch e
@test throw(e)
end
end
@testset "Functions" begin
try
f = GTMFunction()
f(randn(4), randn(2), NaN)
@test true
catch e
@test throw(e)
end
try
f = GTMFunction(; stm=true)
f(randn(20), randn(2), NaN)
@test true
catch e
@test throw(e)
end
end
@testset "Regression" begin
f = GTMFunction()
let u = [0.1, 0.2, 0.3, 0.4], p = [0.1, 0.1], t = NaN
@test f(u, p, t) ≈ [-1.522331443175375, 0.7478311441572367, 0.14403160747471513, 0.3]
end
end
end
| PolynomialGTM | https://github.com/cadojo/PolynomialGTM.jl.git |
|
[
"MIT"
] | 1.4.0 | ef85ef8b9985f2f9245fad4bea24e6a8b85f4dd8 | docs | 1982 | [![Tests](https://github.com/cadojo/PolynomialGTM.jl/workflows/UnitTests/badge.svg)](https://github.com/cadojo/PolynomialGTM.jl/actions?query=workflow%3AUnitTests)
[![Docs](https://github.com/cadojo/PolynomialGTM.jl/workflows/Documentation/badge.svg)](https://cadojo.github.io/PolynomialGTM.jl)
# PolynomialGTM.jl
_An unofficial implementation of publicly available approximated polynomial
models for NASA's Generic Transport Model aircraft._
## Overview
NASA Langley has developed a scaled-down radio-controlled aircraft called the
Generic Transport Model (GTM). This model is physically similar to a typical
commercial plane (think 737, etc.), and is used for off-nominal flight control
research.
[Chakraborty et al](https://www.sciencedirect.com/science/article/abs/pii/S0967066110002595)
published a polynomial approximation for longitudinal GTM dynamics (near select
flight conditions). Joe Carpinelli (me!) wrote these dynamics in Python, and
[replicated and summarized](https://github.com/cadojo/Replicated-ROA-Analysis)
parts of Chakraborty et al's region of attraction analysis for the
polynomial-approximated GTM dynamics.
This Julia package extends
[ModelingToolkit.jl](https://github.com/SciML/ModelingToolkit.jl) to provide
this polynomial-approximated model of longitudinal GTM flight dynamics to the
Julia ecosystem!
## Installation
You can install `PolynomialGTM` from Julia's General Registry using `Pkg`, or
`]install PolynomialGTM` in Julia's REPL.
```julia
import Pkg
Pkg.install("PolynomialGTM")
```
## Usage
See the [ModelingToolkit documentation](http://mtk.sciml.ai/stable/) for more
usage examples!
```julia
using PolynomialGTM, ModelingToolkit
# Get the model
model = GTM()
# Get the equations
equations(model)
# Print the equations to LaTeX
using Latexify
latexify(equations(model))
# Get an `ODEFunction` which implements the dynamics
f = GTMFunction()
# Execute the function
let x = randn(4), p = randn(2), t = rand()
f(x,p,t)
end
```
| PolynomialGTM | https://github.com/cadojo/PolynomialGTM.jl.git |
|
[
"MIT"
] | 1.4.0 | ef85ef8b9985f2f9245fad4bea24e6a8b85f4dd8 | docs | 119 | # Documentation
_All docstrings!_
```@autodocs
Modules = [
PolynomialGTM
]
Order = [:module, :type, :function]
``` | PolynomialGTM | https://github.com/cadojo/PolynomialGTM.jl.git |
|
[
"MIT"
] | 1.4.0 | ef85ef8b9985f2f9245fad4bea24e6a8b85f4dd8 | docs | 2403 | # PolynomialGTM.jl
_Longitudinal flight dynamics, approximated with polynomials!_
## Overview
This is an unofficial implementation of publicly available approximated polynomial models
for NASA's Generic Transport Model aircraft. NASA Langley has developed a scaled-down
radio-controlled aircraft called the Generic Transport Model (GTM). This model is physically
similar to a typical commercial plane (think 737, etc.), and is used for off-nominal
flight control research. [Chakraborty et al](https://www.sciencedirect.com/science/article/abs/pii/S0967066110002595)
published a polynomial approximation for longitudinal GTM dynamics (near select flight conditions). Joe Carpinelli (me!)
wrote these dynamics in Python, and [replicated and summarized](https://github.com/cadojo/Replicated-ROA-Analysis)
parts of Chakraborty et al's region of attraction analysis
for the polynomial-approximated GTM dynamics.
This Julia package extends [ModelingToolkit.jl](https://github.com/SciML/ModelingToolkit.jl) to provide this
polynomial-approximated model of longitudinal GTM flight dynamics to the Julia ecosystem!
## Usage
This package exports two functions: `GTM`, and `GTMFunction`. The former constructs an `ODESystem`,
and the latter returns an `ODEFunction` associated with the model produced by `GTM`. Both functions
cache all outputs using `Memoize.jl`.
Some `PolynomialGTM`-specific documentation can be found here, and in the [docstrings](docstrings.md).
See the [ModelingToolkit documentation](http://mtk.sciml.ai/stable/) for more usage examples!
### Installation and Startup
You can install this package from Julia's [General](https://juliahub.com) package registry
with `import Pkg; Pkg.install("PolynomialGTM")`, or with `julia> ]install PolynomialGTM` in
Julia's REPL.
```@repl main
using PolynomialGTM
```
### Constructing the Model
Generally, you'll just want to call `GTM` with no arguments.
```@repl main
model = GTM()
```
If you'd like to append state transition matrix dynamics, use `stm=true`.
This appends state transition matrix dynamics to the model's equations
of motion.
```@repl main
model = GTM(; stm=true)
```
### Constructing the Vector Field
As before, you can optionally append state transition matrix dynamics
using `stm=true`.
