weikaih's picture
Update README.md
cc6097c verified
|
raw
history blame
6.06 kB
metadata
dataset_info:
  features:
    - name: id
      dtype: string
    - name: question
      dtype: string
    - name: options
      list: string
    - name: answer
      dtype: string
    - name: task_plan
      dtype: string
    - name: image
      dtype: image
  splits:
    - name: 3d_how_many
      num_bytes: 964232493
      num_examples: 654
    - name: 3d_what
      num_bytes: 944850246
      num_examples: 645
    - name: 3d_where
      num_bytes: 989034725
      num_examples: 669
    - name: 3d_what_attribute
      num_bytes: 931184419
      num_examples: 639
    - name: 3d_where_attribute
      num_bytes: 897312251
      num_examples: 609
    - name: 3d_what_distance
      num_bytes: 836764094
      num_examples: 585
    - name: 3d_where_distance
      num_bytes: 925465404
      num_examples: 645
    - name: 3d_what_attribute_distance
      num_bytes: 970396774
      num_examples: 678
    - name: 3d_what_size
      num_bytes: 988177167
      num_examples: 675
    - name: 3d_where_size
      num_bytes: 898574558
      num_examples: 618
    - name: 3d_what_attribute_size
      num_bytes: 993251978
      num_examples: 678
    - name: 2d_how_many
      num_bytes: 40708392
      num_examples: 606
    - name: 2d_what
      num_bytes: 46567124
      num_examples: 681
    - name: 2d_where
      num_bytes: 47803083
      num_examples: 699
    - name: 2d_what_attribute
      num_bytes: 46026755
      num_examples: 657
    - name: 2d_where_attribute
      num_bytes: 47675852
      num_examples: 636
    - name: sg_what_object
      num_bytes: 24281703
      num_examples: 633
    - name: sg_what_attribute
      num_bytes: 26390284
      num_examples: 645
    - name: sg_what_relation
      num_bytes: 27153148
      num_examples: 618
  download_size: 10589322704
  dataset_size: 10645850450
configs:
  - config_name: default
    data_files:
      - split: 3d_how_many
        path: data/3d_how_many-*
      - split: 3d_what
        path: data/3d_what-*
      - split: 3d_where
        path: data/3d_where-*
      - split: 3d_what_attribute
        path: data/3d_what_attribute-*
      - split: 3d_where_attribute
        path: data/3d_where_attribute-*
      - split: 3d_what_distance
        path: data/3d_what_distance-*
      - split: 3d_where_distance
        path: data/3d_where_distance-*
      - split: 3d_what_attribute_distance
        path: data/3d_what_attribute_distance-*
      - split: 3d_what_size
        path: data/3d_what_size-*
      - split: 3d_where_size
        path: data/3d_where_size-*
      - split: 3d_what_attribute_size
        path: data/3d_what_attribute_size-*
      - split: 2d_how_many
        path: data/2d_how_many-*
      - split: 2d_what
        path: data/2d_what-*
      - split: 2d_where
        path: data/2d_where-*
      - split: 2d_what_attribute
        path: data/2d_what_attribute-*
      - split: 2d_where_attribute
        path: data/2d_where_attribute-*
      - split: sg_what_object
        path: data/sg_what_object-*
      - split: sg_what_attribute
        path: data/sg_what_attribute-*
      - split: sg_what_relation
        path: data/sg_what_relation-*

Dataset Card for TaskMeAnything-v1-imageqa-2024

TaskMeAnything-v1-imageqa-2024 benchmark dataset

🌐 Website | πŸ“‘ Paper | πŸ€— Huggingface | πŸ’» Interface

If you like our project, please give us a star ⭐ on GitHub for latest update.

TaskMeAnything-v1-2024

TaskMeAnything-v1-imageqa-2024 is a benchmark for reflecting the current progress of MLMs by automatically finding tasks that SOTA MLMs struggle with using the TaskMeAnything Top-K queries. This benchmark includes 3,279 2d questions, 7,095 3d questions, and 1,896 real image questions that the TaskMeAnything algorithm automatically approximated as challenging for over 12 popular MLMs.

The dataset contains 19 splits, while each splits contains 400+ questions from a specific task generator in TaskMeAnything-v1. For each row of dataset, it includes: image, question, options, answer and its corresponding task plan.

Load TaskMeAnything-v1-2024 ImageQA Dataset

import datasets

dataset_name = 'weikaih/TaskMeAnything-v1-imageqa-2024'
dataset = datasets.load_dataset(dataset_name, split = TASK_GENERATOR_SPLIT)

where TASK_GENERATOR_SPLIT is one of the task generators, eg, 2024_2d_how_many.

Evaluation Results

Overall

image/png

Breakdown performance on each task types

image/png

image/png

image/png

image/png

Out-of-Scope Use

This dataset should not be used for training models.

Disclaimers

TaskMeAnything and its associated resources are provided for research and educational purposes only. The authors and contributors make no warranties regarding the accuracy or reliability of the data and software. Users are responsible for ensuring their use complies with applicable laws and regulations. The project is not liable for any damages or losses resulting from the use of these resources.

Contact

Citation

BibTeX:

@article{zhang2024task,
  title={Task Me Anything},
  author={Zhang, Jieyu and Huang, Weikai and Ma, Zixian and Michel, Oscar and He, Dong and Gupta, Tanmay and Ma, Wei-Chiu and Farhadi, Ali and Kembhavi, Aniruddha and Krishna, Ranjay},
  journal={arXiv preprint arXiv:2406.11775},
  year={2024}
}