hexsha
stringlengths
40
40
size
int64
5
2.06M
ext
stringclasses
11 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
251
max_stars_repo_name
stringlengths
4
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
251
max_issues_repo_name
stringlengths
4
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
251
max_forks_repo_name
stringlengths
4
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.05M
avg_line_length
float64
1
1.02M
max_line_length
int64
3
1.04M
alphanum_fraction
float64
0
1
903e7c7c7eb9a7d02da0c1871291e12b6246e93e
20,260
py
Python
shoptimizer_api/optimizers_builtin/title_word_order_optimizer_test.py
astivi/shoptimizer
e9e415650b2b8fc07e4ae68c741e692b538e4a2c
[ "Apache-2.0" ]
null
null
null
shoptimizer_api/optimizers_builtin/title_word_order_optimizer_test.py
astivi/shoptimizer
e9e415650b2b8fc07e4ae68c741e692b538e4a2c
[ "Apache-2.0" ]
null
null
null
shoptimizer_api/optimizers_builtin/title_word_order_optimizer_test.py
astivi/shoptimizer
e9e415650b2b8fc07e4ae68c741e692b538e4a2c
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2021 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for title_word_order_optimizer.""" from absl.testing import parameterized import unittest.mock as mock from optimizers_builtin import title_word_order_optimizer from test_data import requests_bodies from util import app_util import constants # GPC ID IS 201 _PROPER_GPC_CATEGORY_EN = 'Apparel & Accessories > Jewelry > Watches' # GPC ID is 201 _PROPER_GPC_CATEGORY_JA = (' > ' ' > ') # GPC ID is 5598 _GPC_CATEGORY_LEVEL_4_JA = (' > ' ' > > ' '') _MAX_WMM_MOVE_THRESHOLD_EN = 25 _MAX_WMM_MOVE_THRESHOLD_JA = 12
40.846774
123
0.696249
903ed7280655c7a88f5f5eb4e9a427e26a17d12e
4,035
py
Python
contracts/models.py
sivanagarajumolabanti/IPFS
9ae01ce09c97660ca312aad7d612bbc8eb8146e7
[ "MIT" ]
1
2019-08-27T04:20:06.000Z
2019-08-27T04:20:06.000Z
contracts/models.py
sivanagarajumolabanti/IPFS
9ae01ce09c97660ca312aad7d612bbc8eb8146e7
[ "MIT" ]
null
null
null
contracts/models.py
sivanagarajumolabanti/IPFS
9ae01ce09c97660ca312aad7d612bbc8eb8146e7
[ "MIT" ]
null
null
null
from django.contrib.auth.models import User from django.db import models from django.utils.timezone import now
36.351351
102
0.691698
903f6e6ec0a321ed686c231ab9ebc657c40c7407
1,500
py
Python
models/DenseNet.py
Apollo1840/DeepECG
5132b5fc8f6b40c4b2f175cd5e56c4aec128ab3e
[ "MIT" ]
2
2020-11-16T10:50:56.000Z
2020-11-23T12:31:30.000Z
models/DenseNet.py
Apollo1840/DeepECG
5132b5fc8f6b40c4b2f175cd5e56c4aec128ab3e
[ "MIT" ]
null
null
null
models/DenseNet.py
Apollo1840/DeepECG
5132b5fc8f6b40c4b2f175cd5e56c4aec128ab3e
[ "MIT" ]
1
2020-08-05T00:23:54.000Z
2020-08-05T00:23:54.000Z
from keras.models import Sequential from keras.layers import Dense, Dropout
41.666667
100
0.719333
9040b2be08c9dcba639583373b5f0c4c01de3091
13,242
py
Python
openstackclient/tests/unit/volume/v3/fakes.py
mydevice/python-openstackclient
4891bb38208fdcd1a2ae60e47b056841e14fbdf7
[ "Apache-2.0" ]
262
2015-01-29T20:10:49.000Z
2022-03-23T01:59:23.000Z
openstackclient/tests/unit/volume/v3/fakes.py
mydevice/python-openstackclient
4891bb38208fdcd1a2ae60e47b056841e14fbdf7
[ "Apache-2.0" ]
5
2015-01-21T02:37:35.000Z
2021-11-23T02:26:00.000Z
openstackclient/tests/unit/volume/v3/fakes.py
mydevice/python-openstackclient
4891bb38208fdcd1a2ae60e47b056841e14fbdf7
[ "Apache-2.0" ]
194
2015-01-08T07:39:27.000Z
2022-03-30T13:51:23.000Z
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import random from unittest import mock import uuid from cinderclient import api_versions from openstackclient.tests.unit.compute.v2 import fakes as compute_fakes from openstackclient.tests.unit import fakes from openstackclient.tests.unit.identity.v3 import fakes as identity_fakes from openstackclient.tests.unit import utils from openstackclient.tests.unit.volume.v2 import fakes as volume_v2_fakes # TODO(stephenfin): Check if the responses are actually the same FakeVolume = volume_v2_fakes.FakeVolume FakeVolumeType = volume_v2_fakes.FakeVolumeType
33.953846
79
0.614258
9040cb412be761146b6669d9fd4eade5a3ac0512
12,287
py
Python
gammapy/cube/tests/test_core.py
grburgess/gammapy
609e460698caca7223afeef5e71826c7b32728d1
[ "BSD-3-Clause" ]
3
2019-01-28T12:21:14.000Z
2019-02-10T19:58:07.000Z
gammapy/cube/tests/test_core.py
grburgess/gammapy
609e460698caca7223afeef5e71826c7b32728d1
[ "BSD-3-Clause" ]
null
null
null
gammapy/cube/tests/test_core.py
grburgess/gammapy
609e460698caca7223afeef5e71826c7b32728d1
[ "BSD-3-Clause" ]
null
null
null
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np from numpy.testing import assert_allclose from astropy.coordinates import Angle from astropy.tests.helper import pytest, assert_quantity_allclose from astropy.units import Quantity from astropy.wcs import WCS from ...utils.testing import requires_dependency, requires_data from ...datasets import FermiGalacticCenter from ...image import make_header from ...irf import EnergyDependentTablePSF from ...spectrum.powerlaw import power_law_evaluate from .. import SkyCube, compute_npred_cube, convolve_cube def make_test_cubes(energies, nxpix, nypix, binsz): """Makes exposure and spectral cube for tests. Parameters ---------- energies : `~astropy.units.Quantity` Quantity 1D array of energies of cube layers nxpix : int Number of pixels in x-spatial direction nypix : int Number of pixels in y-spatial direction binsz : float Spatial resolution of cube, in degrees per pixel Returns ------- exposure_cube : `~gammapy.sky_cube.SkyCube` Cube of uniform exposure = 1 cm^2 s sky_cube : `~gammapy.sky_cube.SkyCube` Cube of differential fluxes in units of cm^-2 s^-1 GeV^-1 sr^-1 """ header = make_header(nxpix, nypix, binsz) header['NAXIS'] = 3 header['NAXIS3'] = len(energies) header['CDELT3'] = 1 header['CRVAL3'] = 1 header['CRPIX3'] = 1 wcs = WCS(header) data_array = np.ones((len(energies), 10, 10)) exposure_cube = SkyCube(data=Quantity(data_array, 'cm2 s'), wcs=wcs, energy=energies) flux = power_law_evaluate(energies.value, 1, 2, 1) flux = Quantity(flux, '1/(cm2 s GeV sr)') flux_array = np.zeros_like(data_array) for i in np.arange(len(flux)): flux_array[i] = flux.value[i] * data_array[i] sky_cube = SkyCube(data=Quantity(flux_array, flux.unit), wcs=wcs, energy=energies) return exposure_cube, sky_cube
39.763754
90
0.657524
90429ee16f26834b4fd4e1ca6831ceabda97033d
298
py
Python
api/applications/migrations/0042_merge_20201213_0228.py
django-doctor/lite-api
1ba278ba22ebcbb977dd7c31dd3701151cd036bf
[ "MIT" ]
3
2019-05-15T09:30:39.000Z
2020-04-22T16:14:23.000Z
api/applications/migrations/0042_merge_20201213_0228.py
django-doctor/lite-api
1ba278ba22ebcbb977dd7c31dd3701151cd036bf
[ "MIT" ]
85
2019-04-24T10:39:35.000Z
2022-03-21T14:52:12.000Z
api/applications/migrations/0042_merge_20201213_0228.py
django-doctor/lite-api
1ba278ba22ebcbb977dd7c31dd3701151cd036bf
[ "MIT" ]
1
2021-01-17T11:12:19.000Z
2021-01-17T11:12:19.000Z
# Generated by Django 2.2.16 on 2020-12-13 02:28 from django.db import migrations
21.285714
64
0.694631
90459d8bfe26d007178d66a09649931906768496
5,829
py
Python
web_app/ca_modules/make_utils.py
Lockers13/codagio
cfe9325cb3c207f7728db3c287439ce761ffea14
[ "MIT" ]
2
2021-01-16T13:42:14.000Z
2021-03-03T19:36:47.000Z
web_app/ca_modules/make_utils.py
Lockers13/codagio
cfe9325cb3c207f7728db3c287439ce761ffea14
[ "MIT" ]
null
null
null
web_app/ca_modules/make_utils.py
Lockers13/codagio
cfe9325cb3c207f7728db3c287439ce761ffea14
[ "MIT" ]
null
null
null
### A module containing various utilities used at various points throughout the processes of submitting and analyzing problems ### import os import json import subprocess import hashlib import sys import random import string from .output_processor import process_output from . import code_templates def make_file(path, code, problem_data): """Function to create script that is used for verification and profiling purposes Returns nothing, writes to disk""" ctemps = code_templates.get_ctemp_dict() program_text = code input_type = list(problem_data["metadata"]["input_type"].keys())[0] main_function = problem_data["metadata"]["main_function"] init_data = problem_data["init_data"] is_init_data = problem_data["metadata"]["init_data"] is_inputs = problem_data["metadata"]["inputs"] with open(path, 'w') as f: write_prequel(f) for line in program_text: split_line = line.split() if len(split_line) > 0 and line.split()[0] == "def": func_name = line.split()[1].split("(")[0] if func_name == main_function: fname = func_name f.write("{0}\n".format(line)) if not line.endswith("\n"): f.write("\n") write_sequel(f, fname) def gen_sample_outputs(filename, problem_data, init_data=None, input_type="default"): """Utility function invoked whenever a reference problem is submitted Returns a list of outputs that are subsequently stored in DB as field associated with given problem""" inputs = problem_data["inputs"] platform = sys.platform.lower() SAMPUP_TIMEOUT = "8" SAMPUP_MEMOUT = "1000" timeout_cmd = "gtimeout {0}".format(SAMPUP_TIMEOUT) if platform == "darwin" else "timeout {0} -m {1}".format(SAMPUP_TIMEOUT, SAMPUP_MEMOUT) if platform == "linux" or platform == "linux2" else "" base_cmd = "{0} python".format(timeout_cmd) outputs = [] if input_type == "default": programmatic_inputs = inputs if inputs is not None: for inp in programmatic_inputs: input_arg = json.dumps(inp) output = process_output(base_cmd, filename, input_arg=input_arg, init_data=init_data) ### uncomment below line for debugging # print("CSO =>", cleaned_split_output) outputs.append(output) else: output = process_output(base_cmd, filename, init_data=init_data) ### uncomment below line for debugging # print("CSO =>", cleaned_split_output) outputs.append(output) elif input_type == "file": for script in inputs: output = process_output(base_cmd, filename, input_arg=script, init_data=init_data) ### uncomment below line for debugging # print("CSO =>", cleaned_split_output) outputs.append(output) try: os.remove(script) except: pass return outputs def generate_input(input_type, input_length, num_tests): """Self-explanatory utility function that generates test input for a submitted reference problem based on metadata specifications Returns jsonified list of inputs""" global_inputs = [] for i in range(num_tests): if input_type == "integer": inp_list = [random.randint(1, 1000) for x in range(input_length)] elif input_type == "float": inp_list = [round(random.uniform(0.0, 1000.0), 2) for x in range(input_length)] elif input_type == "string": inp_list = [random_string(random.randint(1, 10)) for x in range(input_length)] global_inputs.append(inp_list) return global_inputs
40.2
198
0.632699
904821f621f97dceeec43eb063d81e21fa90c37c
21,136
py
Python
wazimap/data/utils.py
AssembleOnline/wazimap
1b8b68fb231b768047eee1b20ed180e4820a2890
[ "MIT" ]
1
2019-01-14T15:37:03.000Z
2019-01-14T15:37:03.000Z
wazimap/data/utils.py
Bhanditz/wazimap
fde22a0874020cf0ae013aeec7ab55b7c5a70b27
[ "MIT" ]
null
null
null
wazimap/data/utils.py
Bhanditz/wazimap
fde22a0874020cf0ae013aeec7ab55b7c5a70b27
[ "MIT" ]
null
null
null
from __future__ import division from collections import OrderedDict from sqlalchemy import create_engine, MetaData, func from sqlalchemy.orm import sessionmaker, class_mapper from django.conf import settings from django.db.backends.base.creation import TEST_DATABASE_PREFIX from django.db import connection if settings.TESTING: # Hack to ensure the sqlalchemy database name matches the Django one # during testing url = settings.DATABASE_URL parts = url.split("/") # use the test database name db_name = connection.settings_dict.get('TEST', {}).get('NAME') if db_name is None: db_name = TEST_DATABASE_PREFIX + parts[-1] parts[-1] = db_name url = '/'.join(parts) _engine = create_engine(url) else: _engine = create_engine(settings.DATABASE_URL) # See http://docs.sqlalchemy.org/en/latest/core/constraints.html#constraint-naming-conventions naming_convention = { "ix": 'ix_%(column_0_label)s', "uq": "uq_%(table_name)s_%(column_0_name)s", "ck": "ck_%(table_name)s_%(constraint_name)s", "fk": "fk_%(table_name)s_%(column_0_name)s_%(referred_table_name)s", "pk": "pk_%(table_name)s" } _metadata = MetaData(bind=_engine, naming_convention=naming_convention) _Session = sessionmaker(bind=_engine) def capitalize(s): """ Capitalize the first char of a string, without affecting the rest of the string. This differs from `str.capitalize` since the latter also lowercases the rest of the string. """ if not s: return s return ''.join([s[0].upper(), s[1:]]) def percent(num, denom, places=2): if denom == 0: return 0 else: return round(num / denom * 100, places) def ratio(num, denom, places=2): if denom == 0: return 0 else: return round(num / denom, places) def add_metadata(data, table): if 'metadata' not in data: data['metadata'] = {} # this might be a SQLAlchemy model that is linked back to # a data table if hasattr(table, 'data_tables'): table = table.data_tables[0] data['metadata']['table_id'] = table.id if table.universe: data['metadata']['universe'] = table.universe if table.year: data['metadata']['year'] = table.year # dictionaries that merge_dicts will merge MERGE_KEYS = set(['values', 'numerators', 'error']) def calculate_median(objects, field_name): ''' Calculates the median where obj.total is the distribution count and getattr(obj, field_name) is the distribution segment. Note: this function assumes the objects are sorted. ''' total = 0 for obj in objects: total += obj.total half = total / 2.0 counter = 0 for i, obj in enumerate(objects): counter += obj.total if counter > half: if counter - half == 1: # total must be even (otherwise counter - half ends with .5) return (float(getattr(objects[i - 1], field_name)) + float(getattr(obj, field_name))) / 2.0 return float(getattr(obj, field_name)) elif counter == half: # total must be even (otherwise half ends with .5) return (float(getattr(obj, field_name)) + float(getattr(objects[i + 1], field_name))) / 2.0 def calculate_median_stat(stats): ''' Calculates the stat (key) that lies at the median for stat data from the output of get_stat_data. Note: this function assumes the objects are sorted. ''' total = 0 keys = [k for k in stats.iterkeys() if k != 'metadata'] total = sum(stats[k]['numerators']['this'] for k in keys) half = total / 2.0 counter = 0 for key in keys: counter += stats[key]['numerators']['this'] if counter >= half: return key def merge_dicts(this, other, other_key): ''' Recursively merges 'other' dict into 'this' dict. In particular it merges the leaf nodes specified in MERGE_KEYS. ''' for key, values in this.iteritems(): if key in MERGE_KEYS: if key in other: values[other_key] = other[key]['this'] elif isinstance(values, dict): merge_dicts(values, other[key], other_key) def group_remainder(data, num_items=4, make_percentage=True, remainder_name="Other"): ''' This function assumes data is an OrderedDict instance. It iterates over the dict items, grouping items with index >= num_items - 1 together under key remainder_name. If make_percentage = True, the 'values' dict contains percentages and the 'numerators' dict the totals. Otherwise 'values' contains the totals. ''' num_key = 'numerators' if make_percentage else 'values' total_all = dict((k, 0.0) for k in data.values()[0][num_key].keys()) total_other = total_all.copy() other_dict = { "name": remainder_name, "error": {"this": 0.0}, "numerator_errors": {"this": 0.0}, num_key: total_other, } cutoff = num_items - 2 for i, (key, values) in enumerate(data.items()): if key == 'metadata': continue for k, v in values[num_key].iteritems(): total_all[k] += v if i > cutoff: del data[key] data.setdefault(remainder_name, other_dict) for k, v in values[num_key].iteritems(): total_other[k] += v if make_percentage: for key, values in data.iteritems(): if key != 'metadata': values['values'] = dict((k, percent(v, total_all[k])) for k, v in values['numerators'].iteritems()) def get_objects_by_geo(db_model, geo, session, fields=None, order_by=None, only=None, exclude=None, data_table=None): """ Get rows of statistics from the stats mode +db_model+ for a particular geography, summing over the 'total' field and grouping by +fields+. Filters to include +only+ and ignore +exclude+, if given. """ data_table = data_table or db_model.data_tables[0] if fields is None: fields = [c.key for c in class_mapper(db_model).attrs if c.key not in ['geo_code', 'geo_level', 'geo_version', 'total']] fields = [getattr(db_model, f) for f in fields] objects = session\ .query(func.sum(db_model.total).label('total'), *fields)\ .group_by(*fields)\ .filter(db_model.geo_code == geo.geo_code)\ .filter(db_model.geo_level == geo.geo_level)\ .filter(db_model.geo_version == geo.version) if only: for k, v in only.iteritems(): objects = objects.filter(getattr(db_model, k).in_(v)) if exclude: for k, v in exclude.iteritems(): objects = objects.filter(getattr(db_model, k).notin_(v)) if order_by is not None: attr = order_by is_desc = False if order_by[0] == '-': is_desc = True attr = attr[1:] if attr == 'total': if is_desc: attr = attr + ' DESC' else: attr = getattr(db_model, attr) if is_desc: attr = attr.desc() objects = objects.order_by(attr) objects = objects.all() if len(objects) == 0: raise LocationNotFound("%s for geography %s version '%s' not found" % (db_model.__table__.name, geo.geoid, geo.version)) return objects def get_stat_data(fields, geo, session, order_by=None, percent=True, total=None, table_fields=None, table_name=None, only=None, exclude=None, exclude_zero=False, recode=None, key_order=None, table_dataset=None, percent_grouping=None, slices=None): """ This is our primary helper routine for building a dictionary suitable for a place's profile page, based on a statistic. It sums over the data for ``fields`` in the database for the place identified by ``geo`` and calculates numerators and values. If multiple fields are given, it creates nested result dictionaries. Control the rows that are included or ignored using ``only``, ``exclude`` and ``exclude_zero``. The field values can be recoded using ``recode`` and and re-ordered using ``key_order``. :param fields: the census field to build stats for. Specify a list of fields to build nested statistics. If multiple fields are specified, then the values of parameters such as ``only``, ``exclude`` and ``recode`` will change. These must be fields in `api.models.census.census_fields`, e.g. 'highest educational level' :type fields: str or list :param geo: the geograhy object :param dbsession session: sqlalchemy session :param str order_by: field to order by, or None for default, eg. '-total' :param bool percent: should we calculate percentages, or just sum raw values? :param list percent_grouping: when calculating percentages, which fields should rows be grouped by? Default: none of them -- calculate each entry as a percentage of the whole dataset. Ignored unless ``percent`` is ``True``. :param list table_fields: list of fields to use to find the table, defaults to `fields` :param int total: the total value to use for percentages, or None to total columns automatically :param str table_name: override the table name, otherwise it's calculated from the fields and geo_level :param list only: only include these field values. If ``fields`` has many items, this must be a dict mapping field names to a list of strings. :type only: dict or list :param exclude: ignore these field values. If ``fields`` has many items, this must be a dict mapping field names to a list of strings. Field names are checked before any recoding. :type exclude: dict or list :param bool exclude_zero: ignore fields that have a zero or null total :param recode: function or dict to recode values of ``key_field``. If ``fields`` is a singleton, then the keys of this dict must be the values to recode from, otherwise they must be the field names and then the values. If this is a lambda, it is called with the field name and its value as arguments. :type recode: dict or lambda :param key_order: ordering for keys in result dictionary. If ``fields`` has many items, this must be a dict from field names to orderings. The default ordering is determined by ``order``. :type key_order: dict or list :param str table_dataset: dataset used to help find the table if ``table_name`` isn't given. :param list slices: return only a slice of the final data, by choosing a single value for each field in the field list, as specified in the slice list. :return: (data-dictionary, total) """ from .tables import FieldTable if not isinstance(fields, list): fields = [fields] n_fields = len(fields) many_fields = n_fields > 1 if order_by is None: order_by = fields[0] if only is not None: if not isinstance(only, dict): if many_fields: raise ValueError("If many fields are given, then only must be a dict. I got %s instead" % only) else: only = {fields[0]: set(only)} if exclude is not None: if not isinstance(exclude, dict): if many_fields: raise ValueError("If many fields are given, then exclude must be a dict. I got %s instead" % exclude) else: exclude = {fields[0]: set(exclude)} if key_order: if not isinstance(key_order, dict): if many_fields: raise ValueError("If many fields are given, then key_order must be a dict. I got %s instead" % key_order) else: key_order = {fields[0]: key_order} else: key_order = {} if recode: if not isinstance(recode, dict) or not many_fields: recode = dict((f, recode) for f in fields) table_fields = table_fields or fields # get the table and the model if table_name: data_table = FieldTable.get(table_name) else: data_table = FieldTable.for_fields(table_fields, table_dataset) if not data_table: ValueError("Couldn't find a table that covers these fields: %s" % table_fields) objects = get_objects_by_geo(data_table.model, geo, session, fields=fields, order_by=order_by, only=only, exclude=exclude, data_table=data_table) if total is not None and many_fields: raise ValueError("Cannot specify a total if many fields are given") if total and percent_grouping: raise ValueError("Cannot specify a total if percent_grouping is given") if total is None and percent and data_table.total_column is None: # The table doesn't support calculating percentages, but the caller # has asked for a percentage without providing a total value to use. # Either specify a total, or specify percent=False raise ValueError("Asking for a percent on table %s that doesn't support totals and no total parameter specified." % data_table.id) # sanity check the percent grouping if percent: if percent_grouping: for field in percent_grouping: if field not in fields: raise ValueError("Field '%s' specified in percent_grouping must be in the fields list." % field) # re-order percent grouping to be same order as in the field list percent_grouping = [f for f in fields if f in percent_grouping] else: percent_grouping = None denominator_key = getattr(data_table, 'denominator_key') root_data = OrderedDict() running_total = 0 group_totals = {} grand_total = -1 def get_data_object(obj): """ Recurse down the list of fields and return the final resting place for data for this stat. """ data = root_data for i, field in enumerate(fields): key = getattr(obj, field) if recode and field in recode: key = get_recoded_key(recode, field, key) else: key = capitalize(key) # enforce key ordering the first time we see this field if (not data or data.keys() == ['metadata']) and field in key_order: for fld in key_order[field]: data[fld] = OrderedDict() # ensure it's there if key not in data: data[key] = OrderedDict() data = data[key] # default values for intermediate fields if data is not None and i < n_fields - 1: data['metadata'] = {'name': key} # data is now the dict where the end value is going to go if not data: data['name'] = key data['numerators'] = {'this': 0.0} return data # run the stats for the objects for obj in objects: if not obj.total and exclude_zero: continue if denominator_key and getattr(obj, data_table.fields[-1]) == denominator_key: grand_total = obj.total # don't include the denominator key in the output continue # get the data dict where these values must go data = get_data_object(obj) if not data: continue if obj.total is not None: data['numerators']['this'] += obj.total running_total += obj.total else: # TODO: sanity check this is the right thing to do for multiple fields with # nested nulls -- does aggregating over nulls treat them as zero, or should we # treat them as null? data['numerators']['this'] = None if percent_grouping: if obj.total is not None: group_key = tuple() for field in percent_grouping: key = getattr(obj, field) if recode and field in recode: # Group by recoded keys key = get_recoded_key(recode, field, key) group_key = group_key + (key,) data['_group_key'] = group_key group_totals[group_key] = group_totals.get(group_key, 0) + obj.total if grand_total == -1: grand_total = running_total if total is None else total # add in percentages calc_percent(root_data) if slices: for v in slices: root_data = root_data[v] add_metadata(root_data, data_table) return root_data, grand_total
36.758261
138
0.607116
9048acfcee11de068839ac11bcc199658e3bb1fe
9,913
py
Python
ovis/analysis/gradients.py
vlievin/ovis
71f05a5f5219b2df66a9cdbd5a5339e0e179597b
[ "MIT" ]
10
2020-08-06T22:25:11.000Z
2022-03-07T13:10:15.000Z
ovis/analysis/gradients.py
vlievin/ovis
71f05a5f5219b2df66a9cdbd5a5339e0e179597b
[ "MIT" ]
2
2021-06-08T22:15:24.000Z
2022-03-12T00:45:59.000Z
ovis/analysis/gradients.py
vlievin/ovis
71f05a5f5219b2df66a9cdbd5a5339e0e179597b
[ "MIT" ]
null
null
null
from time import time from typing import * import torch from booster import Diagnostic from torch import Tensor from tqdm import tqdm from .utils import cosine, percentile, RunningMean, RunningVariance from ..estimators import GradientEstimator from ..models import TemplateModel def get_grads_from_tensor(model: TemplateModel, loss: Tensor, output: Dict[str, Tensor], tensor_id: str, mc: int, iw: int): """ Compute the gradients given a `tensor` on which was called `tensor.retain_graph()` Assumes `tensor` to have `tensor.shape[0] == bs * iw * mc` :param model: VAE model :param loss: loss value :param output: model's output: dict :param tensor_id: key of the tensor in the model output :param mc: number of outer Monte-Carlo samples :param iw: number of inner Importance-Weighted samples :return: gradient: Tensor of shape [D,] where D is the number of elements in `tensor` """ assert tensor_id in output.keys(), f"Tensor_id = `{tensor_id}` not in model's output" model.zero_grad() loss.sum().backward(create_graph=True, retain_graph=True) # get the tensor of interest tensors = output[tensor_id] if isinstance(output[tensor_id], list) else output[tensor_id] bs = tensors[0].shape[0] // (mc * iw) # get the gradients, flatten and concat across the feature dimension gradients = [p.grad for p in tensors] assert not any( [g is None for g in gradients]), f"{sum([int(g is None) for g in gradients])} tensors have no gradients. " \ f"Use `tensor.retain_graph()` in your model to enable gradients. " \ f"tensor_id = `{tensor_id}`" # compute gradients estimate for each individual grads # sum individual gradients because x_expanded = x.expand(bs, mc, iw) gradients = torch.cat([g.view(bs, mc * iw, -1).sum(1) for g in gradients], 1) # return an MC average of the grads return gradients.mean(0) def get_grads_from_parameters(model: TemplateModel, loss: Tensor, key_filter: str = ''): """ Return the gradients for the parameters matching the `key_filter` :param model: VAE model :param loss: loss value :param key_filter: filter value (comma separated values accepted (e.g. "A,b")) :return: Tensor of shape [D,] where `D` is the number of parameters """ key_filters = key_filter.split(',') params = [p for k, p in model.named_parameters() if any([(_key in k) for _key in key_filters])] assert len(params) > 0, f"No parameters matching filter = `{key_filters}`" model.zero_grad() # backward individual gradients \nabla L[i] loss.mean().backward(create_graph=True, retain_graph=True) # gather gradients for each parameter and concat such that each element across the dim 1 is a parameter grads = [p.grad.view(-1) for p in params if p.grad is not None] return torch.cat(grads, 0) def get_gradients_statistics(estimator: GradientEstimator, model: TemplateModel, x: Tensor, mc_samples: int = 100, key_filter: str = 'inference_network', oracle_grad: Optional[Tensor] = None, return_grads: bool = False, compute_dsnr: bool = True, samples_per_batch: Optional[int] = None, eps: float = 1e-15, tqdm: Callable = tqdm, **config: Dict) -> Tuple[Diagnostic, Dict]: """ Compute the gradients and return the statistics (Variance, Magnitude, SNR, DSNR) If an `oracle` gradient is available: compute the cosine similarity with the oracle and the gradient estimate (direction) The Magnitude, Variance and SNR are defined parameter-wise. All return values are average over the D parameters with Variance > eps. For instance, the returned SNR is * SNR = 1/D \sum_d SNR_d Each MC sample is computed sequentially and the mini-batch `x` will be split into chuncks if a value `samples_per_batch` if specified and if `samples_per_batch < x.size(0) * mc * iw`. :param estimator: Gradient Estimator :param model: VAE model :param x: mini-batch of observations :param mc_samples: number of Monte-Carlo samples :param key_filter: key matching parameters names in the model :param oracle_grad: true direction of the gradients [Optional] :param return_grads: return all gradients in the `meta` output directory if set to `True` :param compute_dsnr: compute the Directional SNR if set to `True` :param samples_per_batch: max. number of individual samples `bs * mc * iw` per mini-batch [Optional] :param eps: minimum Variance value used for filtering :param config: config dictionary for the estimator :param tqdm: custom `tqdm` function :return: output : Diagnostic = {'grads' : {'variance': .., 'magnitude': .., 'snr': .., 'dsnr' .., 'direction': cosine similarity with the oracle, 'keep_ratio' : ratio of parameter-wise gradients > epsilon}} 'snr': {'percentiles', 'mean', 'min', 'max'} }, meta : additional data including the gradients values if `return_grads` """ _start = time() grads_dsnr = None grads_mean = RunningMean() grads_variance = RunningVariance() if oracle_grad is not None: grads_dir = RunningMean() all_grads = None # compute each MC sample sequentially for i in tqdm(range(mc_samples), desc="Gradients Analysis"): # compute number of chuncks based on the capacity `samples_per_batch` if samples_per_batch is None: chuncks = 1 else: bs = x.size(0) mc = estimator.config['mc'] iw = estimator.config['iw'] # infer number of chunks total_samples = bs * mc * iw chuncks = max(1, -(-total_samples // samples_per_batch)) # ceiling division # compute mini-batch gradient by chunck if `x` is large gradients = RunningMean() for k, x_ in enumerate(x.chunk(chuncks, dim=0)): model.eval() model.zero_grad() # forward, backward to compute the gradients loss, diagnostics, output = estimator(model, x_, backward=False, **config) # gather mini-batch gradients if 'tensor:' in key_filter: tensor_id = key_filter.replace("tensor:", "") gradients_ = get_grads_from_tensor(model, loss, output, tensor_id, estimator.mc, estimator.iw) else: gradients_ = get_grads_from_parameters(model, loss, key_filter=key_filter) # move to cpu gradients_ = gradients_.detach().cpu() # update average gradients.update(gradients_, k=x_.size(0)) # gather statistics with torch.no_grad(): gradients = gradients() if return_grads or compute_dsnr: all_grads = gradients[None] if all_grads is None else torch.cat([all_grads, gradients[None]], 0) grads_mean.update(gradients) grads_variance.update(gradients) # compute the statistics with torch.no_grad(): # compute statistics for each data point `x_i` grads_variance = grads_variance() grads_mean = grads_mean() # compute signal-to-noise ratio. see `tighter variational bounds are not necessarily better` (eq. 4) grad_var_sqrt = grads_variance.pow(0.5) clipped_variance_sqrt = grad_var_sqrt.clamp(min=eps) grads_snr = grads_mean.abs() / (clipped_variance_sqrt) # compute DSNR, see `tighter variational bounds are not necessarily better` (eq. 12) if compute_dsnr: u = all_grads.mean(0, keepdim=True) u /= u.norm(dim=1, keepdim=True, p=2) g_parallel = u * (u * all_grads).sum(1, keepdim=True) g_perpendicular = all_grads - g_parallel grads_dsnr = g_parallel.norm(dim=1, p=2) / (eps + g_perpendicular.norm(dim=1, p=2)) # compute grad direction: cosine similarity between the gradient estimate and the oracle if oracle_grad is not None: grads_dir = cosine(grads_mean, oracle_grad, dim=-1) # reinitialize grads model.zero_grad() # reduce fn: keep only parameter with variance > 0 mask = (grads_variance > eps).float() _reduce = lambda x: (x * mask).sum() / mask.sum() output = Diagnostic({'grads': { 'variance': _reduce(grads_variance), 'magnitude': _reduce(grads_mean.abs()), 'snr': _reduce(grads_snr), 'dsnr': grads_dsnr.mean() if grads_dsnr is not None else 0., 'keep_ratio': mask.sum() / torch.ones_like(mask).sum() }, 'snr': { 'p25': percentile(grads_snr, q=0.25), 'p50': percentile(grads_snr, q=0.50), 'p75': percentile(grads_snr, q=0.75), 'p5': percentile(grads_snr, q=0.05), 'p95': percentile(grads_snr, q=0.95), 'min': grads_snr.min(), 'max': grads_snr.max(), 'mean': grads_snr.mean()} }) if oracle_grad is not None: output['grads']['direction'] = grads_dir.mean() # additional data: raw grads, and mean,var,snr for each parameter separately meta = { 'grads': all_grads, 'expected': grads_mean, 'magnitude': grads_mean.abs(), 'var': grads_variance, 'snr': grads_snr, } return output, meta
42.545064
125
0.611924
904a907ab750687eb1de030da0541431f23b5d88
1,081
py
Python
Sem-09-T1-Q5.py
daianasousa/Semana-09
decfc9b47931ae4f5a4f30a0d26b931ecd548f59
[ "MIT" ]
null
null
null
Sem-09-T1-Q5.py
daianasousa/Semana-09
decfc9b47931ae4f5a4f30a0d26b931ecd548f59
[ "MIT" ]
null
null
null
Sem-09-T1-Q5.py
daianasousa/Semana-09
decfc9b47931ae4f5a4f30a0d26b931ecd548f59
[ "MIT" ]
null
null
null
if __name__ == '__main__': main()
30.885714
138
0.543941
5f3a8ec38dd614e2783df50d617c5b8f3ca8b0f8
1,428
py
Python
data_split.py
CodeDogandCat/ChineseGrammarErrorDiagnose
4e1ec745ae938f742c6afb0e88b08ea50c6028cb
[ "Apache-2.0" ]
null
null
null
data_split.py
CodeDogandCat/ChineseGrammarErrorDiagnose
4e1ec745ae938f742c6afb0e88b08ea50c6028cb
[ "Apache-2.0" ]
null
null
null
data_split.py
CodeDogandCat/ChineseGrammarErrorDiagnose
4e1ec745ae938f742c6afb0e88b08ea50c6028cb
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import re # from pyltp import Segmentor import jieba.posseg as pseg import jieba import os import sys import json import math # import kenlm import nltk from collections import Counter # dataSplit('TNewsSegafter2.txt', 32) dataSplit('TNewsSegafter1.txt', 32)
28
81
0.621148
5f3bba72b50ee67716dbeda71e53db5b079da28f
2,435
py
Python
Code/Python/pract_fund1_sol.py
kunal-mulki/Materials
b76bba123002972e4063b9b24cd5dc3d980e16e9
[ "MIT" ]
27
2016-12-07T17:38:41.000Z
2021-06-28T06:19:49.000Z
Code/Python/pract_fund1_sol.py
kunal-mulki/Materials
b76bba123002972e4063b9b24cd5dc3d980e16e9
[ "MIT" ]
27
2016-05-28T21:32:24.000Z
2016-12-08T16:47:09.000Z
Code/Python/pract_fund1_sol.py
NYUDataBootcamp/Materials
b76bba123002972e4063b9b24cd5dc3d980e16e9
[ "MIT" ]
50
2016-10-12T11:04:50.000Z
2021-06-01T23:24:45.000Z
""" Practice problems, Python fundamentals 1 -- Solutions @authors: Balint Szoke, Daniel Csaba @date: 06/02/2017 """ #------------------------------------------------------- # 1) Solution good_string = "Sarah's code" #or good_string = """Sarah's code""" #------------------------------------------------------- # 2) Solution i = 1234 list(str(i)) #------------------------------------------------------- # 3) Solution year = '2016' next_year = str(int(year) + 1) #------------------------------------------------------- # 4) Solution x, y = 3, 'hello' print(x, y) z = x x = y y = z print(x, y) #------------------------------------------------------- # 5) Solution name = 'Jones' print(name.upper()) #------------------------------------------------------- # 6) Solution name = 'Ulysses' print(name.count('s')) #------------------------------------------------------- # 7) Solution long_string = 'salamandroid' long_string = long_string.replace('a', '*') print(long_string) #------------------------------------------------------- # 8) Solution ll = [1, 2, 3, 4, 5] ll.reverse() print(ll) #ll.pop(1) # or better ll.pop(ll.index(4)) print(ll) ll.append(1.5) print(ll) ll.sort() print(ll) #%% #------------------------------------------------------- # 9) Solution number = "32,054.23" number_no_comma = number.replace(',', '') number_float = float(number_no_comma) print(number_float) #or print(float(number.replace(',', ''))) #------------------------------------------------------- # 10) Solution firstname_lastname = 'john_doe' firstname, lastname = firstname_lastname.split('_') Firstname = firstname.capitalize() Lastname = lastname.capitalize() print(Firstname, Lastname) #------------------------------------------------------- # 11-12) Solution l = [0, 1, 2, 4, 5] index = l.index(4) l.insert(index, 3) print(l) #------------------------------------------------------- # 13) Solution s = 'www.example.com' s = s.lstrip('w.') s = s.rstrip('.c') # or in a single line (s.lstrip('w.')).rstrip('.com') #------------------------------------------------------- # 14) Solution link = 'https://play.spotify.com/collection/albums' splitted_link = link.rsplit('/', 1) print(splitted_link[0]) #or link.rsplit('/', 1)[0] #------------------------------------------------------- # 15) Solution amount = "32.054,23" ms = amount.maketrans(',.', '.,') amount = amount.translate(ms) print(amount)
21.936937
62
0.433265
5f3df5f78e78d0ee2fc42ec4cf3a85208b508f67
7,178
py
Python
eos/old_scott_ANEOS_conversion.py
ScottHull/FDPS_SPH
6db11d599d433f889da100e78c17d6f65365ceda
[ "MIT" ]
null
null
null
eos/old_scott_ANEOS_conversion.py
ScottHull/FDPS_SPH
6db11d599d433f889da100e78c17d6f65365ceda
[ "MIT" ]
null
null
null
eos/old_scott_ANEOS_conversion.py
ScottHull/FDPS_SPH
6db11d599d433f889da100e78c17d6f65365ceda
[ "MIT" ]
null
null
null
""" This is a python script that converts u(rho, T), P(rho, T), Cs(rho,T), S(rho, T) to T(rho, u), P(rho, u), Cs(rho, u), S(rho, u), which is more useful for SPH calculations """ import matplotlib.pyplot as plt from collections import OrderedDict import numpy as np import pandas as pd import csv import sys from scipy.interpolate import interp1d from scipy import interpolate def recalculateEnergies(d, grid_number, min_energy, delta): """ For each density sample, we want the same exponential energy grid :param d: :param grid_number: :param min_energy: :param delta: :return: """ densities = d.keys() new_energies = [] for i in range(0, grid_number): new_energy = min_energy * (delta**i) new_energies.append(new_energy) for i in densities: d[i].update({'Energy (J/kg)': new_energies}) return d nu = 120 # number of the grid for the internal energy (exponential) infile_path = 'granite.table.csv' empty_lines = emptyLineIndices(f=infile_path) sorted_dict = chunkFile(f=infile_path, emtpy_lines=empty_lines) densities = sorted_dict.keys() infile_df = pd.read_csv(infile_path) energy = [reformat(i) for i in list(infile_df['Energy (J/kg)'])] min_energy = min(energy) max_energy = max(energy) delta = (min_energy / max_energy)**(1/(nu-1)) sorted_dict = recalculateEnergies(d=sorted_dict, grid_number=nu, min_energy=min_energy, delta=delta) for i in densities: energies = sorted_dict[i]['Energy (J/kg)'] temperatures = sorted_dict[i]['Temperature (K)'] pressures = sorted_dict[i]['Pressure (Pa)'] sound_speeds = sorted_dict[i]['Sound speed (m/s)'] entropies = sorted_dict[i]['Entropy (J/kg/K)'] f_temperature = interpolate.interp1d(energies, temperatures, kind='linear', fill_value='extrapolate') sorted_dict[i].update({'Temperature (K)': f_temperature(energies)}) f_pressure = interpolate.interp1d(temperatures, pressures, kind='linear', fill_value='extrapolate') sorted_dict[i].update({'Pressure (Pa)': f_pressure(sorted_dict[i]['Temperature (K)'])}) f_soundspeed = interpolate.interp1d(temperatures, sound_speeds, kind='linear', fill_value='extrapolate') sorted_dict[i].update({'Sound speed (m/s)': f_soundspeed(sorted_dict[i]['Temperature (K)'])}) f_entropy = interpolate.interp1d(temperatures, entropies, kind='linear', fill_value='extrapolate') sorted_dict[i].update({'Entropy (J/kg/K)': f_entropy(sorted_dict[i]['Temperature (K)'])}) # infile_df = pd.read_csv(infile_path) # # density = sorted(list(set([reformat(i) for i in list(infile_df['Density (kg/m3)'])]))) # remove duplicates, then sort # temperature = sorted(list(set([reformat(i) for i in list(infile_df['Temperature (K)'])]))) # energy = [reformat(i) for i in list(infile_df['Energy (J/kg)'])] # pressure = [reformat(i) for i in list(infile_df['Pressure (Pa)'])] # sound_speed = [reformat(i) for i in list(infile_df['Sound speed (m/s)'])] # entropy = [reformat(i) for i in list(infile_df['Entropy (J/kg/K)'])] # # min_energy = min(energy) # max_energy = max(energy) # delta = (min_energy / max_energy)**(1 / (nu - 1)) # # new_energy = [min_energy * (delta**i) for i in range(0, nu)] # # new_temperature = [] # new_pressure = [] # new_sound_speed = [] # new_entropy = [] # # for m in range(0, nu): # # # internal energy # f_temperature = interpolate.interp1d(energy[m:], temperature[m:], kind='linear', fill_value='extrapolate') # new_temperature.append(f_temperature(new_energy)) # # # pressure # f_pressure = interpolate.interp1d(temperature[m:], pressure[m:], kind='linear', fill_value='extrapolate') # new_pressure.append(f_pressure(new_temperature[m])) # # # sound speed # f_soundspeed = interpolate.interp1d(temperature[m:], sound_speed[m:], kind='linear', fill_value='extrapolate') # new_sound_speed.append(f_soundspeed(new_temperature[m])) # # # entropy # f_entropy = interpolate.interp1d(temperature[m:], entropy[m:], kind='linear', fill_value='extrapolate') # new_entropy.append(f_entropy(new_temperature[m])) # # new_temperature = np.array(new_temperature) # new_pressure = np.array(new_pressure) # new_sound_speed = np.array(new_sound_speed) # new_entropy = np.array(new_entropy) # # for m in range(0, len(density), int(len(density)/6)): # # ax = [0, 0, 0, 0] # # fig = plt.figure(figsize = (10,6.128)) # # ax[0] = fig.add_subplot(221) # ax[1] = fig.add_subplot(222) # ax[2] = fig.add_subplot(223) # ax[3] = fig.add_subplot(224) # # ax[0].semilogy(np.array(temperature) * 1e-3, np.array(energy[m:]) * 1e-6, '--', label="original ANEOS") # ax[0].semilogy(new_temperature[m:] * 1e-3, np.array(new_energy[m:]) * 1e-6, '-.', label="modified") # ax[1].semilogy(np.array(temperature) * 1e-3, np.array(pressure[m:]) * 1e-6,'--', new_temperature[m:] * 1e-3, new_pressure[m:] * 1e-6,'-.') # ax[2].plot(np.array(temperature) * 1e-3, np.array(sound_speed[m:]) * 1e-3,'--', new_temperature[m:] * 1e-3, new_sound_speed[m:] * 1e-3,'-.') # ax[3].plot(np.array(temperature) * 1e-3, np.array(entropy[m:]) * 1e-3,'--', new_temperature[m:] * 1e-3, new_entropy[m:] * 1e-3,'-.') # # ax[0].legend(frameon=False) # # ax[0].set_ylabel('Energy (MJ/kg)', fontsize=10) # ax[1].set_ylabel('Pressure (MPa)', fontsize=10) # ax[2].set_ylabel('Sound Speed (km/s)', fontsize=10) # ax[3].set_ylabel('Entropy (kJ/K/kg)', fontsize=10) # ax[2].set_xlabel('Temperature ($10^3$ K)', fontsize=10) # ax[3].set_xlabel('Temperature ($10^3$ K)',fontsize=10) # # fig.suptitle("Density: %3.3f kg/m$^3$" %(density[m])) # # plt.show() # # fig.savefig("Density" + str(m) + ".png")
34.344498
146
0.636389
5f3f44af77a5d9949e7fe7c6858624af3b7fa923
346
py
Python
scheduler/post_scheduler/urls.py
Awinja-j/Social-Media-post-Scheduler
4f95b4bb2ca3f890d3e22bcda859b94ebc483b87
[ "MIT" ]
1
2021-05-08T08:21:06.000Z
2021-05-08T08:21:06.000Z
scheduler/post_scheduler/urls.py
Awinja-j/Social-Media-post-Scheduler
4f95b4bb2ca3f890d3e22bcda859b94ebc483b87
[ "MIT" ]
null
null
null
scheduler/post_scheduler/urls.py
Awinja-j/Social-Media-post-Scheduler
4f95b4bb2ca3f890d3e22bcda859b94ebc483b87
[ "MIT" ]
null
null
null
from django.urls import path from . import views urlpatterns = [ path('post_posts', views.post_posts), path('fetch_posts', views.get_posts), path('fetch_post/<pk>', views.get_post), path('delete_post/<pk>', views.delete_post), path('edit_post/<pk>', views.edit_post), path('search_for_a_post', views.search_for_a_post) ]
28.833333
54
0.699422
5f3fad78b868dac1b90ecb78a5594353e0e31396
506
py
Python
dato-graphlab/src/config.py
warreee/apache-flink_vs_dato-graphlab
cd01cee208461479d3f27489ab45df439b8b9820
[ "Apache-2.0" ]
null
null
null
dato-graphlab/src/config.py
warreee/apache-flink_vs_dato-graphlab
cd01cee208461479d3f27489ab45df439b8b9820
[ "Apache-2.0" ]
null
null
null
dato-graphlab/src/config.py
warreee/apache-flink_vs_dato-graphlab
cd01cee208461479d3f27489ab45df439b8b9820
[ "Apache-2.0" ]
null
null
null
import os
16.322581
63
0.666008
5f42caff296a8e9070523febb1d633e533ecbfff
950
py
Python
tools.py
chougousui/keyboard_layout_for_mobile
3bb59169f10ac56fb82cb62be07f821f1ecac22e
[ "MIT" ]
5
2019-06-12T09:29:06.000Z
2020-12-31T08:53:19.000Z
tools.py
chougousui/keyboard_layout_for_mobile
3bb59169f10ac56fb82cb62be07f821f1ecac22e
[ "MIT" ]
null
null
null
tools.py
chougousui/keyboard_layout_for_mobile
3bb59169f10ac56fb82cb62be07f821f1ecac22e
[ "MIT" ]
null
null
null
import numpy as np
29.6875
119
0.489474
5f43a06d91c00b879b94bd9ca11de4d7d8fcab07
377
py
Python
full-stack/backend/django-app/django-jwt-app/settings/urls.py
mp5maker/library
b4d2eea70ae0da9d917285569031edfb4d8ab9fc
[ "MIT" ]
null
null
null
full-stack/backend/django-app/django-jwt-app/settings/urls.py
mp5maker/library
b4d2eea70ae0da9d917285569031edfb4d8ab9fc
[ "MIT" ]
23
2020-08-15T15:18:32.000Z
2022-02-26T13:49:05.000Z
full-stack/backend/django-app/django-jwt-app/settings/urls.py
mp5maker/library
b4d2eea70ae0da9d917285569031edfb4d8ab9fc
[ "MIT" ]
null
null
null
from django.contrib import admin from django.urls import path, include from rest_framework_jwt.views import ( obtain_jwt_token, refresh_jwt_token, ) urlpatterns = [ path('admin/', admin.site.urls), path('token-auth/', obtain_jwt_token), path('token-refresh/', refresh_jwt_token), path('employee/', include('employee.urls', namespace='employee')) ]
22.176471
70
0.710875
5f45037068a6ca19658fc2ba430b609e4386fc29
15,989
py
Python
models/train_classifier.py
tarcisobraz/disaster-message-clf
22de03350a0f993005564a1d07a43da6bd989e67
[ "DOC" ]
null
null
null
models/train_classifier.py
tarcisobraz/disaster-message-clf
22de03350a0f993005564a1d07a43da6bd989e67
[ "DOC" ]
null
null
null
models/train_classifier.py
tarcisobraz/disaster-message-clf
22de03350a0f993005564a1d07a43da6bd989e67
[ "DOC" ]
null
null
null
#General libs import sys import os import json from datetime import datetime import time #Data wrangling libs import pandas as pd import numpy as np #DB related libs from sqlalchemy import create_engine #ML models related libs from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split from sklearn.multioutput import MultiOutputClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.metrics import classification_report from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegression #Gensim from gensim.models import KeyedVectors #Custom Transformers and Estimators import nlp_estimators #Model Saver import dill #Workspace Utils from workspace_utils import active_session #Glove Models dictionary (to be filled in when needed) glove_models_by_size = {50: None, 100: None, 300: None} #Train Configurations to be filled in when script is called train_configs = {} def get_or_load_glove_model(num_dims): ''' INPUT num_dims - int, number of dimensions of the Glove model to be loaded OUTPUT glove_model - object, the pre-trained glove model with the specified number of dimensions This function either retrieves the already-stored glove model or loads and stores it from file using the train configuration `glove_models_folderpath` ''' if glove_models_by_size[num_dims] == None: print('Pre-trained Glove Model with {} dims not found. '\ '\nLoading it from file...'.format(num_dims)) glove_models_by_size[num_dims] = KeyedVectors.load_word2vec_format( os.path.join(train_configs['glove_models_folderpath'], 'glove.6B.{}d_word2vec.txt'.format(num_dims)), binary=False) return glove_models_by_size[num_dims] def load_data(database_filepath): ''' INPUT database_filepath - string, filepath of database from which data will be loaded OUTPUT X - numpy array, The raw messages ready to be used to train the pipelines X_tokenized - numpy array, The tokenized messages ready to be used to train the pipelines Y - numpy array, The list of categories to which each message belongs category_columns - pandas series, The names of the categories categories_tokens - numpy array, The tokenized categories names (to be used by cats_sim feature set) This function loads and prepares data for the models training ''' engine = create_engine('sqlite:///' + database_filepath) messages_df = pd.read_sql_table(con=engine, table_name='Message') categories_df = pd.read_sql_table(con=engine, table_name='CorpusWide') messages_tokens = pd.read_sql_table(con=engine, table_name='MessageTokens') X = messages_df.message.values X_tokenized = messages_tokens.tokens_str.values Y_df = categories_df.drop(['message_id', 'message', 'original', 'genre'], axis=1) Y = Y_df.values category_columns = Y_df.columns categories_tokens = np.array([np.array(cat.split('_')) for cat in category_columns]) return X, X_tokenized, Y, category_columns, categories_tokens def build_estimator_obj(estimator_code): ''' INPUT estimator_code - string, the code of the classifier object to be built OUTPUT classifier_obj - sklearn estimator, the built classifier object This function builds a classifier object based on the estimator code received as input. For unexpected codes, it prints an error and exits the script execution ''' classifier_obj = None if estimator_code == 'rf': classifier_obj = RandomForestClassifier() elif estimator_code == 'lr': classifier_obj = LogisticRegression() else: print("Invalid Classifier Estimator Code " + estimator_code) exit(1) return classifier_obj def build_classifiers_build_params(classifiers_configs): ''' INPUT classifiers_configs - dict, a dictionary containing the configuration for each classifier OUTPUT classifiers_params_dict - dict, a dictionary containing the grid params to be used for each classifier in the training process This function builds a dictionary with grid params to be used in training process for each classifier whose configurations were given as input. It can handle a single classifier or a list of classifiers. ''' if len(classifiers_configs) > 1: classifiers_params_list = [] classifiers_params_dict = {} for classifier in classifiers_configs: classifier_estimator = classifier['estimator'] classifier_obj = build_estimator_obj(classifier_estimator) classifier_obj = MultiOutputClassifier(classifier_obj.set_params(**classifier['params'])) classifiers_params_list.append(classifier_obj) classifiers_params_dict['clf'] = classifiers_params_list elif len(classifiers_configs) == 1: classifier = classifiers_configs[0] classifier_estimator = classifier['estimator'] classifier_obj = build_estimator_obj(classifier_estimator) classifier_obj = MultiOutputClassifier(classifier_obj) classifiers_params_dict = {'clf' : [classifier_obj]} classifiers_params_dict.update(classifier['params']) print(classifiers_params_dict) return classifiers_params_dict def build_model(model_config,classifiers_params,categories_tokens): ''' INPUT model_config - dict, a dictionary containing the configuration for a model pipeline classifiers_configs - dict, a dictionary containing the configuration for each classifier categories_tokens - numpy array, array containing the tokenized categories names OUTPUT grid_search_cv - sklearn GridSearchCV, a grid search CV object containing specifications on how to train the model based on the input configs This function builds a Grid Search CV object with specifications for training process for a given model and its classifiers whose configurations were given as input. It can handle different feature_sets: - Local Word2Vec - Pre-Trained Glove - Doc2Vec - Category Similarity - All Features Sets together ''' feature_set = model_config['feature_set'] print("Building Model for feature set: {}".format(feature_set)) print("Grid Params: {}".format(model_config['grid_params'])) pipeline = grid_search_params = grid_search_cv = None jobs = -1 score = 'f1_micro' def_cv = 3 verbosity_level=10 if feature_set == 'local_w2v': pipeline = Pipeline([ ('local_w2v', nlp_estimators.TfidfEmbeddingTrainVectorizer()), ('clf', MultiOutputClassifier(GaussianNB())) ]) grid_search_params = model_config['grid_params'] elif feature_set == 'glove': pipeline = Pipeline([ ('glove', nlp_estimators.TfidfEmbeddingTrainVectorizer( get_or_load_glove_model(50))), ('clf', MultiOutputClassifier(GaussianNB())) ]) grid_search_params = {'glove__word2vec_model' : [get_or_load_glove_model(num_dims) for num_dims in model_config['grid_params']['glove__num_dims']]} elif feature_set == 'doc2vec': pipeline = Pipeline([ ('doc2vec', nlp_estimators.Doc2VecTransformer()), ('clf', MultiOutputClassifier(GaussianNB())) ]) grid_search_params = model_config['grid_params'] elif feature_set == 'cats_sim': pipeline = Pipeline([ ('cats_sim', nlp_estimators.CategoriesSimilarity( categories_tokens=categories_tokens)), ('clf', MultiOutputClassifier(GaussianNB())) ]) grid_search_params = {'cats_sim__word2vec_model' : [get_or_load_glove_model(num_dims) for num_dims in model_config['grid_params']['cats_sim__num_dims']]} elif feature_set == 'all_feats': pipeline = Pipeline([ ('features', FeatureUnion([ ('local_w2v', nlp_estimators.TfidfEmbeddingTrainVectorizer(num_dims=50)), ('glove', nlp_estimators.TfidfEmbeddingTrainVectorizer( get_or_load_glove_model(50) )), ('doc2vec', nlp_estimators.Doc2VecTransformer(vector_size=50)), ('cats_sim', nlp_estimators.CategoriesSimilarity(categories_tokens=categories_tokens, word2vec_model=get_or_load_glove_model(50))) ])), ('clf', MultiOutputClassifier(GaussianNB())) ]) grid_search_params = model_config['grid_params'] else: print("Error: Invalid Feature Set: " + feature_set) sys.exit(1) # Adds classifiers params to grid params grid_search_params.update(classifiers_params) grid_search_cv = GridSearchCV(estimator=pipeline, param_grid=grid_search_params, scoring=score, cv=def_cv, n_jobs=jobs, verbose=verbosity_level) return grid_search_cv def evaluate_model(model, X_test, Y_test, category_names): ''' INPUT model - sklearn GridSearchCV, the GridSearch containing the model with best performance on the training set X_test - numpy array, tokenized messages ready to be used to test the fit pipelines Y_test - numpy array, array containing the tokenized categories names for the test set category_names - pandas series, the categories names OUTPUT test_score - float, the score of the input model on the test data This function runs the model with best performance on the training set on the test dataset, printing the precision, recall and f-1 per category and returning the overall prediction score. ''' print('Best params: %s' % model.best_params_) # Best training data accuracy print('Best training score: %.3f' % model.best_score_) # Predict on test data with best params Y_pred = model.predict(X_test) test_score = model.score(X_test, Y_test) # Test data accuracy of model with best params print('Test set score for best params: %.3f ' % test_score) for category_idx in range(len(category_names)): print(classification_report(y_pred=Y_pred[:,category_idx], y_true=Y_test[:,category_idx], labels=[0,1], target_names=[category_names[category_idx] + '-0', category_names[category_idx] + '-1'])) return test_score def save_model(model, model_filepath): ''' INPUT model - sklearn Estimator, the model with best performance on the training set model_filepath - string, path where model picke will be saved This function saves the model with best performance on the training set to a given filepath. ''' # Output a pickle file for the model with open(model_filepath,'wb') as f: dill.dump(model, f) def build_grid_search_results_df(gs_results, gs_name, test_score): ''' INPUT gs_results - dict, dictionary containing the results of GridSearchCV training gs_name - string, the name of the GridSearchCV feature set test_score - float, the score of the best performing model of the GridSearchCV on the test set OUTPUT gs_results_df - pandas DataFrame, a dataframe holding information of the GridSearchCV results (train and test) for record This function builds a dataframe with information of the GridSearchCV results (train and test) for record. ''' gs_results_df = pd.DataFrame(gs_results) gs_results_df['grid_id'] = gs_name gs_results_df['best_model_test_score'] = test_score gs_results_df['param_set_order'] = np.arange(len(gs_results_df)) return gs_results_df def run_grid_search(): ''' This function runs the whole model selection phase: - Load Data from DB - Build Model - Run GridSearch - Save results to file - Save best model pickle file ''' start = time.time() print("Train configuration:") print(json.dumps(train_configs, indent=4)) print('Loading data...