```@repl main
f = GTMFunction() # or, with `stm=true`
let u = randn(4), p = randn(2), t = rand()
f(u,p,t)
end
``` | PolynomialGTM | https://github.com/cadojo/PolynomialGTM.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.5 | e57b9894ce0f47f3b346d4a375203084085e90c7 | code | 836 | module StackedHourglass
using CUDA, Knet
const KnetMoment = Knet.Ops20.BNMoments
using Knet.CuArrays
#standard Library
using Distributed, Random
using Images, MAT, FFTW
#exported types
export HG2
#exported methods
export subpixel, set_testing, save_hourglass, load_hourglass, features
abstract type NN end;
const HGType = Union{KnetArray{Float32,4},AutoGrad.Result{KnetArray{Float32,4}},Array{Float32,4},AutoGrad.Result{Array{Float32,4}}}
const PType1 = Union{Param{KnetArray{Float32,1}},Param{Array{Float32,1}}}
const PType4 = Union{Param{KnetArray{Float32,4}},Param{Array{Float32,4}}}
include("residual.jl")
include("hourglass.jl")
include("cuda_resizing.jl")
include("gaussian_pyramids.jl")
include("cuda_files.jl")
include("helper.jl")
include("load.jl")
include("subpixel.jl")
include("image_preprocessing.jl")
end
| StackedHourglass | https://github.com/paulmthompson/StackedHourglass.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.5 | e57b9894ce0f47f3b346d4a375203084085e90c7 | code | 5631 |
#adapted from https://stackoverflow.com/questions/51038294/resize-image-using-nearest-neighborhood-with-cuda
function _CUDA_resize(pIn,pOut)
_CUDA_resize(pIn,pOut,size(pIn,1),size(pIn,2),size(pOut,1),size(pOut,2))
end
function _CUDA_resize(pIn,pOut,w_in,h_in,w_out,h_out)
index_i = blockDim().y * (blockIdx().y-1) + threadIdx().y
index_j = blockDim().x * (blockIdx().x-1) + threadIdx().x
stride_i = blockDim().y * gridDim().y
stride_j = blockDim().x * gridDim().x
for j=index_j:stride_j:h_out
for i=index_i:stride_i:w_out
jIn = div(j*h_in, h_out)
iIn = div(i*w_in, w_out)
@inbounds pOut[i,j] = pIn[iIn,jIn]
end
end
return
end
function CUDA_resize(pIn,pOut)
CUDA.@sync @cuda threads=(16,16) _CUDA_resize(pIn,pOut)
end
function _CUDA_resize4(pIn,pOut,w_in,h_in,w_out,h_out,n)
c = blockIdx().y
b = blockIdx().x
a = threadIdx().x
if ((a <= h_out)&&(b <= w_out))&&(c <=n)
jIn = div(b*h_in, h_out)
iIn = div(a*w_in, w_out)
@inbounds pOut[a,b,1,c] = pIn[iIn,jIn,1,c]
end
return
end
function _CUDA_resize4(pIn,pOut)
_CUDA_resize4(pIn,pOut,size(pIn,1),size(pIn,2),size(pOut,1),size(pOut,2),size(pIn,4))
end
function CUDA_resize4(pIn,pOut)
numblocks_x = size(pOut,2)
numblocks_y = size(pOut,4)
CUDA.@sync @cuda threads=256 blocks=(numblocks_x,numblocks_y) _CUDA_resize4(pIn,pOut)
end
function _CUDA_normalize_images(pIn,meanImg,h_out,w_out,n)
index_i = blockDim().y * (blockIdx().y-1) + threadIdx().y
index_j = blockDim().x * (blockIdx().x-1) + threadIdx().x
stride_i = blockDim().y * gridDim().y
stride_j = blockDim().x * gridDim().x
for k=1:n
for j=index_j:stride_j:h_out
for i=index_i:stride_i:w_out
@inbounds pIn[i,j,1,k] = pIn[i,j,1,k] / 255
@inbounds pIn[i,j,1,k] = pIn[i,j,1,k] - meanImg[i,j]
end
end
end
return
end
function _CUDA_normalize_images(pIn,meanImg)
_CUDA_normalize_images(pIn,meanImg,size(pIn,1),size(pIn,2),size(pIn,4))
end
function CUDA_normalize_images(pIn,meanImg)
CUDA.@sync @cuda threads=256 _CUDA_normalize_images(pIn,meanImg)
end
function CUDA_preprocess(pIn,pOut)
n = size(pIn,4)
w_in=size(pIn,1)
h_in=size(pIn,2)
w_out=size(pOut,1)
h_out=size(pOut,2)
CUDA.@sync @cuda threads=(16,16) _CUDA_preprocess(pIn,pOut,w_in,h_in,w_out,h_out,n)
end
function _CUDA_preprocess(pIn,pOut,w_in,h_in,w_out,h_out,n)
index_i = blockDim().y * (blockIdx().y-1) + threadIdx().y
index_j = blockDim().x * (blockIdx().x-1) + threadIdx().x
stride_i = blockDim().y * gridDim().y
stride_j = blockDim().x * gridDim().x
for k=1:n
for j=index_j:stride_j:h_out
for i=index_i:stride_i:w_out
jIn = div(j*h_in, h_out)
iIn = div(i*w_in, w_out)
@inbounds pOut[j,i,1,k] = Float32(pIn[iIn,jIn,1,k])
end
end
end
return
end
function _CUDA_blur_x(pIn,pOut,w_in,h_in,gauss,n)
c = blockIdx().z
b = blockIdx().y
a = threadIdx().x
while (a<=w_in)
if ((a <= w_in)&&(b <= h_in))&&(c <=n)
temp = 0.0
for yy = 1:9
new_y = yy-5 + a
if new_y<1
new_y=abs(new_y)+1
end
if new_y>w_in
new_y = w_in - (new_y - w_in)
end
@inbounds temp = temp + Float32(pIn[new_y,b,1,c]) * gauss[yy]
end
@inbounds pOut[a,b,1,c] = temp
end
a += blockDim().x*blockIdx().x
end
return nothing
end
function _CUDA_blur_x(pIn,pOut,gauss)
_CUDA_blur_x(pIn,pOut,size(pIn,1),size(pIn,2),gauss,size(pIn,4))
end
function CUDA_blur_x(pIn,pOut,gauss)
numblocks_x = ceil(Int,size(pOut,1)/ 256)
numblocks_y = size(pOut,2)
numblocks_z = size(pOut,4)
CUDA.@sync @cuda threads=256 blocks=(numblocks_x,numblocks_y,numblocks_z) _CUDA_blur_x(pIn,pOut,gauss)
end
function _CUDA_blur_y(pIn,pOut,gauss)
_CUDA_blur_y(pIn,pOut,size(pIn,1),size(pIn,2),gauss,size(pIn,4))
end
function CUDA_blur_y(pIn,pOut,gauss)
numblocks_x = ceil(Int,size(pOut,2)/ 256)
numblocks_y = size(pOut,1)
numblocks_z = size(pOut,4)
CUDA.@sync @cuda threads=256 blocks=(numblocks_x,numblocks_y,numblocks_z) _CUDA_blur_y(pIn,pOut,gauss)
end
function _CUDA_blur_y(pIn,pOut,w_in,h_in,gauss,n)
c = blockIdx().z
b = blockIdx().y
a = threadIdx().x
while (a<=h_in)
if ((a <= h_in)&&(b <= w_in))&&(c <=n)
temp = 0.0
for yy = 1:9
new_y = yy-5 + a
if new_y<1
new_y=abs(new_y)+1
end
if new_y>h_in
new_y = h_in - (new_y - h_in)
end
@inbounds temp = temp + Float32(pIn[b,new_y,1,c]) * gauss[yy]
end
@inbounds pOut[b,a,1,c] = temp
end
a += blockDim().x*blockIdx().x
end
return nothing
end
function _CUDA_flip_xy(pIn,pOut,w_in,h_in,n)
c = blockIdx().y
b = blockIdx().x
a = threadIdx().x
if ((a <= h_in)&&(b <= w_in))&&(c <=n)
@inbounds pOut[a,b,1,c] = pIn[b,a,1,c]
end
return
end
function _CUDA_flip_xy(pIn,pOut)
_CUDA_flip_xy(pIn,pOut,size(pIn,1),size(pIn,2),size(pIn,4))
end
function CUDA_flip_xy(pIn,pOut)
numblocks_x = size(pOut,2)
numblocks_y = size(pOut,4)
CUDA.@sync @cuda threads=256 blocks=(numblocks_x,numblocks_y) _CUDA_flip_xy(pIn,pOut)
end
| StackedHourglass | https://github.com/paulmthompson/StackedHourglass.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.5 | e57b9894ce0f47f3b346d4a375203084085e90c7 | code | 1152 |
mutable struct CUDA_Resize
