|
--- |
|
dataset_info: |
|
features: |
|
- name: id |
|
dtype: string |
|
- name: question |
|
dtype: string |
|
- name: options |
|
list: string |
|
- name: answer |
|
dtype: string |
|
- name: task_plan |
|
dtype: string |
|
- name: image |
|
dtype: image |
|
splits: |
|
- name: 3d_how_many |
|
num_bytes: 964232493.0 |
|
num_examples: 654 |
|
- name: 3d_what |
|
num_bytes: 944850246.0 |
|
num_examples: 645 |
|
- name: 3d_where |
|
num_bytes: 989034725.0 |
|
num_examples: 669 |
|
- name: 3d_what_attribute |
|
num_bytes: 931184419.0 |
|
num_examples: 639 |
|
- name: 3d_where_attribute |
|
num_bytes: 897312251.0 |
|
num_examples: 609 |
|
- name: 3d_what_distance |
|
num_bytes: 836764094.0 |
|
num_examples: 585 |
|
- name: 3d_where_distance |
|
num_bytes: 925465404.0 |
|
num_examples: 645 |
|
- name: 3d_what_attribute_distance |
|
num_bytes: 970396774.0 |
|
num_examples: 678 |
|
- name: 3d_what_size |
|
num_bytes: 988177167.0 |
|
num_examples: 675 |
|
- name: 3d_where_size |
|
num_bytes: 898574558.0 |
|
num_examples: 618 |
|
- name: 3d_what_attribute_size |
|
num_bytes: 993251978.0 |
|
num_examples: 678 |
|
- name: 2d_how_many |
|
num_bytes: 40708392.0 |
|
num_examples: 606 |
|
- name: 2d_what |
|
num_bytes: 46567124.0 |
|
num_examples: 681 |
|
- name: 2d_where |
|
num_bytes: 47803083.0 |
|
num_examples: 699 |
|
- name: 2d_what_attribute |
|
num_bytes: 46026755.0 |
|
num_examples: 657 |
|
- name: 2d_where_attribute |
|
num_bytes: 47675852.0 |
|
num_examples: 636 |
|
- name: sg_what_object |
|
num_bytes: 24281703.0 |
|
num_examples: 633 |
|
- name: sg_what_attribute |
|
num_bytes: 26390284.0 |
|
num_examples: 645 |
|
- name: sg_what_relation |
|
num_bytes: 27153148.0 |
|
num_examples: 618 |
|
download_size: 10589322704 |
|
dataset_size: 10645850450.0 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: 3d_how_many |
|
path: data/3d_how_many-* |
|
- split: 3d_what |
|
path: data/3d_what-* |
|
- split: 3d_where |
|
path: data/3d_where-* |
|
- split: 3d_what_attribute |
|
path: data/3d_what_attribute-* |
|
- split: 3d_where_attribute |
|
path: data/3d_where_attribute-* |
|
- split: 3d_what_distance |
|
path: data/3d_what_distance-* |
|
- split: 3d_where_distance |
|
path: data/3d_where_distance-* |
|
- split: 3d_what_attribute_distance |
|
path: data/3d_what_attribute_distance-* |
|
- split: 3d_what_size |
|
path: data/3d_what_size-* |
|
- split: 3d_where_size |
|
path: data/3d_where_size-* |
|
- split: 3d_what_attribute_size |
|
path: data/3d_what_attribute_size-* |
|
- split: 2d_how_many |
|
path: data/2d_how_many-* |
|
- split: 2d_what |
|
path: data/2d_what-* |
|
- split: 2d_where |
|
path: data/2d_where-* |
|
- split: 2d_what_attribute |
|
path: data/2d_what_attribute-* |
|
- split: 2d_where_attribute |
|
path: data/2d_where_attribute-* |
|
- split: sg_what_object |
|
path: data/sg_what_object-* |
|
- split: sg_what_attribute |
|
path: data/sg_what_attribute-* |
|
- split: sg_what_relation |
|
path: data/sg_what_relation-* |
|
--- |
|
|
|
# Dataset Card for TaskMeAnything-v1-imageqa-2024 |
|
<h2 align="center"> TaskMeAnything-v1-imageqa-2024 benchmark dataset</h2> |
|
|
|
<h2 align="center"> <a href="https://www.task-me-anything.org/">π Website</a> | <a href="https://arxiv.org/abs/2406.11775">π Paper</a> | <a href="https://huggingface.co/collections/jieyuz2/taskmeanything-664ebf028ab2524c0380526a">π€ Huggingface</a> | <a href="https://huggingface.co/spaces/zixianma/TaskMeAnything-UI">π» Interface</a></h2> |
|
|
|
<h5 align="center"> If you like our project, please give us a star β on GitHub for latest update. </h2> |
|
|
|
## TaskMeAnything-v1-2024 |
|
[TaskMeAnything-v1-imageqa-2024](https://huggingface.co/datasets/weikaih/TaskMeAnything-v1-imageqa-2024) is a benchmark for reflecting the current progress of MLMs by `automatically` finding tasks that SOTA MLMs struggle with using the TaskMeAnything Top-K queries. |
|
This benchmark includes 3,279 2d questions, 7,095 3d questions, and 1,896 real image questions that the TaskMeAnything algorithm automatically approximated as challenging for over 12 popular MLMs. |
|
|
|
|
|
The dataset contains 19 splits, while each splits contains 400+ questions from a specific task generator in TaskMeAnything-v1. For each row of dataset, it includes: image, question, options, answer and its corresponding task plan. |
|
|
|
## Load TaskMeAnything-v1-2024 ImageQA Dataset |
|
``` |
|
import datasets |
|
|
|
dataset_name = 'weikaih/TaskMeAnything-v1-imageqa-2024' |
|
dataset = datasets.load_dataset(dataset_name, split = TASK_GENERATOR_SPLIT) |
|
``` |
|
where `TASK_GENERATOR_SPLIT` is one of the task generators, eg, `2024_2d_how_many`. |
|
|
|
## Evaluation Results |
|
|
|
### Overall |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/_KadJKJSHhZXXfIfePaUg.png) |
|
|
|
### Breakdown performance on each task types |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/-DrQ90FuGatJE4CuHsWS9.png) |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/6D33K2tSc1OYF4_f6YJ63.png) |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/eKzh5ghGNVrCluVmnkZW0.png) |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65cb0dcc4913057ac82a7a31/sm8dAmjxsXmJu8oeqLaeQ.png) |
|
|
|
## Out-of-Scope Use |
|
This dataset should not be used for training models. |
|
|
|
|
|
## Disclaimers |
|
**TaskMeAnything** and its associated resources are provided for research and educational purposes only. |
|
The authors and contributors make no warranties regarding the accuracy or reliability of the data and software. |
|
Users are responsible for ensuring their use complies with applicable laws and regulations. |
|
The project is not liable for any damages or losses resulting from the use of these resources. |
|
|
|
## Contact |
|
|
|
- Jieyu Zhang: jieyuz2@cs.washington.edu |
|
|
|
## Citation |
|
**BibTeX:** |
|
```bibtex |
|
@article{zhang2024task, |
|
title={Task Me Anything}, |
|
author={Zhang, Jieyu and Huang, Weikai and Ma, Zixian and Michel, Oscar and He, Dong and Gupta, Tanmay and Ma, Wei-Chiu and Farhadi, Ali and Kembhavi, Aniruddha and Krishna, Ranjay}, |
|
journal={arXiv preprint arXiv:2406.11775}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
|
|
|
|
|
|
|
|
|