\n DATABASE: {}'.format(train_configs['database_filepath'])) X, X_tokenized, Y, category_names, categories_tokens = load_data(train_configs['database_filepath']) X_train, X_test, Y_train, Y_test = train_test_split(X_tokenized, Y, test_size=0.25) classifiers_params = build_classifiers_build_params(train_configs['classifiers']) print('Running GridSearch on models parameters...') best_score = 0.0 best_gs = '' overall_results_df = pd.DataFrame() for model_config in train_configs['models']: print('Building model...') model = build_model(model_config, classifiers_params, categories_tokens) print('Training model...') model.fit(X_train, Y_train) print('Evaluating model...') test_score = evaluate_model(model, X_test, Y_test, category_names) gs_results_df = build_grid_search_results_df(model.cv_results_, model_config['feature_set'], test_score) overall_results_df = pd.concat([overall_results_df, gs_results_df]) print('Saving model...\n MODEL: {}'.format( model_config['model_ouput_filepath'])) save_model(model.best_estimator_, model_config['model_ouput_filepath']) print('Trained model saved!') # Track best (highest test accuracy) model if test_score > best_score: best_score = test_score best_gs = model_config['feature_set'] output_filepath = train_configs['results_folderpath'] + \ 'res-' + train_configs['name'] + '-' + \ datetime.now().strftime('%Y-%m-%d_%H:%M:%S') + \ '.csv' print('Saving Results...\n FILEPATH: {}'.format(output_filepath)) overall_results_df.to_csv(output_filepath, index=False) print('\nClassifier with best test set accuracy: %s' % best_gs) end = time.time() print("Training Time: " + str(int(end - start)) + "s") if __name__ == '__main__': main()
37.888626
117
0.659704
5f468ef647d08df9b7e435bbbbaaf01ef4277cf4
148
py
Python
src/cortexpy/test/constants.py
karljohanw/cortexpy
70dcce771136f98edb5250ad8abd2a46bda7f0a6
[ "Apache-2.0" ]
2
2020-04-08T15:31:12.000Z
2020-07-01T11:04:47.000Z
src/cortexpy/test/constants.py
karljohanw/cortexpy
70dcce771136f98edb5250ad8abd2a46bda7f0a6
[ "Apache-2.0" ]
9
2018-09-12T09:29:43.000Z
2020-03-15T09:11:25.000Z
src/cortexpy/test/constants.py
karljohanw/cortexpy
70dcce771136f98edb5250ad8abd2a46bda7f0a6
[ "Apache-2.0" ]
1
2019-03-29T10:59:13.000Z
2019-03-29T10:59:13.000Z
import struct MAX_UINT = 2 ** (struct.calcsize('I') * 8) - 1 MAX_ULONG = 2 ** (struct.calcsize('L') * 8) - 1 UINT8_T = 1 UINT32_T = 4 UINT64_T = 8
18.5
47
0.614865
5f47bfe261a0653163329656400b45e38dc2e334
2,103
py
Python
tests/functional_tests/authors/test_authors_login.py
Kaique425/recipes
ab188dbe1ca3891160f65a7858613b8750faa721
[ "MIT" ]
null
null
null
tests/functional_tests/authors/test_authors_login.py
Kaique425/recipes
ab188dbe1ca3891160f65a7858613b8750faa721
[ "MIT" ]
null
null
null
tests/functional_tests/authors/test_authors_login.py
Kaique425/recipes
ab188dbe1ca3891160f65a7858613b8750faa721
[ "MIT" ]
null
null
null
import pytest from django.contrib.auth.models import User from django.urls import reverse from selenium.webdriver.common.by import By from .base import AuthorBaseFunctionalTest
37.553571
85
0.661912
5f4b11817e6c6f5664fb7eebcff8bd3df9ed5773
42
py
Python
varex/__init__.py
weiyi-bitw/varex
765e8876c0ced480a47c0e523736bd31b7897644
[ "MIT" ]
null
null
null
varex/__init__.py
weiyi-bitw/varex
765e8876c0ced480a47c0e523736bd31b7897644
[ "MIT" ]
null
null
null
varex/__init__.py
weiyi-bitw/varex
765e8876c0ced480a47c0e523736bd31b7897644
[ "MIT" ]
null
null
null
from .commons import VCFEntry, LabeledMat
21
41
0.833333
5f4ba7ea00a9b4ae2bec68e16163449e185187d1
2,612
py
Python
simulation/battery/base_battery.py
BillMakwae/Simulation
8d0ec274643f23bc0e78c96e50508b60791c11d2
[ "MIT" ]
8
2020-03-29T01:44:16.000Z
2022-03-26T23:15:34.000Z
simulation/battery/base_battery.py
BillMakwae/Simulation
8d0ec274643f23bc0e78c96e50508b60791c11d2
[ "MIT" ]
60
2020-02-08T22:07:16.000Z
2022-03-26T23:51:55.000Z
simulation/battery/base_battery.py
BillMakwae/Simulation
8d0ec274643f23bc0e78c96e50508b60791c11d2
[ "MIT" ]
1
2021-10-20T20:07:06.000Z
2021-10-20T20:07:06.000Z
from simulation.common import Storage from simulation.common import BatteryEmptyError
39.575758
116
0.61562
5f501af017d1618fd9d8ac7f58bef0af07c22038
2,757
py
Python
MLP/Detectar cancer de mama/Cancer_mama_simples.py
alex7alves/Deep-Learning
7843629d5367f3ea8b15915a7ba3667cf7a65587
[ "Apache-2.0" ]
null
null
null
MLP/Detectar cancer de mama/Cancer_mama_simples.py
alex7alves/Deep-Learning
7843629d5367f3ea8b15915a7ba3667cf7a65587
[ "Apache-2.0" ]
null
null
null
MLP/Detectar cancer de mama/Cancer_mama_simples.py
alex7alves/Deep-Learning
7843629d5367f3ea8b15915a7ba3667cf7a65587
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Oct 17 21:04:48 2018 @author: Alex Alves Programa para determinar se um tumor de mama benigno (saida 0) ou maligno (saida 1) """ import pandas as pa # Importao para poder dividir os dados entre treinamento da rede e testes de validao from sklearn.model_selection import train_test_split import keras from keras.models import Sequential from keras.layers import Dense from sklearn.metrics import confusion_matrix, accuracy_score entrada = pa.read_csv('entradas-breast.csv') esperado = pa.read_csv('saidas-breast.csv') # Treinamento com 75% e validao com 25% entrada_treinar, entrada_teste, esperado_treinar,esperado_teste =train_test_split(entrada,esperado,test_size=0.25) # Criando a rede neural detectar_cancer = Sequential() #Adicionando camada de entrada detectar_cancer.add(Dense(units=16,activation='relu',kernel_initializer='random_uniform',input_dim=30)) #Adicionando uma camada oculta detectar_cancer.add(Dense(units=16,activation='relu',kernel_initializer='random_uniform')) # Adicionando camada de saida detectar_cancer.add(Dense(units=1,activation='sigmoid')) # Compilar a rede #compile(descida_gradiente,funo do erro- MSE, preciso da rede) # clipvalue -> delimita os valores dos pesos entre 0.5 e -0.5 # lr = tamanho do passo, decay-> reduo do passo otimizar = keras.optimizers.Adam(lr=0.001,decay=0.0001) # Nesse caso o clipvalue prejudicou #otimizar = keras.optimizers.Adam(lr=0.004,decay=0.0001,clipvalue=0.5) detectar_cancer.compile(otimizar,loss='binary_crossentropy',metrics=['binary_accuracy']) #detectar_cancer.compile(optimizer='adam',loss='binary_crossentropy',metrics=['binary_accuracy']) # Fazer o treinamento da rede - erro calculado para 10 amostras #depois atualiza os pesos -descida do gradiente estocasticos de 10 em 10 amostras detectar_cancer.fit(entrada_treinar,esperado_treinar,batch_size=10,epochs=100) # Pegando os pesos pesosCamadaEntrada = detectar_cancer.layers[0].get_weights() pesosCamadaOculta = detectar_cancer.layers[1].get_weights() pesosCamadaSaida = detectar_cancer.layers[2].get_weights() # Realizando teste de validao # retorna probabilidade de acerto validar = detectar_cancer.predict(entrada_teste) # convertendo para true ou false (1 ou 0) para comparar # se for maior que 0.5 true, caso contrrio false validar = (validar > 0.5) # compara os 2 vetores e calcula a porcentagem de acerto # da rede usando o conjunto de treinamento precisao = accuracy_score(esperado_teste,validar) # Matriz de acertos da rede acertos = confusion_matrix(esperado_teste,validar) # Outra maneira de resultado # retorna o erro e a preciso resultado = detectar_cancer.evaluate(entrada_teste, esperado_teste)
33.216867
114
0.791077
5f50dd9219cff3c1253c4849dd5381638d312cc3
1,214
py
Python
py/py_0736_paths_to_equality.py
lcsm29/project-euler
fab794ece5aa7a11fc7c2177f26250f40a5b1447
[ "MIT" ]
null
null
null
py/py_0736_paths_to_equality.py
lcsm29/project-euler
fab794ece5aa7a11fc7c2177f26250f40a5b1447
[ "MIT" ]
null
null
null
py/py_0736_paths_to_equality.py
lcsm29/project-euler
fab794ece5aa7a11fc7c2177f26250f40a5b1447
[ "MIT" ]
null
null
null
# Solution of; # Project Euler Problem 736: Paths to Equality # https://projecteuler.net/problem=736 # # Define two functions on lattice points:$r(x,y) = (x+1,2y)$$s(x,y) = # (2x,y+1)$A path to equality of length $n$ for a pair $(a,b)$ is a sequence # $\Big((a_1,b_1),(a_2,b_2),\ldots,(a_n,b_n)\Big)$, where:$(a_1,b_1) = # (a,b)$$(a_k,b_k) = r(a_{k-1},b_{k-1})$ or $(a_k,b_k) = s(a_{k-1},b_{k-1})$ # for $k > 1$$a_k \ne b_k$ for $k < n$$a_n = b_n$$a_n = b_n$ is called the # final value. For example,$(45,90)\xrightarrow{r} # (46,180)\xrightarrow{s}(92,181)\xrightarrow{s}(184,182)\xrightarrow{s}(368,183)\xrightarrow{s}(736,184)\xrightarrow{r}$$(737,368)\xrightarrow{s}(1474,369)\xrightarrow{r}(1475,738)\xrightarrow{r}(1476,1476)$This # is a path to equality for $(45,90)$ and is of length 10 with final value # 1476. There is no path to equality of $(45,90)$ with smaller length. Find # the unique path to equality for $(45,90)$ with smallest odd length. Enter # the final value as your answer. # # by lcsm29 http://github.com/lcsm29/project-euler import timed if __name__ == '__main__': n = 1000 i = 10000 prob_id = 736 timed.caller(dummy, n, i, prob_id)
40.466667
213
0.651565
5f548523f9dcf1f62a0e2fe0f345f22d699939d1
1,728
py
Python
codejam/2020-qualification/d.py
Ashindustry007/competitive-programming
2eabd3975c029d235abb7854569593d334acae2f
[ "WTFPL" ]
506
2018-08-22T10:30:38.000Z
2022-03-31T10:01:49.000Z
codejam/2020-qualification/d.py
Ashindustry007/competitive-programming
2eabd3975c029d235abb7854569593d334acae2f
[ "WTFPL" ]
13
2019-08-07T18:31:18.000Z
2020-12-15T21:54:41.000Z
codejam/2020-qualification/d.py
Ashindustry007/competitive-programming
2eabd3975c029d235abb7854569593d334acae2f
[ "WTFPL" ]
234
2018-08-06T17:11:41.000Z
2022-03-26T10:56:42.000Z
#!/usr/bin/env python3 # https://codingcompetitions.withgoogle.com/codejam/round/000000000019fd27/0000000000209a9e t, b = map(int, input().split()) for _ in range(t): xs = [None] * b q, k, k1, k2 = 0, 0, None, None while True: if q > 0 and q % 10 == 0: if k1 is not None and k2 is not None: v1 = query(k1+1) v2 = query(k2+1) if xs[k1] == v1 and xs[k2] == v2: pass elif xs[k1] != v1 and xs[k2] != v2: complement() elif xs[k1] != v1: xs = xs[::-1] complement() else: xs = xs[::-1] elif k1 is not None: v1 = query(k1+1) v1 = query(k1+1) if xs[k1] != v1: complement() else: v2 = query(k2+1) v2 = query(k2+1) if xs[k2] != v2: xs = xs[::-1] else: v1 = query(k+1) v2 = query(b-k) xs[k] = v1 xs[b-k-1] = v2 if v1 == v2 and k1 is None: k1 = k elif v1 != v2 and k2 is None: k2 = k k += 1 if k*2 == b: solve() break
27
91
0.358218
5f587bf36e711ee18aa81e26269a6338ac9328eb
1,388
py
Python
Stephanie/updater.py
JeremyARussell/stephanie-va
acc894fa69b4e5559308067d525f71f951ecc258
[ "MIT" ]
866
2017-06-10T19:25:28.000Z
2022-01-06T18:29:36.000Z
Stephanie/updater.py
JeremyARussell/stephanie-va
acc894fa69b4e5559308067d525f71f951ecc258
[ "MIT" ]
54
2017-06-11T06:41:19.000Z
2022-01-10T23:06:03.000Z
Stephanie/updater.py
JeremyARussell/stephanie-va
acc894fa69b4e5559308067d525f71f951ecc258
[ "MIT" ]
167
2017-06-10T19:32:54.000Z
2022-01-03T07:01:39.000Z
import requests from Stephanie.configurer import config
34.7
142
0.730548
5f591fe59a581e7f936f818cedb0f094b131b698
24,533
py
Python
WORC/featureprocessing/ComBat.py
MStarmans91/WORC
b6b8fc2ccb7d443a69b5ca20b1d6efb65b3f0fc7
[ "ECL-2.0", "Apache-2.0" ]
47
2018-01-28T14:08:15.000Z
2022-03-24T16:10:07.000Z
WORC/featureprocessing/ComBat.py
JZK00/WORC
14e8099835eccb35d49b52b97c0be64ecca3809c
[ "ECL-2.0", "Apache-2.0" ]
13
2018-08-28T13:32:57.000Z
2020-10-26T16:35:59.000Z
WORC/featureprocessing/ComBat.py
JZK00/WORC
14e8099835eccb35d49b52b97c0be64ecca3809c
[ "ECL-2.0", "Apache-2.0" ]
16
2017-11-13T10:53:36.000Z
2022-03-18T17:02:04.000Z