input::CuArray{Float32,4}
xpass::CuArray{Float32,4}
ypass::CuArray{Float32,4}
gauss_x::CuArray{Float32,1}
gauss_y::CuArray{Float32,1}
resized::CuArray{Float32,4}
flip_xy::Bool
output::CuArray{Float32,4}
end
function CUDA_Resize(in_w,in_h,out_w,out_h,n,flip_xy=true)
input = convert(CuArray,zeros(Float32,in_w,in_h,1,n))
xpass = convert(CuArray,zeros(Float32,in_w,in_h,1,n))
ypass = convert(CuArray,zeros(Float32,in_w,in_h,1,n))
(gauss_x,gauss_y) = get_xy_gauss_cu((in_w,in_h),(out_w,out_h))
resized = convert(CuArray,zeros(Float32,out_w,out_h,1,n))
output = convert(CuArray,zeros(Float32,out_w,out_h,1,n))
CUDA_Resize(input,xpass,ypass,gauss_x,gauss_y,resized,flip_xy,output)
end
function lowpass_resize(cr::CUDA_Resize,input::AbstractArray{T,4}) where T
cr.input[:] = convert(CuArray,input)
CUDA_blur_x(cr.input,cr.xpass,cr.gauss_x)
CUDA_blur_y(cr.xpass,cr.ypass,cr.gauss_y)
CUDA_resize4(cr.ypass,cr.resized)
if cr.flip_xy
CUDA_flip_xy(cr.resized,cr.output)
else
cr.output[:] = cr.resized
end
nothing
end
| StackedHourglass | https://github.com/paulmthompson/StackedHourglass.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.5 | e57b9894ce0f47f3b346d4a375203084085e90c7 | code | 2561 |
mutable struct Gaussian_Pyramid
dims::Array{Tuple{Int64,Int64},1}
imgs::Array{Array{Float64,2},1}
kerns::Array{Tuple{KernelFactors.ReshapedOneD,KernelFactors.ReshapedOneD},1}
end
function Gaussian_Pyramid(in_sz::Tuple)
Gaussian_Pyramid([in_sz],[zeros(Float64,in_sz)],
Array{Tuple{KernelFactors.ReshapedOneD,KernelFactors.ReshapedOneD},1}())
end
function Gaussian_Pyramid(in_sz::Tuple,out_sz::Tuple)
mygauss=Gaussian_Pyramid(in_sz)
if (in_sz[1] * in_sz[2]) > (out_sz[1] * out_sz[2])
println("Downsampling pyramid")
new_sz = (div(in_sz[1],2),div(in_sz[2],2))
#push!(mygauss.dims,new_sz)
#push!(mygauss.imgs,zeros(Float64,new_sz))
#push!(mygauss.kerns,make_gaussian_kernel(in_sz,new_sz))
old_sz = in_sz
while ((new_sz[1] > out_sz[1])&&(new_sz[2] > out_sz[2]))
push!(mygauss.dims,new_sz)
push!(mygauss.imgs,zeros(Float64,new_sz))
push!(mygauss.kerns,make_gaussian_kernel(old_sz,new_sz))
old_sz = new_sz
new_sz = (div(new_sz[1],2),div(new_sz[2],2))
end
if mygauss.dims[end] != out_sz
push!(mygauss.dims,out_sz)
push!(mygauss.imgs,zeros(Float64,out_sz))
push!(mygauss.kerns,make_gaussian_kernel(new_sz,out_sz))
end
else
println("Upsampling pyramid")
new_sz = (in_sz[1]*2,in_sz[2]*2)
old_sz = in_sz
#push!(mygauss.dims,new_sz)
#push!(mygauss.imgs,zeros(Float64,new_sz))
#push!(mygauss.kerns,make_gaussian_kernel(in_sz,new_sz))
while ((new_sz[1] <= out_sz[1]) && (new_sz[2] <= out_sz[2]))
push!(mygauss.dims,new_sz)
push!(mygauss.imgs,zeros(Float64,new_sz))
push!(mygauss.kerns,make_gaussian_kernel(old_sz,new_sz))
old_sz = new_sz
new_sz = (new_sz[1]*2,new_sz[2]*2)
end
if mygauss.dims[end] != out_sz
push!(mygauss.dims,out_sz)
push!(mygauss.imgs,zeros(Float64,out_sz))
push!(mygauss.kerns,make_gaussian_kernel(new_sz,out_sz))
end
end
mygauss
end
function lowpass_filter_resize(gauss::Gaussian_Pyramid)
for k=1:length(gauss.kerns)
lowpass_filter_resize!(gauss.imgs[k],gauss.imgs[k+1],gauss.kerns[k])
end
end
function lowpass_filter_resize(gauss::Gaussian_Pyramid,input::AbstractArray{Float64,2},output::AbstractArray{Float64,2})
gauss.imgs[1][:] = input
lowpass_filter_resize(gauss)
output[:] = gauss.imgs[end]
nothing
end
| StackedHourglass | https://github.com/paulmthompson/StackedHourglass.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.5 | e57b9894ce0f47f3b346d4a375203084085e90c7 | code | 5976 |
function pixel_mse(truth::Union{KnetArray{Float32,4},CuArray{Float32,4}},pred::HGType)
loss = sum((pred .- truth).^2)
loss / (size(pred,3) * size(pred,4))
end
function myfree(x::AutoGrad.Result)
#myfree(x.value)
end
function myfree(x::KnetArray)
Knet.KnetArrays.freeKnetPtr(x.ptr)
end
function myfree(x::CuArray)
end
function myfree(x::Array)
end
function gaussian_2d(x,y,x0,y0,sig_x=1,sig_y=1)
out=[exp.(-1/2 .* ((xi .- x0).^2 ./sig_x^2 + (yi .- y0).^2 ./sig_y^2)) for xi in x, yi in y]
out./sum(out)
end
function gaussian_1d(x,x0,sig)
[1/(sig*sqrt(2*pi))*exp.(-1/2 .* ((xi .- x0).^2 ./sig^2)) for xi in x]
end
function calculate_sigma((in_x,in_y),(out_x,out_y))
(0.75 * in_x/out_x , 0.75 * in_y/out_y)
end
function get_xy_gauss_cu((in_w,in_h),(out_w,out_h))
(sig_x,sig_y) = StackedHourglass.calculate_sigma((in_w,in_h),(out_w,out_h))
gauss_x = StackedHourglass.gaussian_1d(collect(-4:4),0,sig_x)
gauss_x_cu = convert(CuArray,gauss_x);
gauss_y = StackedHourglass.gaussian_1d(collect(-4:4),0,sig_y)
gauss_y_cu = convert(CuArray,gauss_y);
(gauss_x_cu, gauss_y_cu)
end
function create_padded_kernel(size_x,size_y,kl)
kernel = gaussian_2d(collect(-kl:1:kl),collect(-kl:1:kl),0,0)
kernel = kernel ./ maximum(kernel)
kernel_pad = zeros(Float32,size_x,size_y)
kernel_pad[(div(size_x,2)-kl):(div(size_x,2)+kl),(div(size_y,2)-kl):(div(size_y,2)+kl)] = kernel
kernel_pad
end
#https://github.com/JuliaImages/ImageTransformations.jl/blob/master/src/resizing.jl#L239
function lowpass_filter_resize(img::AbstractArray{T,2},sz::Tuple) where T
kern = make_gaussian_kernel(size(img),sz)
imgr = imresize(imfilter(img, kern, NA()), sz) #Can include method here in newest ImageTransformations
end
function lowpass_filter_resize!(img::AbstractArray{T,2},output::AbstractArray{T,2},kern) where T
imfilter!(img, img,kern, NA())
ImageTransformations.imresize!(output, img) #Can include method here in newest ImageTransformations
nothing
end
function make_gaussian_kernel(in_sz::Tuple,out_sz::Tuple)
σ = map((o,n)->0.75*o/n, in_sz, out_sz)
KernelFactors.gaussian(σ)
end
function low_pass_pyramid(im::AbstractArray{T,2},sz::Tuple) where T
new_sz = (div(size(im,1),2),div(size(im,2),2))
im2 = deepcopy(im)
while ((new_sz[1] > sz[1])&&(new_sz[2] > sz[2]))
im2=lowpass_filter_resize(im2,(new_sz))
#im2 = im2 ./ maximum(im2)
new_sz = (div(new_sz[1],2),div(new_sz[2],2))
end
im2=lowpass_filter_resize(im2,(sz))
end
function upsample_pyramid(im::AbstractArray{T,2},sz::Tuple) where T
new_sz = (size(im,1)*2,size(im,2)*2)
im2 = deepcopy(im)
while ((new_sz[1] <= sz[1])&&(new_sz[2] <= sz[2]))
im2=lowpass_filter_resize(im2,(new_sz))
new_sz = (new_sz[1]*2,new_sz[2]*2)
end
