|
--- |
|
dataset_info: |
|
features: |
|
- name: num_atoms |
|
dtype: int64 |
|
- name: atomic_symbols |
|
sequence: string |
|
- name: pos |
|
sequence: |
|
sequence: float64 |
|
- name: charges |
|
sequence: float64 |
|
- name: harmonic_oscillator_frequencies |
|
sequence: float64 |
|
- name: smiles |
|
dtype: string |
|
- name: inchi |
|
dtype: string |
|
- name: A |
|
dtype: float64 |
|
- name: B |
|
dtype: float64 |
|
- name: C |
|
dtype: float64 |
|
- name: mu |
|
dtype: float64 |
|
- name: alpha |
|
dtype: float64 |
|
- name: homo |
|
dtype: float64 |
|
- name: lumo |
|
dtype: float64 |
|
- name: gap |
|
dtype: float64 |
|
- name: r2 |
|
dtype: float64 |
|
- name: zpve |
|
dtype: float64 |
|
- name: u0 |
|
dtype: float64 |
|
- name: u |
|
dtype: float64 |
|
- name: h |
|
dtype: float64 |
|
- name: g |
|
dtype: float64 |
|
- name: cv |
|
dtype: float64 |
|
- name: canonical_smiles |
|
dtype: string |
|
- name: logP |
|
dtype: float64 |
|
- name: qed |
|
dtype: float64 |
|
- name: np_score |
|
dtype: float64 |
|
- name: sa_score |
|
dtype: float64 |
|
- name: ring_count |
|
dtype: int64 |
|
- name: R3 |
|
dtype: int64 |
|
- name: R4 |
|
dtype: int64 |
|
- name: R5 |
|
dtype: int64 |
|
- name: R6 |
|
dtype: int64 |
|
- name: R7 |
|
dtype: int64 |
|
- name: R8 |
|
dtype: int64 |
|
- name: R9 |
|
dtype: int64 |
|
- name: single_bond |
|
dtype: int64 |
|
- name: double_bond |
|
dtype: int64 |
|
- name: triple_bond |
|
dtype: int64 |
|
- name: aromatic_bond |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 199395693 |
|
num_examples: 133885 |
|
download_size: 180380355 |
|
dataset_size: 199395693 |
|
--- |
|
# Dataset Card for "QM9" |
|
|
|
QM9 dataset from [Ruddigkeit et al., 2012](https://pubs.acs.org/doi/full/10.1021/ci300415d); |
|
[Ramakrishnan et al., 2014](https://www.nature.com/articles/sdata201422). |
|
|
|
Original data downloaded from: http://quantum-machine.org/datasets. |
|
Additional annotations (QED, logP, SA score, NP score, bond and ring counts) added using [`rdkit`](https://www.rdkit.org/docs/index.html) library. |
|
|
|
## Quick start usage: |
|
```python |
|
from datasets import load_dataset |
|
|
|
ds = load_dataset("yairschiff/qm9") |
|
|
|
# Random train/test splits as recommended by: |
|
# https://moleculenet.org/datasets-1 |
|
test_size = 0.1 |
|
seed = 1 |
|
ds.train_test_split(test_size=test_size, seed=seed) |
|
|
|
# Use `ds['canonical_smiles']` from `rdkit` as inputs. |
|
``` |
|
|
|
|
|
## Full processing steps |
|
|
|
```python |
|
import os |
|
import typing |
|
|
|
import datasets |
|
import numpy as np |
|
import pandas as pd |
|
import rdkit |
|
import torch |
|
from rdkit import Chem as rdChem |
|
from rdkit.Chem import Crippen, QED |
|
from rdkit.Contrib.NP_Score import npscorer |
|
from rdkit.Contrib.SA_Score import sascorer |
|
from tqdm.auto import tqdm |
|
|
|
# TODO: Update to 2024.03.6 release when available instead of suppressing warning! |
|
# See: https://github.com/rdkit/rdkit/issues/7625# |
|
rdkit.rdBase.DisableLog('rdApp.warning') |
|
|
|
def parse_float( |
|
s: str |
|
) -> float: |
|
"""Parses floats potentially written as exponentiated values. |
|
|
|
Copied from https://www.kaggle.com/code/tawe141/extracting-data-from-qm9-xyz-files/code |
|
""" |
|
try: |
|
return float(s) |
|
except ValueError: |
|
base, power = s.split('*^') |
|
return float(base) * 10**float(power) |
|
|
|
|
|
def count_rings_and_bonds( |
|
mol: rdChem.Mol, max_ring_size: int = -1 |
|
) -> typing.Dict[str, int]: |
|
"""Counts bond and ring (by type).""" |
|
|
|
# Counting rings |
|
ssr = rdChem.GetSymmSSSR(mol) |
|
ring_count = len(ssr) |
|
|
|
ring_sizes = {} if max_ring_size < 0 else {i: 0 for i in range(3, max_ring_size+1)} |
|
for ring in ssr: |
|
ring_size = len(ring) |
|
if ring_size not in ring_sizes: |
|
ring_sizes[ring_size] = 0 |
|
ring_sizes[ring_size] += 1 |
|
|
|
# Counting bond types |
|
bond_counts = { |
|
'single': 0, |
|
'double': 0, |
|
'triple': 0, |
|
'aromatic': 0 |
|
} |
|
|
|
for bond in mol.GetBonds(): |