#!/usr/bin/env python # Copyright 2020 Biomedical Imaging Group Rotterdam, Departments of # Medical Informatics and Radiology, Erasmus MC, Rotterdam, The Netherlands # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import subprocess import scipy.io as sio import WORC.IOparser.file_io as wio import WORC.IOparser.config_io_combat as cio import numpy as np import random import pandas as pd from WORC.addexceptions import WORCValueError, WORCKeyError import tempfile from sys import platform from WORC.featureprocessing.VarianceThreshold import selfeat_variance from sklearn.preprocessing import StandardScaler from neuroCombat import neuroCombat import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from WORC.featureprocessing.Imputer import Imputer def ComBat(features_train_in, labels_train, config, features_train_out, features_test_in=None, labels_test=None, features_test_out=None, VarianceThreshold=True, scaler=False, logarithmic=False): """ Apply ComBat feature harmonization. Based on: https://github.com/Jfortin1/ComBatHarmonization """ # Load the config print('############################################################') print('# Initializing ComBat. #') print('############################################################\n') config = cio.load_config(config) excluded_features = config['ComBat']['excluded_features'] # If mod, than also load moderating labels if config['ComBat']['mod'][0] == '[]': label_names = config['ComBat']['batch'] else: label_names = config['ComBat']['batch'] + config['ComBat']['mod'] # Load the features for both training and testing, match with batch and mod parameters label_data_train, image_features_train =\ wio.load_features(features_train_in, patientinfo=labels_train, label_type=label_names) feature_labels = image_features_train[0][1] image_features_train = [i[0] for i in image_features_train] label_data_train['patient_IDs'] = list(label_data_train['patient_IDs']) # Exclude features if excluded_features: print(f'\t Excluding features containing: {excluded_features}') # Determine indices of excluded features included_feature_indices = [] excluded_feature_indices = [] for fnum, i in enumerate(feature_labels): if not any(e in i for e in excluded_features): included_feature_indices.append(fnum) else: excluded_feature_indices.append(fnum) # Actually exclude the features image_features_train_combat = [np.asarray(i)[included_feature_indices].tolist() for i in image_features_train] feature_labels_combat = np.asarray(feature_labels)[included_feature_indices].tolist() image_features_train_noncombat = [np.asarray(i)[excluded_feature_indices].tolist() for i in image_features_train] feature_labels_noncombat = np.asarray(feature_labels)[excluded_feature_indices].tolist() else: image_features_train_combat = image_features_train feature_labels_combat = feature_labels.tolist() image_features_train_noncombat = [] feature_labels_noncombat = [] # Detect NaNs, otherwise first feature imputation is required if any(np.isnan(a) for a in np.asarray(image_features_train_combat).flatten()): print('\t [WARNING] NaNs detected, applying median imputation') imputer = Imputer(missing_values=np.nan, strategy='median') imputer.fit(image_features_train_combat) image_features_train_combat = imputer.transform(image_features_train_combat) else: imputer = None # Apply a scaler to the features if scaler: print('\t Fitting scaler on dataset.') scaler = StandardScaler().fit(image_features_train_combat) image_features_train_combat = scaler.transform(image_features_train_combat) # Remove features with a constant value if VarianceThreshold: print(f'\t Applying variance threshold on dataset.') image_features_train_combat, feature_labels_combat, VarSel =\ selfeat_variance(image_features_train_combat, np.asarray([feature_labels_combat])) feature_labels_combat = feature_labels_combat[0].tolist() if features_test_in: label_data_test, image_features_test =\ wio.load_features(features_test_in, patientinfo=labels_test, label_type=label_names) image_features_test = [i[0] for i in image_features_test] label_data_test['patient_IDs'] = list(label_data_test['patient_IDs']) if excluded_features: image_features_test_combat = [np.asarray(i)[included_feature_indices].tolist() for i in image_features_test] image_features_test_noncombat = [np.asarray(i)[excluded_feature_indices].tolist() for i in image_features_test] else: image_features_test_combat = image_features_test image_features_test_noncombat = [] # Apply imputation if required if imputer is not None: image_features_test_combat = imputer.transform(image_features_test_combat) # Apply a scaler to the features if scaler: image_features_test_combat = scaler.transform(image_features_test_combat) # Remove features with a constant value if VarianceThreshold: image_features_test_combat = VarSel.transform(image_features_test_combat) all_features = image_features_train_combat.tolist() + image_features_test_combat.tolist() all_labels = list() for i in range(label_data_train['label'].shape[0]): all_labels.append(label_data_train['label'][i, :, 0].tolist() + label_data_test['label'][i, :, 0].tolist()) all_labels = np.asarray(all_labels) else: all_features = image_features_train_combat.tolist() all_labels = label_data_train['label'] # Convert data to a single array all_features_matrix = np.asarray(all_features) all_labels = np.squeeze(all_labels) # Apply logarithm if required if logarithmic: print('\t Taking log10 of features before applying ComBat.') all_features_matrix = np.log10(all_features_matrix) # Convert all_labels to dictionary if len(all_labels.shape) == 1: # No mod variables all_labels = {label_data_train['label_name'][0]: all_labels} else: all_labels = {k: v for k, v in zip(label_data_train['label_name'], all_labels)} # Split labels in batch and moderation labels bat = config['ComBat']['batch'] mod = config['ComBat']['mod'] print(f'\t Using batch variable {bat}, mod variables {mod}.') batch = [all_labels[l] for l in all_labels.keys() if l in config['ComBat']['batch']] batch = batch[0] if config['ComBat']['mod'][0] == '[]': mod = None else: mod = [all_labels[l] for l in all_labels.keys() if l in config['ComBat']['mod']] # Set parameters for output files parameters = {'batch': config['ComBat']['batch'], 'mod': config['ComBat']['mod'], 'par': config['ComBat']['par']} name = 'Image features: ComBat corrected' panda_labels = ['parameters', 'patient', 'feature_values', 'feature_labels'] feature_labels = feature_labels_combat + feature_labels_noncombat # Convert all inputs to arrays with right shape all_features_matrix = np.transpose(all_features_matrix) if mod is not None: mod = np.transpose(np.asarray(mod)) # Patients identified with batch -1.0 should be skipped skipname = 'Image features: ComBat skipped' ntrain = len(image_features_train_combat) ndel = 0 print(features_test_out) for bnum, b in enumerate(batch): bnum -= ndel if b == -1.0: if bnum < ntrain - ndel: # Training patient print('train') pid = label_data_train['patient_IDs'][bnum] out = features_train_out[bnum] # Combine ComBat and non-ComBat features feature_values_temp = list(all_features_matrix[:, bnum]) + list(image_features_train_noncombat[bnum]) # Delete patient for later processing del label_data_train['patient_IDs'][bnum] del image_features_train_noncombat[bnum] del features_train_out[bnum] image_features_train_combat = np.delete(image_features_train_combat, bnum, 0) else: # Test patient print('test') pid = label_data_test['patient_IDs'][bnum - ntrain] out = features_test_out[bnum - ntrain] # Combine ComBat and non-ComBat features feature_values_temp = list(all_features_matrix[:, bnum]) + list(image_features_test_noncombat[bnum - ntrain]) # Delete patient for later processing del label_data_test['patient_IDs'][bnum - ntrain] del image_features_test_noncombat[bnum - ntrain] del features_test_out[bnum - ntrain] image_features_test_combat = np.delete(image_features_test_combat, bnum - ntrain, 0) # Delete some other variables for later processing all_features_matrix = np.delete(all_features_matrix, bnum, 1) if mod is not None: mod = np.delete(mod, bnum, 0) batch = np.delete(batch, bnum, 0) # Notify user print(f'[WARNING] Skipping patient {pid} as batch variable is -1.0.') # Sort based on feature label feature_labels_temp, feature_values_temp =\ zip(*sorted(zip(feature_labels, feature_values_temp))) # Convert to pandas Series and save as hdf5 panda_data = pd.Series([parameters, pid, feature_values_temp, feature_labels_temp], index=panda_labels, name=skipname ) print(f'\t Saving image features to: {out}.') panda_data.to_hdf(out, 'image_features') ndel += 1 print(features_test_out) # Run ComBat in Matlab if config['ComBat']['language'] == 'matlab': print('\t Executing ComBat through Matlab') data_harmonized = ComBatMatlab(dat=all_features_matrix, batch=batch, command=config['ComBat']['matlab'], mod=mod, par=config['ComBat']['par'], per_feature=config['ComBat']['per_feature']) elif config['ComBat']['language'] == 'python': print('\t Executing ComBat through neuroComBat in Python') data_harmonized = ComBatPython(dat=all_features_matrix, batch=batch, mod=mod, eb=config['ComBat']['eb'], par=config['ComBat']['par'], per_feature=config['ComBat']['per_feature']) else: raise WORCKeyError(f"Language {config['ComBat']['language']} unknown.") # Convert values back if logarithm was used if logarithmic: data_harmonized = 10 ** data_harmonized # Convert again to train hdf5 files feature_values_train_combat = [data_harmonized[:, i] for i in range(len(image_features_train_combat))] for fnum, i_feat in enumerate(feature_values_train_combat): # Combine ComBat and non-ComBat features feature_values_temp = i_feat.tolist() + image_features_train_noncombat[fnum] # Sort based on feature label feature_labels_temp, feature_values_temp =\ zip(*sorted(zip(feature_labels, feature_values_temp))) # Convert to pandas Series and save as hdf5 pid = label_data_train['patient_IDs'][fnum] panda_data = pd.Series([parameters, pid, feature_values_temp, feature_labels_temp], index=panda_labels, name=name ) print(f'Saving image features to: {features_train_out[fnum]}.') panda_data.to_hdf(features_train_out[fnum], 'image_features') # Repeat for testing if required if features_test_in: print(len(image_features_test_combat)) print(data_harmonized.shape[1]) feature_values_test_combat = [data_harmonized[:, i] for i in range(data_harmonized.shape[1] - len(image_features_test_combat), data_harmonized.shape[1])] for fnum, i_feat in enumerate(feature_values_test_combat): print(fnum) # Combine ComBat and non-ComBat features feature_values_temp = i_feat.tolist() + image_features_test_noncombat[fnum] # Sort based on feature label feature_labels_temp, feature_values_temp =\ zip(*sorted(zip(feature_labels, feature_values_temp))) # Convert to pandas Series and save as hdf5 pid = label_data_test['patient_IDs'][fnum] panda_data = pd.Series([parameters, pid, feature_values_temp, feature_labels_temp], index=panda_labels, name=name ) print(f'Saving image features to: {features_test_out[fnum]}.') panda_data.to_hdf(features_test_out[fnum], 'image_features') def ComBatPython(dat, batch, mod=None, par=1, eb=1, per_feature=False, plotting=False): """ Run the ComBat Function python script. par = 0 is non-parametric. """ # convert inputs to neuroCombat format. covars = dict() categorical_cols = list() covars['batch'] = batch if mod is not None: for i_mod in range(mod.shape[1]): label = f'mod_{i_mod}' covars[label] = [m for m in mod[:, i_mod]] categorical_cols.append(label) covars = pd.DataFrame(covars) batch_col = 'batch' if par == 0: parametric = False elif par == 1: parametric = True else: raise WORCValueError(f'Par should be 0 or 1, now {par}.') if eb == 0: eb = False elif eb == 1: eb = True else: raise WORCValueError(f'eb should be 0 or 1, now {eb}.') if per_feature == 0: per_feature = False elif per_feature == 1: per_feature = True else: raise WORCValueError(f'per_feature should be 0 or 1, now {per_feature}.') # execute ComBat if not per_feature: data_harmonized = neuroCombat(dat=dat, covars=covars, batch_col=batch_col, categorical_cols=categorical_cols, eb=eb, parametric=parametric) elif per_feature: print('\t Executing ComBat per feature.') data_harmonized = np.zeros(dat.shape) # Shape: (features, samples) for i in range(dat.shape[0]): if eb: # Copy feature + random noise random_feature = np.random.rand(dat[i, :].shape[0]) feat_temp = np.asarray([dat[i, :], dat[i, :] + random_feature]) else: # Just use the single feature feat_temp = np.asarray([dat[i, :]]) feat_temp = neuroCombat(dat=feat_temp, covars=covars, batch_col=batch_col, categorical_cols=categorical_cols, eb=eb, parametric=parametric) data_harmonized[i, :] = feat_temp[0, :] if plotting: feat1 = dat[i, :] feat1_harm = data_harmonized[i, :] print(len(feat1)) feat1_b1 = [f for f, b in zip(feat1, batch[0]) if b == 1.0] feat1_b2 = [f for f, b in zip(feat1, batch[0]) if b == 2.0] print(len(feat1_b1)) print(len(feat1_b2)) feat1_harm_b1 = [f for f, b in zip(feat1_harm, batch[0]) if b == 1.0] feat1_harm_b2 = [f for f, b in zip(feat1_harm, batch[0]) if b == 2.0] plt.figure() ax = plt.subplot(2, 1, 1) ax.scatter(np.ones((len(feat1_b1))), feat1_b1, color='red') ax.scatter(np.ones((len(feat1_b2))) + 1, feat1_b2, color='blue') plt.title('Before Combat') ax = plt.subplot(2, 1, 2) ax.scatter(np.ones((len(feat1_b1))), feat1_harm_b1, color='red') ax.scatter(np.ones((len(feat1_b2))) + 1, feat1_harm_b2, color='blue') plt.title('After Combat') plt.show() else: raise WORCValueError(f'per_feature should be False or True, now {per_feature}.') return data_harmonized def Synthetictest(n_patients=50, n_features=10, par=1, eb=1, per_feature=False, difscale=False, logarithmic=False, oddpatient=True, oddfeat=True, samefeat=True): """Test for ComBat with Synthetic data.""" features = np.zeros((n_features, n_patients)) batch = list() # First batch: Gaussian with loc 0, scale 1 for i in range(0, int(n_patients/2)): feat_temp = [np.random.normal(loc=0.0, scale=1.0) for i in range(n_features)] if i == 1 and oddpatient: feat_temp = [np.random.normal(loc=10.0, scale=1.0) for i in range(n_features)] elif oddfeat: feat_temp = [np.random.normal(loc=0.0, scale=1.0) for i in range(n_features - 1)] + [np.random.normal(loc=10000.0, scale=1.0)] if samefeat: feat_temp[-1] = 1 features[:, i] = feat_temp batch.append(1) # Get directions for features directions = list() for i in range(n_features): direction = random.random() if direction > 0.5: directions.append(1.0) else: directions.append(-1.0) # First batch: Gaussian with loc 5, scale 1 for i in range(int(n_patients/2), n_patients): feat_temp = [np.random.normal(loc=direction*5.0, scale=1.0) for i in range(n_features)] if oddfeat: feat_temp = [np.random.normal(loc=5.0, scale=1.0) for i in range(n_features - 1)] + [np.random.normal(loc=10000.0, scale=1.0)] if difscale: feat_temp = [f + 1000 for f in feat_temp] feat_temp = np.multiply(feat_temp, directions) if samefeat: feat_temp[-1] = 1 features[:, i] = feat_temp batch.append(2) # Create mod var mod = [[np.random.randint(30, 100) for i in range(n_patients)]] # Apply ComBat batch = np.asarray([batch]) mod = np.transpose(np.asarray(mod)) if logarithmic: minfeat = np.min(features) features = np.log10(features + np.abs(minfeat) + 1E-100) data_harmonized = ComBatPython(dat=features, batch=batch, mod=mod, par=par, eb=eb, per_feature=per_feature) if logarithmic: data_harmonized = 10 ** data_harmonized - np.abs(minfeat) for i in range(n_features): f = plt.figure() ax = plt.subplot(2, 1, 1) ax.scatter(np.ones((int(n_patients/2))), features[i, 0:int(n_patients/2)], color='red') ax.scatter(np.ones((n_patients - int(n_patients/2))) + 1, features[i, int(n_patients/2):], color='blue') plt.title('Before Combat') ax = plt.subplot(2, 1, 2) ax.scatter(np.ones((int(n_patients/2))), data_harmonized[i, 0:int(n_patients/2)], color='red') ax.scatter(np.ones((n_patients - int(n_patients/2))) + 1, data_harmonized[i, int(n_patients/2):], color='blue') plt.title('After Combat') plt.show() f.savefig(f'combat_par{par}_eb{eb}_perfeat{per_feature}_feat{i}.png') # Logarithmic: not useful, as we have negative numbers, and (almost) zeros. # so combat gives unuseful results. # Same feature twice with eb and par: nans def ComBatMatlab(dat, batch, command, mod=None, par=1, per_feature='true'): """ Run the ComBat Function Matlab script. par = 0 is non-parametric. """ # Mod: default argument is empty list if mod is None: mod = [] # TODO: Add check whether matlab executable is found # Save the features in a .mat MatLab Compatible format # NOTE: Should change this_folder to a proper temporary directory this_folder = os.path.dirname(os.path.realpath(__file__)) tempdir = tempfile.gettempdir() tempfile_in = os.path.join(tempdir, 'combat_input.mat') tempfile_out = os.path.join(tempdir, 'combat_output.mat') ComBatFolder = os.path.join(os.path.dirname(this_folder), 'external', 'ComBatHarmonization', 'Matlab', 'scripts') dict = {'output': tempfile_out, 'ComBatFolder': ComBatFolder, 'datvar': dat, 'batchvar': batch, 'modvar': mod, 'parvar': par, 'per_feature': per_feature } sio.savemat(tempfile_in, dict) # Make sure there is no tempfile out from the previous run if os.path.exists(tempfile_out): os.remove(tempfile_out) # Run ComBat currentdir = os.getcwd() if platform == "linux" or platform == "linux2": commandseparator = ' ; ' elif platform == "win32": commandseparator = ' & ' # BIGR Cluster: /cm/shared/apps/matlab/R2015b/bin/matlab regcommand = ('cd "' + this_folder + '"' + commandseparator + '"' + command + '" -nodesktop -nosplash -nojvm -r "combatmatlab(' + "'" + str(tempfile_in) + "'" + ')"' + commandseparator + 'cd "' + currentdir + '"') print(f'Executing ComBat in Matlab through command: {regcommand}.') proc = subprocess.Popen(regcommand, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) proc.wait() stdout_value, stderr_value = proc.communicate() # BUG: Waiting does not work, just wait for output to arrive, either with # the actual output or an error message succes = False while succes is False: if os.path.exists(tempfile_out): try: mat_dict = sio.loadmat(tempfile_out) try: data_harmonized = mat_dict['data_harmonized'] succes = True except KeyError: try: message = mat_dict['message'] raise WORCValueError(f'Error in Matlab ComBat execution: {message}.') except KeyError: pass except (sio.matlab.miobase.MatReadError, ValueError): pass # Check if expected output file exists if not os.path.exists(tempfile_out): raise WORCValueError(f'Error in Matlab ComBat execution: command: {regcommand}, stdout: {stdout_value}, stderr: {stderr_value}') # Read the output from ComBat mat_dict = sio.loadmat(tempfile_out) data_harmonized = mat_dict['data_harmonized'] data_harmonized = np.transpose(data_harmonized) # Remove temporary files os.remove(tempfile_out) os.remove(tempfile_in) return data_harmonized
40.684909
161
0.604329
5f59e320e469d3924b3247fe49f94eea11acee62
727
py
Python
setup.py
mariocesar/pg-worker
d79c6daa8825226c754330c21150e4e416b09005
[ "MIT" ]
1
2020-06-03T21:21:03.000Z
2020-06-03T21:21:03.000Z
setup.py
mariocesar/pg-worker
d79c6daa8825226c754330c21150e4e416b09005
[ "MIT" ]
null
null
null
setup.py
mariocesar/pg-worker
d79c6daa8825226c754330c21150e4e416b09005
[ "MIT" ]
null
null
null
import os import sys from setuptools import setup, find_packages ROOT = os.path.realpath(os.path.join(os.path.dirname( sys.modules['__main__'].__file__))) sys.path.insert(0, os.path.join(ROOT, 'src')) setup( name='pgworker', packages=find_packages('src'), package_dir={'': 'src'}, classifiers=[ 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', ], entry_points={ 'console_scripts': [ 'pgworker = pgworker.runner:main' ] } )
24.233333
53
0.603851
5f5a0eafce7a5f076591e84cd9440a10e1d4e795
2,040
py
Python
PyBank/main.py
gentikosumi/python-challenge
e6532bf1033f5272616d4f8a1cf623bbafe1a1c2
[ "ADSL" ]
null
null
null
PyBank/main.py
gentikosumi/python-challenge
e6532bf1033f5272616d4f8a1cf623bbafe1a1c2
[ "ADSL" ]
null
null
null
PyBank/main.py
gentikosumi/python-challenge
e6532bf1033f5272616d4f8a1cf623bbafe1a1c2
[ "ADSL" ]
null
null
null
import os import csv path = '/Users/kevinkosumi12345/Genti/python-challenge/PyBank/Resources/budget_data.csv' budget_csv=os.path.join("../Resources", "budget_data.csv") csvfile = open(path, newline="") reader=csv.reader(csvfile, delimiter=",") header = next(reader) # print(header) # the columns we have to convert into lists # Create first 2 empty lists according 2 columns date = [] profloss = [] # print("Financial Anaysis") # print("-----------------------------------------") for row in reader: date.append(row[0]) profloss.append(int(row[1])) # getting the total of Profit/Losses total_profloss='Total Profit/Losses: $ ' + str(sum(profloss)) # print(total_profloss) # getting the number of months in entire period monthcount = 'Total months: ' + str(len(date)) # print(monthcount) # before finding the averadge of change in Profit/Losses, first we have to find the total change Total_change_profloss = 0 for x in range(1, len(profloss)): Total_change_profloss = Total_change_profloss + (profloss[x] - profloss[x-1]) # finding the averidge of change in Profit/Losses avg_change_profloss = 'Averidge change in Profit/Loss: ' + str(round(Total_change_profloss/(len(profloss)-1),2)) # print(avg_change_profloss) # getting the max value of data in Profit/Losses which is the Greatest Increase of Profit/Losses maxVal = 'Greatest increase of Profit/Losses: ' + ' on ' + str(date[profloss.index(max(profloss))]) + ' $ ' + str(max(profloss)) # print(maxVal) # the min Value of date in Profit/Losses which is the Greatest Decrease minVal = 'Greatest decrease of Profit/Losses: ' + ' on ' + str(date[profloss.index(min(profloss))]) + ' $ ' + str(min(profloss)) # print(minVal) DataBudget = open('analisis.csv' , 'w') DataBudget.write('Financial Analysus\n') DataBudget.write('------------------------\n') DataBudget.write(monthcount + '\n') DataBudget.write(total_profloss + '\n') DataBudget.write(avg_change_profloss + '\n') DataBudget.write(maxVal + '\n') DataBudget.write(minVal + '\n') DataBudget.close
30.909091
129
0.702451
5f5b2c35892025ff370debbb01a9bff69a798ad0
1,516
py
Python
models/python/hypothalamus/dynamical/old/simple.py
ABRG-Models/MammalBot
0b153232b94197c7a65156c1c3451ab2b9f725ae
[ "MIT" ]
null
null
null
models/python/hypothalamus/dynamical/old/simple.py
ABRG-Models/MammalBot
0b153232b94197c7a65156c1c3451ab2b9f725ae
[ "MIT" ]
null
null
null
models/python/hypothalamus/dynamical/old/simple.py
ABRG-Models/MammalBot
0b153232b94197c7a65156c1c3451ab2b9f725ae
[ "MIT" ]
null
null
null
import numpy as np import matplotlib.pyplot as plt T = 30000 # v = 0.02906 # v = 0.617085 v = 0.99 h = 0.01 a = 0.5 b = 0.5 epsilon = 0.05 c = 0.4 eta = lambda rho: np.exp(-(rho)**2/(2*c**2)) nrho = lambda rho, v: -2.0*(rho**3 + (rho-1.0)*v/2.0 - rho)/(rho + 1.0) nu = lambda rho: (b - eta(rho+1))/a u = np.zeros(T) rho = np.zeros(T) time = np.zeros(T) # Maps f = lambda rho, u, v: -rho**3 - (rho + 1.0)*u/2.0 - (rho - 1.0)*v/2.0 + rho g1 = lambda rho, u, v: epsilon*(b - a*u - eta(rho+1)) # Initial conditions u[0] = 0.0 rho[0] = -0.0 for i in range(T-1): rho[i+1] = rho[i] + h*f(rho[i], u[i], v) u[i+1] = u[i] + h*g1(rho[i], u[i], v) time[i+1] = time[i] + h fig, ax = plt.subplots(1, 2) # X, Y = np.meshgrid(np.arange(-0.6, 0.6, 0.1), np.arange(-0.2, 1.0, .1)) # U = f(X, Y, v)/epsilon #rho # V = g1(X, Y, v)/epsilon #u # q = ax[0].quiver(X, Y, U, V, units='x', pivot='tip')#, width=0.022, scale=1 / 0.40) rhos = np.linspace(-0.99, 1, 100) ax[0].plot( rhos, nrho(rhos, v), color = [0.8, 0.5, 0.5], linewidth = 3.0) ax[0].plot( rhos, nu(rhos), color = [0.5, 0.5, 0.8], linewidth = 3.0) ax[0].plot( rho[0], u[0], 'k.', linewidth = 3.0) ax[0].plot( rho, u, 'k' ) ax[0].plot( [-1, -1], [-1.5, 1.5], 'k--') ax[0].set_ylabel('u') ax[0].set_xlabel(r'$\rho$') ax[0].text(0.5, nu(0.5)+0.05, r'$u_0$') ax[0].text(0.95, nrho(0.9, v), r'$\rho_0$') ax[0].axis([-2, 2, -1.0, 1.5]) ax[1].plot( time, u, label = 'u') ax[1].plot( time, rho, label = r'$\rho$' ) ax[1].legend() ax[1].set_xlabel('time') plt.show()
28.603774
85
0.529024
5f5c0b0acb48624cb76c04ec88d096e81b40a0f1
176
py
Python
test_script.py
SamPurle/DE17_Flask
a6462b85854f7bd72c80ebcc555d50488ef17e67
[ "MIT" ]
null
null
null
test_script.py
SamPurle/DE17_Flask
a6462b85854f7bd72c80ebcc555d50488ef17e67
[ "MIT" ]
null
null
null
test_script.py
SamPurle/DE17_Flask
a6462b85854f7bd72c80ebcc555d50488ef17e67
[ "MIT" ]
null
null
null
import numpy as np import os my_array = np.zeros(10) print(my_array) os.system('pip freeze > requirements.txt') my_list = [1,2,3,4,5] for item in my_list: print(item)
12.571429
42
0.693182
5f5ebabcae4886b932638d5f3ecd10d1eb595d7b
6,058
py
Python
lib/blastin.py
zbwrnz/blastdbm
ee694c01ebb00779623702738a9c958fd496a080
[ "Unlicense" ]
1
2018-03-22T10:34:20.000Z
2018-03-22T10:34:20.000Z
lib/blastin.py
arendsee/blastdbm
ee694c01ebb00779623702738a9c958fd496a080
[ "Unlicense" ]
null
null
null
lib/blastin.py
arendsee/blastdbm
ee694c01ebb00779623702738a9c958fd496a080
[ "Unlicense" ]
null
null
null
#! /usr/bin/python3 import argparse import os import re import sqlite3 as sql import sys import xml.etree.cElementTree as et import traceback import lib.initialize as initialize import lib.sqlite_interface as misc import lib.meta as meta # ================== # EXPORTED FUNCTIONS # ==================
31.552083
83
0.530538
5f63c4934790515bb6fc74d4d7ecc9a70d977a36
646
py
Python
tests/test_get_image.py
kortizceballos/codeastro-group6
9f0ceb8a0fca3e619dbabe97105a3f283e59fa04
[ "BSD-3-Clause" ]
1
2021-06-25T21:20:42.000Z
2021-06-25T21:20:42.000Z
tests/test_get_image.py
kortizceballos/codeastro-group6
9f0ceb8a0fca3e619dbabe97105a3f283e59fa04
[ "BSD-3-Clause" ]
null
null
null
tests/test_get_image.py
kortizceballos/codeastro-group6
9f0ceb8a0fca3e619dbabe97105a3f283e59fa04
[ "BSD-3-Clause" ]
null
null
null
from matplotlib.pyplot import get import pyhips from pyhips import get_image def test_get_image(): """ Tests the get_image() function to make sure no errors are thrown. """ assert get_image("Vega", frame="ICRS", survey="DSS", cmap="plasma") == 0 assert get_image("notanid", frame="ICRS", survey="DSS", cmap="plasma") == 1 assert get_image("Vega", frame="notaframe", survey="DSS", cmap="plasma") == 1 assert get_image("Vega", frame="ICRS", survey="notasurvey", cmap="plasma") == 1 assert get_image("Vega", frame="ICRS", survey="DSS", cmap="notacolormap") == 1 if __name__ == "__main__": test_get_image()
35.888889
83
0.662539
5f65055d81665e397feccfc78dd6d2f299634b64
138
py
Python
cumulus2/template.py
peterkh/cumulus2
11352ce469acb0c319ba9cfb8691d80f4ae5048e
[ "Apache-2.0" ]
1
2016-02-12T11:54:07.000Z
2016-02-12T11:54:07.000Z
cumulus2/template.py
peterkh/cumulus2
11352ce469acb0c319ba9cfb8691d80f4ae5048e
[ "Apache-2.0" ]
null
null
null
cumulus2/template.py
peterkh/cumulus2
11352ce469acb0c319ba9cfb8691d80f4ae5048e
[ "Apache-2.0" ]
null
null
null
""" Template module for cumulus. template class for reading yaml tempalte and creating data_source objects to retrieve external data. """
23
76
0.797101
5f67096a7114362044846dbb3a2978d1562f88ac
700
py
Python
Python-AI-Algorithms/Bubble_sort.py
screadore/Artificial-Intelligence-Sorting-Algorithms
d69f34dbd02556c6a7bbb8e0dee45ab7fdb4b12c
[ "MIT" ]
null
null
null
Python-AI-Algorithms/Bubble_sort.py
screadore/Artificial-Intelligence-Sorting-Algorithms
d69f34dbd02556c6a7bbb8e0dee45ab7fdb4b12c
[ "MIT" ]
null
null
null
Python-AI-Algorithms/Bubble_sort.py
screadore/Artificial-Intelligence-Sorting-Algorithms
d69f34dbd02556c6a7bbb8e0dee45ab7fdb4b12c
[ "MIT" ]
null
null
null
# Bubble sort steps through the list and compares adjacent pairs of elements. The elements are swapped if they are in the wrong order. The pass through the unsorted portion of the list is repeated until the list is sorted. Because Bubble sort repeatedly passes through the unsorted part of the list, it has a worst case complexity of O(n).