im2=lowpass_filter_resize(im2,(sz))
end
function predict_single_frame(hg,img::AbstractArray{T,2},atype=KnetArray) where T
temp_frame = convert(Array{Float32,2},img)
temp_frame = convert(Array{Float32,2},lowpass_filter_resize(temp_frame,(256,256)))
temp_frame = convert(atype,reshape(temp_frame,(256,256,1,1)))
my_features = features(hg)
set_testing(hg,false) #Turn off batch normalization for prediction
myout=hg(temp_frame)[4]
set_testing(hg,true) #Turn back on
myout=convert(Array{Float32,4},myout)
end
#=
Convert Discrete points to heatmap for deep learning
=#
function make_heatmap_labels(han,real_w=640,real_h=480,label_img_size=64)
d_points=make_discrete_all_whiskers(han)
labels=zeros(Float32,label_img_size,label_img_size,size(d_points,1),size(han.woi,1))
for i=1:size(labels,4)
for j=1:size(labels,3)
this_x = d_points[j,1,i] / real_w * label_img_size
this_y = d_points[j,2,i] / real_h * label_img_size
if (this_x !=0.0)&(this_y != 0.0)
labels[:,:,j,i] = WhiskerTracking.gaussian_2d(1.0:1.0:label_img_size,1.0:1.0:label_img_size,this_y,this_x)
labels[:,:,j,i] = labels[:,:,j,i] ./ maximum(labels[:,:,j,i])
end
end
end
labels
end
function make_heatmap_labels_keypoints(points::Array{Tuple,1},input_hw::Tuple,labels=zeros(Float32,64,64,length(points),1))
for j=1:size(points,1)
this_x = points[j][1] / input_hw[1] * size(labels,1)
this_y = points[j][2] / input_hw[2] * size(labels,2)
if (this_x !=0.0)&(this_y != 0.0)
labels[:,:,j,1] = gaussian_2d(1.0:1.0:size(labels,1),1.0:1.0:size(labels,2),this_x,this_y)
end
end
end
function get_labeled_frames(han,out_hw=256,h=480,w=640,frame_rate=25)
imgs=zeros(Float32,out_hw,out_hw,1,length(han.frame_list))
temp=zeros(UInt8,w,h)
for i=1:length(han.frame_list)
frame_time = han.frame_list[i] / frame_rate
WhiskerTracking.load_single_frame(frame_time,temp,han.wt.vid_name)
imgs[:,:,1,i]=Images.imresize(temp',(out_hw,out_hw))
end
imgs
end
function batch_predict(hg::StackedHourglass.NN,input_images::CuArray{T,4},sub_input_images,
input_f,return_ind=4,batch_size=32,batch_per_load=4) where T
batch_predict(hg,KnetArray(input_images),sub_input_images,input_f,return_ind,batch_size,batch_per_load)
end
function batch_predict(hg::StackedHourglass.NN,input_images::KnetArray{T,4},sub_input_images::KnetArray{T,4},
input_f::KnetArray{T,4},return_ind=4,batch_size=32,batch_per_load=4) where T
input_hw=size(input_images,1)
output_hw=size(input_f,1)
my_features=size(input_f,3)
for k=0:(batch_per_load-1)
copyto!(sub_input_images,1,input_images,k*input_hw*input_hw*batch_size+1,input_hw*input_hw*batch_size)
myout=hg(sub_input_images)
copyto!(input_f,k*output_hw*output_hw*my_features*batch_size+1,myout[return_ind],1,length(myout[return_ind]))
for kk=1:length(myout)
Knet.KnetArrays.freeKnetPtr(myout[kk].ptr)
end
end
nothing
end
| StackedHourglass | https://github.com/paulmthompson/StackedHourglass.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.5 | e57b9894ce0f47f3b346d4a375203084085e90c7 | code | 4622 |
mutable struct Out_Layer <: NN
r1::Residual
w::PType4 #weights
b::PType4#biases
ms::KnetMoment #batch norm moments
bn_p::PType1 #batch norm parameters
training::Bool
end
function (c::Out_Layer)(x::HGType)
r1=c.r1(x)
out1 = conv4(c.w,r1); myfree(r1);
out2 = out1 .+ c.b; myfree(out1);
bn=batchnorm(out2,c.ms,c.bn_p,training=c.training); myfree(out2);
out3 = relu.(bn);
myfree(bn)
out3
end
function Out_Layer(in_dim::Int,atype=KnetArray)
r1=Residual(in_dim,in_dim,atype)
bn_p = bnparams(Float32,in_dim)
bn_p = Param(convert(atype{Float32,1},bn_p))
ms = bnmoments()
w = xavier_normal(Float32,1,1,in_dim,in_dim)
b = xavier_normal(Float32,1,1,in_dim,1)
w = Param(convert(atype,w))
b = Param(convert(atype,b))
Out_Layer(r1,w,b,ms,bn_p,true)
end
function set_testing(f::Out_Layer,training=false)
set_testing(f.r1,training)
f.training=training
nothing
end
struct FirstBlock <: NN
c1::Conv1
r1::Residual_skip
p1::Pool
r2::Residual
r3::Residual_skip
end
FirstBlock(N::Int,atype=KnetArray)=FirstBlock(Conv1(3,64,7,2,3,atype),Residual_skip(64,128,atype),Pool(),Residual(128,128,atype),Residual_skip(128,N,atype))
function (f::FirstBlock)(x::HGType)
c1=f.c1(x)
r1=f.r1(c1); myfree(c1);
p1=f.p1(r1); myfree(r1);
r2=f.r2(p1); myfree(p1);
r3=f.r3(r2); myfree(r2)
r3
end
function set_testing(f::FirstBlock,training=false)
set_testing(f.c1,training)
set_testing(f.r1,training)
set_testing(f.r2,training)
set_testing(f.r3,training)
nothing
end
struct Hourglass <: NN
n::Int64
up1::Residual
pool1::Pool
low1::Residual
low2::Union{Hourglass,Residual} #This could be a residual or another Hourglass
low3::Residual
up2::Unpool
end
function Hourglass(n::Int,f_num::Int,atype=KnetArray)
up1 = Residual(f_num,f_num,atype)
pool1 = Pool()
low1 = Residual(f_num,f_num,atype)
if n > 1
low2 = Hourglass(n-1,f_num,atype)
else
low2 = Residual(f_num,f_num,atype)
end
low3 = Residual(f_num,f_num,atype)
up2 = Unpool()
Hourglass(n,up1,pool1,low1,low2,low3,up2)
end
function (h::Hourglass)(x::HGType)
up1 = h.up1(x)
pool1 = h.pool1(x)
low1 = h.low1(pool1); myfree(pool1);
low2 = h.low2(low1); myfree(low1);
low3 = h.low3(low2); myfree(low2);
up2 = h.up2(low3); myfree(low3);
out = up1 .+ up2
myfree(up1); myfree(up2)
out
end
function set_testing(f::Hourglass,training=false)
set_testing(f.up1,training)
set_testing(f.low1,training)
set_testing(f.low2,training)
set_testing(f.low3,training)
nothing
end
struct HG2 <: NN
nstack::Int64
fb::FirstBlock
hg::Array{Hourglass,1}
o1::Array{Out_Layer,1}
c1::Array{Conv0,1}
merge_features::Array{Conv0,1}
merge_preds::Array{Conv0,1}
end
#=
N = Number of Channels (64 default)
K = number of features for prediction
nstack = number of hourglasses
=#
function HG2(N::Int,K::Int,nstack::Int,atype=KnetArray)
fb = FirstBlock(N,atype)
hg=[Hourglass(4,N,atype) for i=1:nstack];
o1=[Out_Layer(N,atype) for i=1:nstack];
c1=[Conv0(N,K,1,1,0,atype) for i=1:nstack];
merge_features=[Conv0(N,N,1,1,0,atype) for i=1:(nstack-1)]
merge_preds=[Conv0(K,N,1,1,0,atype) for i=1:(nstack-1)]
HG2(nstack,fb,hg,o1,c1,merge_features,merge_preds)
end
features(hg::HG2)=size(hg.merge_preds[1].w,3)
function (h::HG2)(x::HGType)
temp=h.fb(x)
preds=Array{typeof(temp),1}() #Can this be typed to be the same as input?
