Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
wikiann / README.md
system's picture
system HF staff
Update files from the datasets library (from 1.2.0)
86083d6
|
raw
history blame
8.96 kB
---
annotations_creators:
- machine-generated
language_creators:
- crowdsourced
languages:
ace:
- ace
af:
- af
als:
- als
am:
- am
an:
- an
ang:
- ang
ar:
- ar
arc:
- arc
arz:
- arz
as:
- as
ast:
- ast
ay:
- ay
az:
- az
ba:
- ba
bar:
- bar
be:
- be
bg:
- bg
bh:
- bh
bn:
- bn
bo:
- bo
br:
- br
bs:
- bs
ca:
- ca
cdo:
- cdo
ce:
- ce
ceb:
- ceb
ckb:
- ckb
co:
- co
crh:
- crh
cs:
- cs
csb:
- csb
cv:
- cv
cy:
- cy
da:
- da
de:
- de
diq:
- diq
dv:
- dv
el:
- el
en:
- en
eo:
- eo
es:
- es
et:
- et
eu:
- eu
ext:
- ext
fa:
- fa
fi:
- fi
fo:
- fo
fr:
- fr
frr:
- frr
fur:
- fur
fy:
- fy
ga:
- ga
gan:
- gan
gd:
- gd
gl:
- gl
gn:
- gn
gu:
- gu
hak:
- hak
he:
- he
hi:
- hi
hr:
- hr
hsb:
- hsb
hu:
- hu
hy:
- hy
ia:
- ia
id:
- id
ig:
- ig
ilo:
- ilo
io:
- io
is:
- is
it:
- it
ja:
- ja
jbo:
- jbo
jv:
- jv
ka:
- ka
kk:
- kk
km:
- km
kn:
- kn
ko:
- ko
ksh:
- ksh
ku:
- ku
ky:
- ky
la:
- la
lb:
- lb
li:
- li
lij:
- lij
lmo:
- lmo
ln:
- ln
lt:
- lt
lv:
- lv
mg:
- mg
mhr:
- mhr
mi:
- mi
min:
- min
mk:
- mk
ml:
- ml
mn:
- mn
mr:
- mr
ms:
- ms
mt:
- mt
mwl:
- mwl
my:
- my
mzn:
- mzn
nap:
- nap
nds:
- nds
ne:
- ne
nl:
- nl
nn:
- nn
'no':
- 'no'
nov:
- nov
oc:
- oc
or:
- or
os:
- os
other-bat-smg:
- other-bat-smg
other-be-x-old:
- other-be-x-old
other-cbk-zam:
- other-cbk-zam
other-eml:
- other-eml
other-fiu-vro:
- other-fiu-vro
other-map-bms:
- other-map-bms
other-simple:
- other-simple
other-zh-classical:
- other-zh-classical
other-zh-min-nan:
- other-zh-min-nan
other-zh-yue:
- other-zh-yue
pa:
- pa
pdc:
- pdc
pl:
- pl
pms:
- pms
pnb:
- pnb
ps:
- ps
pt:
- pt
qu:
- qu
rm:
- rm
ro:
- ro
ru:
- ru
rw:
- rw
sa:
- sa
sah:
- sah
scn:
- scn
sco:
- sco
sd:
- sd
sh:
- sh
si:
- si
sk:
- sk
sl:
- sl
so:
- so
sq:
- sq
sr:
- sr
su:
- su
sv:
- sv
sw:
- sw
szl:
- szl
ta:
- ta
te:
- te
tg:
- tg
th:
- th
tk:
- tk
tl:
- tl
tr:
- tr
tt:
- tt
ug:
- ug
uk:
- uk
ur:
- ur
uz:
- uz
vec:
- vec
vep:
- vep
vi:
- vi
vls:
- vls
vo:
- vo
wa:
- wa
war:
- war
wuu:
- wuu
xmf:
- xmf
yi:
- yi
yo:
- yo
zea:
- zea
zh:
- zh
licenses:
- unknown
multilinguality:
- multilingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- structure-prediction
task_ids:
- named-entity-recognition
---
# Dataset Card for WikiANN
## Table of Contents
- [Dataset Card for WikiANN](#dataset-card-for-wikiann)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [Massively Multilingual Transfer for NER](https://github.com/afshinrahimi/mmner)
- **Repository:** [Massively Multilingual Transfer for NER](https://github.com/afshinrahimi/mmner)
- **Paper:** The original datasets come from the _Cross-lingual name tagging and linking for 282 languages_ [paper](https://www.aclweb.org/anthology/P17-1178/) by Xiaoman Pan et al. (2018). This version corresponds to the balanced train, dev, and test splits of the original data from the _Massively Multilingual Transfer for NER_ [paper](https://arxiv.org/abs/1902.00193) by Afshin Rahimi et al. (2019).
- **Leaderboard:**
- **Point of Contact:** [Afshin Rahimi](mailto:afshinrahimi@gmail.com) or [Lewis Tunstall](mailto:lewis.c.tunstall@gmail.com)
### Dataset Summary
WikiANN (sometimes called PAN-X) is a multilingual named entity recognition dataset consisting of Wikipedia articles annotated with LOC (location), PER (person), and ORG (organisation) tags in the IOB2 format. This version corresponds to the balanced train, dev, and test splits of Rahimi et al. (2019), which supports 176 of the 282 languages from the original WikiANN corpus.
### Supported Tasks and Leaderboards
- `named-entity-recognition`: The dataset can be used to train a model for named entity recognition in many languages, or evaluate the zero-shot cross-lingual capabilities of multilingual models.
### Languages
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
The original 282 datasets are associated with this article
```
@inproceedings{pan-etal-2017-cross,
title = "Cross-lingual Name Tagging and Linking for 282 Languages",
author = "Pan, Xiaoman and
Zhang, Boliang and
May, Jonathan and
Nothman, Joel and
Knight, Kevin and
Ji, Heng",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P17-1178",
doi = "10.18653/v1/P17-1178",
pages = "1946--1958",
abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating {``}silver-standard{''} annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.",
}
```
while the 176 languages supported in this version are associated with the following article
```
@inproceedings{rahimi-etal-2019-massively,
title = "Massively Multilingual Transfer for {NER}",
author = "Rahimi, Afshin and
Li, Yuan and
Cohn, Trevor",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P19-1015",
pages = "151--164",
}
```