|
if bond.GetIsAromatic(): |
|
bond_counts['aromatic'] += 1 |
|
elif bond.GetBondType() == rdChem.BondType.SINGLE: |
|
bond_counts['single'] += 1 |
|
elif bond.GetBondType() == rdChem.BondType.DOUBLE: |
|
bond_counts['double'] += 1 |
|
elif bond.GetBondType() == rdChem.BondType.TRIPLE: |
|
bond_counts['triple'] += 1 |
|
result = { |
|
'ring_count': ring_count, |
|
} |
|
for k, v in ring_sizes.items(): |
|
result[f"R{k}"] = v |
|
|
|
for k, v in bond_counts.items(): |
|
result[f"{k}_bond"] = v |
|
return result |
|
|
|
|
|
def parse_xyz( |
|
filename: str, |
|
max_ring_size: int = -1, |
|
npscorer_model: typing.Optional[dict] = None, |
|
array_format: str = 'np' |
|
) -> typing.Dict[str, typing.Any]: |
|
"""Parses QM9 specific xyz files. |
|
|
|
See https://www.nature.com/articles/sdata201422/tables/2 for reference. |
|
Adapted from https://www.kaggle.com/code/tawe141/extracting-data-from-qm9-xyz-files/code |
|
""" |
|
assert array_format in ['np', 'pt'], \ |
|
f"Invalid array_format: `{array_format}` provided. Must be one of `np` (numpy.array), `pt` (torch.tensor)." |
|
|
|
num_atoms = 0 |
|
scalar_properties = [] |
|
atomic_symbols = [] |
|
xyz = [] |
|
charges = [] |
|
harmonic_vibrational_frequencies = [] |
|
smiles = '' |
|
inchi = '' |
|
with open(filename, 'r') as f: |
|
for line_num, line in enumerate(f): |
|
if line_num == 0: |
|
num_atoms = int(line) |
|
elif line_num == 1: |
|
scalar_properties = [float(i) for i in line.split()[2:]] |
|
elif 2 <= line_num <= 1 + num_atoms: |
|
atom_symbol, x, y, z, charge = line.split() |
|
atomic_symbols.append(atom_symbol) |
|
xyz.append([parse_float(x), parse_float(y), parse_float(z)]) |
|
charges.append(parse_float(charge)) |
|
elif line_num == num_atoms + 2: |
|
harmonic_vibrational_frequencies = [float(i) for i in line.split()] |
|
elif line_num == num_atoms + 3: |
|
smiles = line.split()[0] |
|
elif line_num == num_atoms + 4: |
|
inchi = line.split()[0] |
|
|
|
array_wrap = np.array if array_format == 'np' else torch.tensor |
|
result = { |
|
'num_atoms': num_atoms, |
|
'atomic_symbols': atomic_symbols, |
|
'pos': array_wrap(xyz), |
|
'charges': array_wrap(charges), |
|
'harmonic_oscillator_frequencies': array_wrap(harmonic_vibrational_frequencies), |
|
'smiles': smiles, |
|
'inchi': inchi |
|
} |
|
scalar_property_labels = [ |
|
'A', 'B', 'C', 'mu', 'alpha', 'homo', 'lumo', 'gap', 'r2', 'zpve', 'u0', 'u', 'h', 'g', 'cv' |
|
] |
|
scalar_properties = dict(zip(scalar_property_labels, scalar_properties)) |
|
result.update(scalar_properties) |
|
|
|
# RdKit |
|
result['canonical_smiles'] = rdChem.CanonSmiles(result['smiles']) |
|
m = rdChem.MolFromSmiles(result['canonical_smiles']) |
|
result['logP'] = Crippen.MolLogP(m) |
|
result['qed'] = QED.qed(m) |
|
if npscorer_model is not None: |
|
result['np_score'] = npscorer.scoreMol(m, npscorer_model) |
|
result['sa_score'] = sascorer.calculateScore(m) |
|
result.update(count_rings_and_bonds(m, max_ring_size=max_ring_size)) |
|
|
|
return result |
|
|
|
""" |
|
Download xyz files from: |
|
https://figshare.com/collections/Quantum_chemistry_structures_and_properties_of_134_kilo_molecules/978904 |
|
> wget https://figshare.com/ndownloader/files/3195389/dsgdb9nsd.xyz.tar.bz2 |
|
> mkdir dsgdb9nsd.xyz |
|
> tar -xvjf dsgdb9nsd.xyz.tar.bz2 -C dsgdb9nsd.xyz |
|
""" |
|
MAX_RING_SIZE = 9 |
|
fscore = npscorer.readNPModel() |
|
xyz_dir_path = '<PATH TO dsgdb9nsd.xyz>' |
|
parsed_xyz = [] |
|
for file in tqdm(sorted(os.listdir(xyz_dir_path)), desc='Parsing'): |
|
parsed = parse_xyz(os.path.join(xyz_dir_path, file), |
|
max_ring_size=MAX_RING_SIZE, |
|
npscorer_model=fscore, |
|
array_format='np') |
|
parsed_xyz.append(parsed) |
|
|
|
qm9_df = pd.DataFrame(data=parsed_xyz) |
|
|
|
# Conversion below is needed to avoid: |
|
# `ArrowInvalid: ('Can only convert 1-dimensional array values', |
|
# 'Conversion failed for column pos with type object')` |
|
qm9_df['pos'] = qm9_df['pos'].apply(lambda x: [xi for xi in x]) |
|
|
|
dataset = datasets.Dataset.from_pandas(qm9_df) |
|
``` |