temps=Array{typeof(temp),1}(undef,h.nstack) #Can this be typed to be the same as input?
temps[1]=temp
for i=1:h.nstack
hg=h.hg[i](temps[i])
features=h.o1[i](hg)
pred=h.c1[i](features)
push!(preds,pred)
if i<h.nstack
m_features = h.merge_features[i](features)
m_preds = h.merge_preds[i](pred)
temp1 = m_features + m_preds
temps[i+1] = temp1 + temps[i]
myfree(m_features); myfree(m_preds); myfree(temp1)
end
myfree(hg); myfree(features);
end
myfree(temp)
for i=1:h.nstack
myfree(temps[i])
end
preds
end
function (h::HG2)(x,y)
preds=h(x)
loss=0.0f0
for i=1:h.nstack
loss += pixel_mse(y,preds[i])
end
loss
end
(h::HG2)(d::Knet.Data) = mean(h(x,y) for (x,y) in d)
function set_testing(f::HG2,training=false)
set_testing(f.fb,training)
for i=1:f.nstack
set_testing(f.hg[i],training)
set_testing(f.o1[i],training)
end
nothing
end
| StackedHourglass | https://github.com/paulmthompson/StackedHourglass.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.5 | e57b9894ce0f47f3b346d4a375203084085e90c7 | code | 4071 |
#=
Image augmentation will apply various transformations to the training images
and accompanying labels
=#
mutable struct ImageAugmentation
rotation::Bool
rotation_angles::Array{Float64,1}
flip_x::Bool
flip_y::Bool
set_bw::Bool
end
function ImageAugmentation()
default_rotations = [pi/6, pi/2, pi, 3*pi/2, -pi/6]
ImageAugmentation(true,default_rotations,true,true,true)
end
function rotation_augmentation(im,ll,im_out,l_out,ind,aug::ImageAugmentation,count)
for j in aug.rotation_angles
for k=1:size(im,3)
im_out[:,:,k,count] = imrotate(im[:,:,k,ind],j,ImageTransformations.Flat())[1:size(im,1),1:size(im,2)]
end
for k=1:size(ll,3)
l_out[:,:,k,count] = imrotate(ll[:,:,k,ind],j,0)[1:size(ll,1),1:size(ll,2)]
end
count += 1
end
count
end
function flip_x_augmentation(im,ll,im_out,l_out,ind,aug::ImageAugmentation,count)
im_out[:,:,:,count] = reverse(im[:,:,:,ind],dims=1)
l_out[:,:,:,count] = reverse(ll[:,:,:,ind],dims=1)
count+=1
end
function flip_y_augmentation(im,ll,im_out,l_out,ind,aug::ImageAugmentation,count)
im_out[:,:,:,count] = reverse(im[:,:,:,ind],dims=2)
l_out[:,:,:,count] = reverse(ll[:,:,:,ind],dims=2)
count+=1
end
function random_block(xdim,ydim,max_length)
x1 = rand(1:div(xdim,2))
x2 = rand(x1:(x1+max_length))
y1 = rand(1:div(ydim,2))
y2 = rand(y1:(y1+max_length))
(x1,x2,y1,y2)
end
function flip_bw_augmentation(im,ll,im_out,l_out,ind,aug::ImageAugmentation,count)
#Random Black
(x1,x2,y1,y2) = random_block(size(im,1),size(im,2),5)
im_out[:,:,:,count] = im[:,:,:,ind]
l_out[:,:,:,count] = ll[:,:,:,ind]
im_out[x1:x2,y1:y2,:,count] .= 0.0
count+=1
#Random White
(x1,x2,y1,y2) = random_block(size(im,1),size(im,2),5)
im_out[:,:,:,count] = im[:,:,:,ind]
l_out[:,:,:,count] = ll[:,:,:,ind]
im_out[x1:x2,y1:y2,:,count] .= 1.0
count+=1
end
function image_augmentation(im,ll,aug::ImageAugmentation)
rot_size = 0
flip_x_size = 0
flip_y_size = 0
set_bw_size = 0
if aug.rotation
rot_size += length(aug.rotation_angles)
end
if aug.flip_x
flip_x_size = 1
end
if aug.flip_y
flip_y_size = 1
end
if aug.set_bw
set_bw_size = 2
end
array_size = rot_size + flip_x_size + flip_y_size + set_bw_size + 1
im_out = zeros(Float32,size(im,1),size(im,2),size(im,3),size(im,4) * array_size)
l_out = zeros(Float32,size(ll,1),size(ll,2),size(ll,3),size(ll,4) * array_size)
count=1
for i=1:size(im,4)
im_out[:,:,:,count] = im[:,:,:,i]
l_out[:,:,:,count] = ll[:,:,:,i]
count += 1
#rotations
if aug.rotation
count = rotation_augmentation(im,ll,im_out,l_out,i,aug,count)
end
#Flip x
if aug.flip_x
count = flip_x_augmentation(im,ll,im_out,l_out,i,aug,count)
end
#Flip Y
if aug.flip_y
count = flip_y_augmentation(im,ll,im_out,l_out,i,aug,count)
end
if aug.set_bw
count = flip_bw_augmentation(im,ll,im_out,l_out,i,aug,count)
end
# 0.75 Scale (zoom in)
#1.25 Scale (Reflect around places where image is empty)
end
#Shuffle Positions
myinds=Random.shuffle(collect(1:size(im_out,4)));
im_out=im_out[:,:,:,myinds]
l_out=l_out[:,:,:,myinds]
(im_out,l_out)
end
function normalize_images(ii)
mean_img = mean(ii,dims=4)[:,:,:,1]
std_img = std(ii,dims=4)[:,:,:,1]
std_img[std_img .== 0.0] .= 1
ii = (ii .- mean_img) ./ std_img
min_ref = minimum(ii)
ii = ii .- min_ref
max_ref = maximum(ii)
ii = ii ./ max_ref
(mean_img,std_img,min_ref,max_ref)
end
function normalize_new_images(ii::KnetArray,mean_img::Array,std_img,min_ref,max_ref)
normalize_new_images(ii,convert(KnetArray,mean_img),convert(KnetArray,std_img),min_ref,max_ref)
end
function normalize_new_images(ii,mean_img)
ii = ii ./ 255
ii = ii .- mean_img
end
| StackedHourglass | https://github.com/paulmthompson/StackedHourglass.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.5 | e57b9894ce0f47f3b346d4a375203084085e90c7 | code | 5470 |
#=
Loads a single image from a filename and converts to the expected 256x256 size
=#
function load_single_image(filename::String,imgs,ii,x_off,y_off)
this_img=load(filename)
x_off[ii] = 256 / size(this_img,2)
y_off[ii] = 256 / size(this_img,1)
new_img=imresize(this_img,(256,256))
for i=1:size(imgs,2)
for j=1:size(imgs,1)
imgs[i,j,1,ii]=convert(Float32,new_img[j,i].r)
imgs[i,j,2,ii]=convert(Float32,new_img[j,i].g)
imgs[i,j,3,ii]=convert(Float32,new_img[j,i].b)
end
end
nothing
end
function make_all_labels(ll,xo,yo,j_a)
for i=1:size(ll,4)
add_single_label(ll,i,xo,yo,j_a);
end
end
function add_single_label(ll,ii,x_off,y_off,j_a,ds=4)
for i=1:size(ll,3)
xo=round(Int64,x_off[ii] * j_a[1,i,ii]/ds)
yo=round(Int64,y_off[ii] * j_a[2,i,ii]/ds)
ll[:,:,i,ii] = gaussian_2d(1.0:1.0:size(ll,1),1.0:1.0:size(ll,2),xo,yo)
if maximum(ll[:,:,i,ii])>0
ll[:,:,i,ii] = ll[:,:,i,ii] ./ maximum(ll[:,:,i,ii])
end
end
end
#=
Saving Hourglass Model
=#
function save_hourglass(name,x)
count=[1];
file=matopen(name,"w")
save_nn(x,file,count)
close(file)
end
function save_nn(x,file,count)
for f in fieldnames(typeof(x))
f1=getfield(x,f)
if typeof(f1) <: NN
save_nn(f1,file,count)
elseif eltype(f1) <: NN
for i=1:length(f1)
save_nn(f1[i],file,count)
end
else
if f == :w
write(file,string("w_",count[1]),convert(Array,f1.value))
count[1]+=1
elseif f == :b
write(file,string("b_",count[1]),convert(Array,f1.value))
count[1]+=1
elseif f == :ms
write(file,string("ms_mo_",count[1]),f1.momentum)
write(file,string("ms_mean_",count[1]),convert(Array,f1.mean))
write(file,string("ms_var_",count[1]),convert(Array,f1.var))
count[1]+=1
elseif f == :bn_p
write(file,string("bn_p_",count[1]),convert(Array,f1.value))
count[1]+=1
end
end
end
end
#=
Loading Hourglass Model
=#
function load_hourglass(name,x,atype=KnetArray)
count=[1];
file=matopen(name,"r")
load_nn(x,file,count,atype)
close(file)
end
function load_nn(x,file,count,atype=KnetArray)
for f in fieldnames(typeof(x))
f1=getfield(x,f)
if typeof(f1) <: NN
load_nn(f1,file,count,atype)
elseif eltype(f1) <: NN
for i=1:length(f1)
load_nn(f1[i],file,count,atype)
end
else
if f == :w
setfield!(x,f,Param(convert(atype,read(file,string("w_",count[1])))))
count[1]+=1
elseif f == :b
xx = read(file,string("b_",count[1]))
if typeof(xx) == Float32
xxx = zeros(Float32,1,1,1,1)
xxx[1] = xx
setfield!(x,f,Param(convert(atype,xxx)))
else
setfield!(x,f,Param(convert(atype,xx)))
end
count[1]+=1
elseif f == :ms
x.ms.momentum=read(file,string("ms_mo_",count[1]))
xx=read(file,string("ms_mean_",count[1]))
if typeof(xx) == Float32
x.ms.mean = convert(atype,[xx])
else
x.ms.mean = convert(atype,xx)
end
xx=read(file,string("ms_var_",count[1]))
if typeof(xx) == Float32
x.ms.var = convert(atype,[xx])
else
x.ms.var = convert(atype,xx)
end
count[1]+=1
elseif f == :bn_p
xx = read(file,string("bn_p_",count[1]))
if typeof(xx) == Float32
x.bn_p = Param(convert(atype,[xx]))
else
x.bn_p = Param(convert(atype,xx))
end
count[1]+=1
end
end
end
end
#=
Change the number of input or output features or dimensions for hourglass model
=#
function change_hourglass(hg::HG2,feature_num::Int,input_dim::Int,output_dim::Int,atype=KnetArray)
change_hourglass_input(hg,feature_num,input_dim,atype)
change_hourglass_output(hg,feature_num,output_dim,atype)
nothing
end
function change_hourglass_input(hg::HG2,feature_num::Int,input_dim::Int,atype=KnetArray)
#Input transform
hg.fb.c1.w = Param(convert(atype,xavier_normal(Float32,7,7,input_dim,64)))
hg.fb.c1.b = Param(convert(atype,xavier_normal(Float32,1,1,64,1)))
hg.fb.c1.bn_p = Param(convert(atype{Float32,1},bnparams(input_dim)))
hg.fb.c1.ms = bnmoments()
nothing
end
function change_hourglass_output(hg::HG2,feature_num::Int,output_dim::Int,atype=KnetArray)
for i=1:length(hg.c1)
hg.c1[i].w = Param(convert(atype,xavier_normal(Float32,1,1,feature_num,output_dim)))
hg.c1[i].b = Param(convert(atype,xavier_normal(Float32,1,1,output_dim,1)))
end
for i=1:length(hg.merge_preds)
hg.merge_preds[i].w = Param(convert(atype,xavier_normal(Float32,1,1,output_dim,feature_num)))
hg.merge_preds[i].b = Param(convert(atype,xavier_normal(Float32,1,1,feature_num,1)))
end
nothing
end
| StackedHourglass | https://github.com/paulmthompson/StackedHourglass.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.5 | e57b9894ce0f47f3b346d4a375203084085e90c7 | code | 3155 |
mutable struct Conv1 <: NN
w::PType4 #weights
b::PType4 #biases
ms::KnetMoment #batch norm moments
bn_p::PType1 #batch norm parameters
stride::Int64
padding::Int64
training::Bool
end
function (c::Conv1)(x::HGType)
bn = batchnorm(x,c.ms,c.bn_p,training=c.training)
relu_out = relu.(bn)
output1 = conv4(c.w,relu_out,stride=c.stride,padding=c.padding)
output2 = output1 .+ c.b
myfree(bn); myfree(relu_out); myfree(output1)
output2
end
function Conv1(in_dim::Int,out_dim::Int,k_s,stride,padding,atype=KnetArray)
bn_p = bnparams(Float32,in_dim)
bn_p = Param(convert(atype{Float32,1},bn_p))
ms = bnmoments()
w = xavier_normal(Float32,k_s,k_s,in_dim,out_dim)
b = xavier_normal(Float32,1,1,out_dim,1)
w = Param(convert(atype,w))
b = Param(convert(atype,b))
Conv1(w,b,ms,bn_p,stride,padding,true)
end
function set_testing(f::Conv1,training=false)
f.training=training
nothing
end
mutable struct Conv0 <: NN
w::PType4 #weights
b::PType4 #biases
stride::Int64
padding::Int64
end
function (c::Conv0)(x::HGType)
out1=conv4(c.w,x,stride=c.stride,padding=c.padding)
out2 = out1 .+ c.b
myfree(out1)
out2
end
function Conv0(in_dim::Int,out_dim::Int,k_s,stride,padding,atype=KnetArray)
w = xavier_normal(Float32,k_s,k_s,in_dim,out_dim)
b = xavier_normal(Float32,1,1,out_dim,1)
w = Param(convert(atype,w))
b = Param(convert(atype,b))
Conv0(w,b,stride,padding)
end
struct Residual <: NN
c1::Conv1
c2::Conv1
c3::Conv1
end
function (r::Residual)(x::HGType)
c1=r.c1(x)
c2=r.c2(c1)
output = r.c3(c2) .+ x
myfree(c1); myfree(c2)
output
end
function Residual(in_dim::Int,out_dim::Int,atype=KnetArray)
c1=Conv1(in_dim,div(out_dim,2),1,1,0,atype)
c2=Conv1(div(out_dim,2),div(out_dim,2),3,1,1,atype)
c3=Conv1(div(out_dim,2),out_dim,1,1,0,atype)
Residual(c1,c2,c3)
end
function set_testing(f::Residual,training=false)
set_testing(f.c1,training)
set_testing(f.c2,training)
set_testing(f.c3,training)
nothing
end
mutable struct Residual_skip <: NN
w::PType4
b::PType4
c1::Conv1
c2::Conv1
c3::Conv1
end
function (r::Residual_skip)(x::HGType)
residual1 = conv4(r.w,x,stride=1)
residual2 = residual1 .+ r.b
c1=r.c1(x)
c2=r.c2(c1)
output = r.c3(c2) .+ residual2
myfree(c1); myfree(c2); myfree(residual1); myfree(residual2);
output
end
function Residual_skip(in_dim::Int,out_dim::Int,atype=KnetArray)
c1=Conv1(in_dim,div(out_dim,2),1,1,0,atype)
c2=Conv1(div(out_dim,2),div(out_dim,2),3,1,1,atype)
c3=Conv1(div(out_dim,2),out_dim,1,1,0,atype)
w = xavier_normal(Float32,1,1,in_dim,out_dim)
b = xavier_normal(Float32,1,1,out_dim,1)
w=Param(convert(atype,w))
b=Param(convert(atype,b))
Residual_skip(w,b,c1,c2,c3)
end
function set_testing(f::Residual_skip,training=false)
set_testing(f.c1,training)
set_testing(f.c2,training)
set_testing(f.c3,training)
nothing
end
struct Pool
end
(p::Pool)(x::HGType) = pool(x)
struct Unpool
end
(u::Unpool)(x::HGType) = unpool(x)
| StackedHourglass | https://github.com/paulmthompson/StackedHourglass.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.5 | e57b9894ce0f47f3b346d4a375203084085e90c7 | code | 3804 | #=
Modified from SubpixelRegistration.jl
https://github.com/romainFr/SubpixelRegistration.jl
Copyright (c) 2016: Romain Franconville.
Under MIT "Expat" License
Original Publication:
=#
function subpixel(imgRef::AbstractArray{T,N},imgF::AbstractArray{T,N},usfac) where {T,N}
if usfac==1
## Whole-pixel shift - Compute crosscorrelation by an IFFT and locate the peak
L = length(imgRef)
CC = ifft(imgRef.*conj(imgF))
loc = argmax(abs.(CC))
CCmax=CC[loc]
indi = size(imgRef)
ind2 = tuple([div(x,2) for x in indi]...)
#locI = [ind2sub(indi,loc)...]
locI = [Tuple(loc)...]
shift = zeros(size(locI))
for i in eachindex(locI)
if locI[i]>ind2[i]
shift[i]=locI[i]-indi[i]-1
else shift[i]=locI[i]-1
end
end
shift
else
## Partial pixel shift
##First upsample by a factor of 2 to obtain initial estimate
##Embed Fourier data in a 2x larger array
dimR = [size(imgRef)...]
ranges = [(x+1-div(x,2)):(x+1+div(x-1,2)) for x in dimR]
dimRL = map(x -> x*2, dimR)
CC = zeros(Complex{Float32},tuple(dimRL...))
#CC = convert(CuArray,CC)
CC[ranges...] = fftshift(imgRef).*conj(fftshift(imgF))
## Compute crosscorrelation and locate the peak
CC = ifft(ifftshift(CC))
loc = argmax(abs.(CC))
indi = size(CC)
#locI = [ind2sub(indi,loc)...]
locI = [Tuple(loc)...]
CCmax = CC[loc]
## Obtain shift in original pixel grid from the position of the crosscorrelation peak
ind2 = tuple([div(x,2) for x in indi]...)
shift = zeros(size(locI))
for i in eachindex(locI)
if locI[i]>ind2[i]
shift[i]=locI[i]-indi[i]-1
else shift[i]=locI[i]-1
end
end
shift = shift/2
## If upsampling > 2, then refine estimate with matrix multiply DFT
if usfac > 2
### DFT Computation ###
# Initial shift estimate in upsampled grid
shift = round.(Integer,shift*usfac)/usfac
dftShift = div(ceil(usfac*1.5),2) ## center of output array at dftshift+1
## Matrix multiplies DFT around the current shift estimate
CC = conj(dftups(imgF.*conj(imgRef),ceil(Integer,usfac*1.5),usfac,dftShift.-shift*usfac))/(prod(ind2)*usfac^2)
## Locate maximum and map back to original pixel grid
loc = argmax(abs.(CC))
locI = Tuple(loc)
CCmax = CC[loc]
locI = map((x) -> x - dftShift - 1,locI)
for i in eachindex(shift)
shift[i]=shift[i]+locI[i]/usfac
end
end
## If its only one row or column the shift along that dimension has no effect. Set to zero.
shift[[div(x,2) for x in size(imgRef)].==1].=0
end
reverse(shift)
end
function dftups(inp::AbstractArray{T,N},no,usfac::Int=1,offset=zeros(N)) where {T,N}
sz = [size(inp)...]
permV = 1:N
for i in permV
inp = permutedims(inp,[i;deleteat!(collect(permV),i)])
kern = exp.(Complex{Float32}(-1im*2*pi/(sz[i]*usfac))*((0:(no-1)).-offset[i])*transpose(ifftshift(0:(sz[i]-1)).-floor(sz[i]/2)))
#kern = convert(CuArray{Complex{Float32}},kern)
d = size(inp)[2:N]
inp = kern * reshape(inp, Val(2))
inp = reshape(inp,(no,d...))
end
permutedims(inp,collect(ndims(inp):-1:1))
end
function calculate_subpixel(preds,offset,input,k_fft)
@distributed for jj=1:size(input,4)
for kk=1:size(input,3)
preds[kk,1:2,jj+offset] = convert(Array{Float32,1},subpixel(input[:,:,kk,jj],k_fft,4)) .+ 32.0f0
end
end
nothing
end
| StackedHourglass | https://github.com/paulmthompson/StackedHourglass.jl.git |
|
[
"BSD-3-Clause"
] | 0.1.5 | e57b9894ce0f47f3b346d4a375203084085e90c7 | docs | 320 | # StackedHourglass.jl
This is a Julia implementation of a stacked hourglass neural network for pose detection. This model was first described in Newell et al 2016: <br>
https://arxiv.org/abs/1603.06937
An excellent PyTorch implemention can be found here: <br>
https://github.com/princeton-vl/pytorch_stacked_hourglass
| StackedHourglass | https://github.com/paulmthompson/StackedHourglass.jl.git |
|
[
"MIT"
] | 0.1.1 | 7e2ddf219f42be2d7ab61f5d6f21ac5cadc78efb | code | 376 | export GaltonWatson
# Dist = Distribution of generation
# Len = Number of generations
function GaltonWatson(; Dist = Poisson(1.1), Len = 30)
# Declaring serie
Population = ones(Len + 1)
# Generatting serie
for i in 1:Len
Population[i+1] = sum(rand(Dist, trunc(Int, Population[i])))
end
# Return serie
return Population
end | RandomProcesses | https://github.com/joaquimbermudes/RandomProcesses.jl.git |
|
[
"MIT"
] | 0.1.1 | 7e2ddf219f42be2d7ab61f5d6f21ac5cadc78efb | code | 770 | export MarkovChain
# Alphabet = Values oc chain
# Init = Initial Value
# MProb = Probability Matix
# Len = lenght of serie
function MarkovChain(; Alphabet = ["A", "B", "C"], Init = "A" , MProb = [0.5 0.3 0.2; 0.1 0.7 0.2; 0.6 0.35 0.05], Len = 100)
# Declaring the output array
vecAlph = [Init]
# Declaring a index that I will use in loop
indice = 0
# Getting the lenght of alphabet
l = length(Alphabet)
# Generatting the Markov Chain
for i in 1:Len
for state in Alphabet
indice = (indice % l) + 1
if state == vecAlph[i]
append!(vecAlph, wsample(Alphabet, MProb[indice,:], 1))
end
end
end
# Return Markov Chain
return vecAlph
end | RandomProcesses | https://github.com/joaquimbermudes/RandomProcesses.jl.git |
|
[
"MIT"
] | 0.1.1 | 7e2ddf219f42be2d7ab61f5d6f21ac5cadc78efb | code | 321 | export Martingale
# Dist = Ditribution of increments
# Mean = Mean of distribution
# Len = Lenght of simulating serie
function Martingale(;Dist = Chisq(1), Mean = 1, Len = 1000)
# Declaring the increments
dM = rand(Dist, Len) .- Mean
# Return Martingale
return cumsum(dM)/std(cumsum(dM))
end
| RandomProcesses | https://github.com/joaquimbermudes/RandomProcesses.jl.git |
|
[
"MIT"
] | 0.1.1 | 7e2ddf219f42be2d7ab61f5d6f21ac5cadc78efb | code | 884 | export NeuralProcess
# Activate = list of activate function
# Initial = initial values
# Matrix = matrix of weights list
# Bias = Bias
# distErro = Error distribution
# Len = Lenght of serie
function NeuralProcess(;Activate, Initial = [0.5, 0.75], Matrix = [[2 0.2; -0.8 0.3], [-1 2]], Bias = [[0; 0], [0]], distErro = Normal(0, 0.2), Len = 100)
# initing serie
NeuralSerie = zeros(Len)
# generating serie
for j in 1:Len # Loop of serie lenght
for i in 1:length(Matrix) # loop for creante serie[j] value
function FunctionActvation(x; FunctionXYZ = Activate[i])
return FunctionXYZ(x)
end
Initial = FunctionActvation(Matrix[i] * Initial .+ Bias[i])
end
Initial = Initial + rand(distErro)
NeuralSerie[j] = Initial
end
# return serie
return NeuralSerie
end | RandomProcesses | https://github.com/joaquimbermudes/RandomProcesses.jl.git |
|
[
"MIT"
] | 0.1.1 | 7e2ddf219f42be2d7ab61f5d6f21ac5cadc78efb | code | 301 | export PoissonProcess
# Len = Lenght of sumullating serie
# lambda = Lambda parameter of Poisson distribution
function PoissonProcess(;Len = 1000, lambda = 0.01)
# Generatting Poisson increments
dP = rand(Poisson(lambda), Len)
# Return Poisson process
return cumsum(dP)
end | RandomProcesses | https://github.com/joaquimbermudes/RandomProcesses.jl.git |
|
[
"MIT"
] | 0.1.1 | 7e2ddf219f42be2d7ab61f5d6f21ac5cadc78efb | code | 281 | module RandomProcesses
using Random
using Distributions
using Statistics
include("GaltonWatson.jl")
include("MarkovChain.jl")
include("Martingale.jl")
include("NeuralProcess.jl")
include("PoissonProcess.jl")
include("RandomWalk.jl")
include("SARMA.jl")
include("Wiener.jl")
end
| RandomProcesses | https://github.com/joaquimbermudes/RandomProcesses.jl.git |
|
[
"MIT"
] | 0.1.1 | 7e2ddf219f42be2d7ab61f5d6f21ac5cadc78efb | code | 306 | export RandomWalk
# Len = Lenght of simulatting serie
# p = Probability of increment 1
function RandomWalk(;Len = 1000, p = 0.5)
# Generatting increment of serie (1 or -1)
dRW = (rand(Binomial(1, p), Len) .- 0.5) .* 2
# Return Random Walk
return cumsum(dRW)/std(cumsum(dRW))
end | RandomProcesses | https://github.com/joaquimbermudes/RandomProcesses.jl.git |
|
[
"MIT"
] | 0.1.1 | 7e2ddf219f42be2d7ab61f5d6f21ac5cadc78efb | code | 1630 | export SARMA
# InItialValues = Serie values for initialize the process
# InitialErrors = Serie errors for initialize the process
# AR = Autoregressive parameters [AR_n, AR_{n-1}, ..., AR_1]
# MA = Moving average parameters [MA_n, MA_{n-1}, ..., MA_1]
# SAR = Seasonal autorregressive parameters [AR_{seasonal * n}, AR_{seasonal * (n-1)}, ..., AR_{seasonal}]
# SMA = Seasonal moving average parameters [MA_{seasonal * n}, MA_{seasonal * (n-1)}, ..., MA_{seasonal}]
# Seasonal = Lenght of seasonal lag
# Mean = Serie mean
# Std_Error = Standard desvio of generate error
# len = Simulatio lenght
function SARMA(;InitialVlues = [], InitialErrors = [], AR = [0], MA = [0], SAR = [0], SMA = [0], Seasonal = 1, Mean = 0, Std_Error = 1, Len = 12)
# Getting lenght of parameters
lenAR = length(AR)
lenMA = length(MA)
lenSAR = length(SAR)
lenSMA = length(SMA)
# Getting maximum lenght of parameters
lenMax = max(lenAR, lenMA, lenSAR * Seasonal, lenSMA * Seasonal)
# Initializing error serie
error = append!(InitialErrors, Std_Error .* Random.randn(Len))
# Initializing serie
if length(InitialValues) > 0
serie = InitialValues .- Mean
else
serie = error[1:len]
end
# Generating simulating serie
for i in (lenMax+1):Len
append!(serie, sum(MA .* error[(i-lenMA):(i-1)]) + sum(SMA .* error[(i-lenSMA*Seasonal):Seasonal:(i-Seasonal)])
+ sum(SAR .* serie[(i-lenSAR*Seasonal):Seasonal:(i-Seasonal)]) + error[i] + sum(AR .* serie[(i-lenAR):(i-1)]))
end
# Return serie with mean
return serie .+ Mean
end
| RandomProcesses | https://github.com/joaquimbermudes/RandomProcesses.jl.git |
|
[
"MIT"
] | 0.1.1 | 7e2ddf219f42be2d7ab61f5d6f21ac5cadc78efb | code | 229 | export Wiener
# Len = lenght of simulatting serie
function Wiener(Len = 1000)
# Generatting normal random increments
dW = Random.randn(Len)
# Return Wiener process
return cumsum(dW)/std(cumsum(dW))
end | RandomProcesses | https://github.com/joaquimbermudes/RandomProcesses.jl.git |
|
[
"MIT"
] | 0.1.1 | 7e2ddf219f42be2d7ab61f5d6f21ac5cadc78efb | docs | 1468 | # RandomProcesses.jl
## Introduction
RandomProcesses.jl is a package for simulling stochastics processes in Julia in a easy way.
At the moment the package has 8 functions that simulling the following stochastic processes:
- SARMA
- Ramdom Walk
- Weiner
- Martingale
- Galton Watson
- Markov Chain
- Poisson
- Neural (simuling the results of neural network)
## Exemples
Importing RandomProcesses and PyPlot
```Julia
using RandomProcesses, PyPlot, Distributions
```
### Random Walk
```Julia
for _ in 1:5
plot(RandomWalk())
end
```
![RW.png](https://github.com/joaquimbermudes/RandomProcesses.jl/blob/main/Imgs/RW.png)
### Poisson Process
```Julia
for _ in 1:5
plot(PoissonProcess())
end
```
![Poisson.png](https://github.com/joaquimbermudes/RandomProcesses.jl/blob/main/Imgs/Poisson.png)
### Neural Process
```Julia
function f(x)
return exp.(x)./(1 .+ exp.(x))
end
function g(x)
return sum(x)
end
for _ in 1:5
plot(NeuralProcess(Activate = [f, g], Len = 30))
end
```
![Neural.png](https://github.com/joaquimbermudes/RandomProcesses.jl/blob/main/Imgs/Neural.png)
## Coments
1. Almost functions need the package "Distribution" for execute.
2. You has that declare a vector of functions in each leyaer for neural process execute.
3. This is my first package, please have pacience. Send criticisms and suggestions to joaquimacbermudes@gmail.com. I would also like to know out of curiosity in which projects the patent is being used.
| RandomProcesses | https://github.com/joaquimbermudes/RandomProcesses.jl.git |