36.842105
342
0.591429
5f670af72f12c73cbff679c29371d4269f74b778
551
py
Python
Practice/Python/Strings/the_minion_game.py
nifannn/HackerRank
b05318251226704b1fb949c29aa49493d6ced44b
[ "MIT" ]
7
2019-02-22T10:34:26.000Z
2021-07-13T01:51:48.000Z
Practice/Python/Strings/the_minion_game.py
nifannn/HackerRank
b05318251226704b1fb949c29aa49493d6ced44b
[ "MIT" ]
null
null
null
Practice/Python/Strings/the_minion_game.py
nifannn/HackerRank
b05318251226704b1fb949c29aa49493d6ced44b
[ "MIT" ]
7
2018-11-09T13:52:34.000Z
2021-03-18T20:36:22.000Z
if __name__ == '__main__': minion_game(input("Enter a string: "))
30.611111
65
0.604356
5f6e27388481683369aca2bd805d2c503d7286e8
189
py
Python
deep_learning_zero/ch5/sample.py
kaito0223/shakyou
8d901b4da24fbf0c708e3eb429a57d194e9857c1
[ "MIT" ]
null
null
null
deep_learning_zero/ch5/sample.py
kaito0223/shakyou
8d901b4da24fbf0c708e3eb429a57d194e9857c1
[ "MIT" ]
null
null
null
deep_learning_zero/ch5/sample.py
kaito0223/shakyou
8d901b4da24fbf0c708e3eb429a57d194e9857c1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import numpy as np X = np.random.rand(2) #input W = np.random.rand(2,3) #weight B = np.random.rand(3) #bias print(X) print(W) print(B) Y=np.dot(X,W)+B print(Y)
11.8125
31
0.613757
5f71554b9254c1a62eba83f18f61c6f664cfe709
2,485
py
Python
bdd/contact_stepts.py
LukinVV/python_training
9e6eb57fe9527fd591d563b4219c19e49188c4de
[ "Apache-2.0" ]
null
null
null
bdd/contact_stepts.py
LukinVV/python_training
9e6eb57fe9527fd591d563b4219c19e49188c4de
[ "Apache-2.0" ]
null
null
null
bdd/contact_stepts.py
LukinVV/python_training
9e6eb57fe9527fd591d563b4219c19e49188c4de
[ "Apache-2.0" ]
null
null
null
from pytest_bdd import given, when, then from model.contact import Contact import random
42.118644
101
0.781087
5f72286dd657c066d24e11dfe7993aa6f68aabbc
769
py
Python
FigureMaker.py
space-physics/histfeas
caa0100087d8c2b8711c1c3cb60c322379ef5431
[ "MIT" ]
null
null
null
FigureMaker.py
space-physics/histfeas
caa0100087d8c2b8711c1c3cb60c322379ef5431
[ "MIT" ]
null
null
null
FigureMaker.py
space-physics/histfeas
caa0100087d8c2b8711c1c3cb60c322379ef5431
[ "MIT" ]
1
2015-05-22T23:51:58.000Z
2015-05-22T23:51:58.000Z
#!/usr/bin/env python """ Figures generated by HiST program intended for use with in/ files including: *_flame.ini *_impulse.ini *_trans.ini Flaming Aurora 2 cameras: ./FigureMaker.py in/2cam_flame.ini Translating Aurora 2 cameras: ./FigureMaker.py in/2cam_trans.ini Impulse Aurora (for testing): ./FigureMaker.py in/2cam_impulse.ini Table of results for 2 and 3 cam: ./FigureMaker.py in/table_flame{2,3}.ini REAL actual camera data (just dump synchroinzed frames: ./FigureMaker.py -m realvid in/apr14T085454 -m optim reconstruct only """ from histfeas import userinput, hist_figure from histfeas.loadAnalyze import readresults, findxlsh5 P = userinput() #%% compute if not P["load"]: hist_figure(P) #%% load flist, P = findxlsh5(P) readresults(flist, P)
20.783784
55
0.758127
5f72433b75556b159f57faa7593653f49eb2cb21
3,557
py
Python
T53/webapp/accounts/models.py
DevelopAppWithMe/Hackathon_5.0
6af503a995721c04986931d6a29d8f946ceaa067
[ "MIT" ]
null
null
null
T53/webapp/accounts/models.py
DevelopAppWithMe/Hackathon_5.0
6af503a995721c04986931d6a29d8f946ceaa067
[ "MIT" ]
null
null
null
T53/webapp/accounts/models.py
DevelopAppWithMe/Hackathon_5.0
6af503a995721c04986931d6a29d8f946ceaa067
[ "MIT" ]
null
null
null
from django.db import models # Create your models here. from django.contrib.auth.models import ( AbstractBaseUser, BaseUserManager, PermissionsMixin, ) from django.core.validators import RegexValidator from django.db import models
32.336364
104
0.687939
5f72dad431a7abe4ecae9aa703b14fc2183ff13a
2,998
py
Python
pyv6m/ha/v6m.py
dubnom/pyv6m
d56bf3f3d39b7c2f747b08bc1974dc3dbe6ccff8
[ "MIT" ]
1
2020-02-16T00:42:17.000Z
2020-02-16T00:42:17.000Z
pyv6m/ha/v6m.py
dubnom/pyv6m
d56bf3f3d39b7c2f747b08bc1974dc3dbe6ccff8
[ "MIT" ]
null
null
null
pyv6m/ha/v6m.py
dubnom/pyv6m
d56bf3f3d39b7c2f747b08bc1974dc3dbe6ccff8
[ "MIT" ]
null
null
null
"""Component to control v6m relays and sensors. For more details about this component, please refer to the documentation at https://home-assistant.io/components/v6m/ """ import logging import voluptuous as vol from homeassistant.const import ( EVENT_HOMEASSISTANT_STOP, CONF_HOST, CONF_PORT, CONF_NAME) import homeassistant.helpers.config_validation as cv REQUIREMENTS = ['pyv6m==0.0.1'] _LOGGER = logging.getLogger(__name__) DOMAIN = 'v6m' CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Required(CONF_HOST): cv.string, vol.Required(CONF_PORT): cv.port, vol.Optional(CONF_NAME, default=DOMAIN): cv.string, }), }, extra=vol.ALLOW_EXTRA) def setup(hass, base_config): """Start V6M controller.""" from pyv6m.pyv6m import V6M config = base_config.get(DOMAIN) host = config[CONF_HOST] port = config[CONF_PORT] controller = V6MController(host, port) hass.data[config[CONF_NAME]] = controller hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, cleanup) return True
28.552381
75
0.615744
5f7622df0a14efca2dcdfe048326621ae11f4cbc
550
py
Python
blog/models.py
Happy-Project-Foundation/HappyProject
86e9fa7633e68c026e0003f8494df0226fa0dfcf
[ "Apache-2.0" ]
3
2021-12-04T15:00:54.000Z
2021-12-08T16:07:35.000Z
blog/models.py
BirnadinErick/HappyProject
4993a2d966d9c1458ce0e29e72c3a758a7a4ef54
[ "Apache-2.0" ]
3
2021-12-15T00:49:01.000Z
2021-12-16T00:46:14.000Z
blog/models.py
Happy-Project-Foundation/HappyProject
86e9fa7633e68c026e0003f8494df0226fa0dfcf
[ "Apache-2.0" ]
3
2021-12-04T14:18:15.000Z
2021-12-05T08:40:13.000Z
import uuid from django.db import models from django.db.models.fields import TextField
32.352941
109
0.736364
5f79434b07d0fd0852489b19f8f438fa54ae857d
7,273
py
Python
finetune_test.py
tengfeixue-victor/One-Shot-Animal-Video-Segmentation
15f9011c1b10f1e0c068f90ed46e72b3bc343310
[ "MIT" ]
2
2021-09-26T07:03:54.000Z
2022-02-21T15:46:30.000Z
finetune_test.py
tengfeixue-victor/One-Shot-Animal-Video-Segmentation
15f9011c1b10f1e0c068f90ed46e72b3bc343310
[ "MIT" ]
null
null
null
finetune_test.py
tengfeixue-victor/One-Shot-Animal-Video-Segmentation
15f9011c1b10f1e0c068f90ed46e72b3bc343310
[ "MIT" ]
1
2021-04-16T06:11:41.000Z
2021-04-16T06:11:41.000Z
""" References: https://github.com/scaelles/OSVOS-TensorFlow """ from __future__ import print_function import os import random import tensorflow as tf import time import numpy as np from utils import models from utils.load_data_finetune import Dataset from utils.logger import create_logger # seed seed = random.randint(1, 100000) # seed = 0 tf.random.set_seed(seed) random.seed(seed) np.random.seed(seed) # User defined path parameters # finetuning (one label) and testing dataset sequence_images_path = './datasets/finetune_test_dataset/JPEGImages/480p' sequence_names = os.listdir(sequence_images_path) # Get the best frame selection from BubblNet bub_frame_path = './datasets/bubbleNet_data/rawData' def create_non_exist_file(non_exist_file): """Create the file when it does not exist""" if not os.path.exists(non_exist_file): os.mkdir(non_exist_file) def select_optimal_frame(seq_name): """Use the optimal frame from BubbleNet selection for fine-tuning""" # # Select from BN0 or BNLF # frame_txt = os.path.join(bub_frame_path, seq_name, 'frame_selection/all.txt') # # Select from BN0 # frame_txt = os.path.join(bub_frame_path, seq_name, 'frame_selection/BN0.txt') # Select from BNLF frame_txt = os.path.join(bub_frame_path, seq_name, 'frame_selection/BNLF.txt') frame_file = open(frame_txt, 'r') frame_nums = frame_file.readlines() # The following code is used to extract the name of frame selection # refer to the txt file in './datasets/bubbleNet_data/rawData/frame_selection' for your information if len(frame_nums) == 3: frame_random_jpg = frame_nums[2][:9] frame_random_png = frame_nums[2][:5] + '.png' # when two bubblenet models select the different frames, the txt file will have 5 lines elif len(frame_nums) == 5: frame_suggestion1_jpg = frame_nums[2][:9] frame_suggestion1_png = frame_nums[2][:5] + '.png' frame_suggestion2_jpg = frame_nums[4][:9] frame_suggestion2_png = frame_nums[4][:5] + '.png' frame_random_lst = random.choice( [[frame_suggestion1_jpg, frame_suggestion1_png], [frame_suggestion2_jpg, frame_suggestion2_png]]) frame_random_jpg = frame_random_lst[0][:9] frame_random_png = frame_random_lst[1][:9] else: raise ValueError("frame file from BubbleNet is not correct") return frame_random_jpg, frame_random_png if __name__ == '__main__': train_test(sequence_names)
41.56
126
0.639214
5f79476b04b3854cb2181098acbee05c751aa836
307
py
Python
kinopoisk_unofficial/response/films/seasons_response.py
masterWeber/kinopoisk-api-unofficial-client
5c95e1ec6e43bd302399b63a1525ee7e61724155
[ "MIT" ]
2
2021-11-13T12:23:41.000Z
2021-12-24T14:09:49.000Z
kinopoisk_unofficial/response/films/seasons_response.py
masterWeber/kinopoisk-api-unofficial-client
5c95e1ec6e43bd302399b63a1525ee7e61724155
[ "MIT" ]
1
2022-03-29T19:13:24.000Z
2022-03-30T18:57:23.000Z
kinopoisk_unofficial/response/films/seasons_response.py
masterWeber/kinopoisk-api-unofficial-client
5c95e1ec6e43bd302399b63a1525ee7e61724155
[ "MIT" ]
1
2021-11-13T12:30:01.000Z
2021-11-13T12:30:01.000Z
from dataclasses import field, dataclass from typing import List from kinopoisk_unofficial.contract.response import Response from kinopoisk_unofficial.model.season import Season
25.583333
59
0.814332
5f7a417145bc1e9d7aeea4542c8fef811419cb42
4,906
py
Python
codepod/impl.py
alexmorley/codepod
d932391beda9c4df7f048326afe7d0ea73ccb141
[ "Apache-2.0" ]
null
null
null
codepod/impl.py
alexmorley/codepod
d932391beda9c4df7f048326afe7d0ea73ccb141
[ "Apache-2.0" ]
null
null
null
codepod/impl.py
alexmorley/codepod
d932391beda9c4df7f048326afe7d0ea73ccb141
[ "Apache-2.0" ]
null
null
null
import subprocess import os import shutil import tempfile import random import string import yaml src_dir=os.path.dirname(os.path.realpath(__file__)) #def _write_text_file(fname,txt): # with open(fname,'w') as f: # f.write(txt)
35.294964
155
0.664492
5f7b66cd930462b5d1756ba227c23eb8265b8002
5,040
py
Python
closed/FuriosaAI/code/inference/vision/medical_imaging/3d-unet-kits19/inference_utils.py
ctuning/inference_results_v1.1
d9176eca28fcf6d7a05ccb97994362a76a1eb5ab
[ "Apache-2.0" ]
388
2018-09-13T20:48:58.000Z
2020-11-23T11:52:13.000Z
closed/FuriosaAI/code/inference/vision/medical_imaging/3d-unet-kits19/inference_utils.py
ctuning/inference_results_v1.1
d9176eca28fcf6d7a05ccb97994362a76a1eb5ab
[ "Apache-2.0" ]
597
2018-10-08T12:45:29.000Z
2020-11-24T17:53:12.000Z
closed/FuriosaAI/code/inference/vision/medical_imaging/3d-unet-kits19/inference_utils.py
ctuning/inference_results_v1.1
d9176eca28fcf6d7a05ccb97994362a76a1eb5ab
[ "Apache-2.0" ]
228
2018-11-06T02:04:14.000Z
2020-12-09T07:51:02.000Z
#! /usr/bin/env python3 # coding=utf-8 # Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # Copyright 2021 The MLPerf Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import time from scipy import signal from global_vars import * __doc__ = """ Collection of utilities 3D UNet MLPerf-Inference reference model uses. gaussian_kernel(n, std): returns gaussian kernel; std is standard deviation and n is number of points apply_norm_map(image, norm_map): applies normal map norm_map to image and return the outcome apply_argmax(image): returns indices of the maximum values along the channel axis finalize(image, norm_map): finalizes results obtained from sliding window inference prepare_arrays(image, roi_shape): returns empty arrays required for sliding window inference upon roi_shape get_slice_for_sliding_window(image, roi_shape, overlap): returns indices for image stride, to fulfill sliding window inference timeit(function): custom-tailored decorator for runtime measurement of each inference """ def gaussian_kernel(n, std): """ Returns gaussian kernel; std is standard deviation and n is number of points """ gaussian1D = signal.gaussian(n, std) gaussian2D = np.outer(gaussian1D, gaussian1D) gaussian3D = np.outer(gaussian2D, gaussian1D) gaussian3D = gaussian3D.reshape(n, n, n) gaussian3D = np.cbrt(gaussian3D) gaussian3D /= gaussian3D.max() return gaussian3D def apply_norm_map(image, norm_map): """ Applies normal map norm_map to image and return the outcome """ image /= norm_map return image def apply_argmax(image): """ Returns indices of the maximum values along the channel axis Input shape is (bs=1, channel=3, (ROI_SHAPE)), float -- sub-volume inference result Output shape is (bs=1, channel=1, (ROI_SHAPE)), integer -- segmentation result """ channel_axis = 1 image = np.argmax(image, axis=channel_axis).astype(np.uint8) image = np.expand_dims(image, axis=0) return image def finalize(image, norm_map): """ Finalizes results obtained from sliding window inference """ # NOTE: layout is assumed to be linear (NCDHW) always # apply norm_map image = apply_norm_map(image, norm_map) # argmax image = apply_argmax(image) return image def prepare_arrays(image, roi_shape=ROI_SHAPE): """ Returns empty arrays required for sliding window inference such as: - result array where sub-volume inference results are gathered - norm_map where normal map is constructed upon - norm_patch, a gaussian kernel that is applied to each sub-volume inference result """ assert isinstance(roi_shape, list) and len(roi_shape) == 3 and any(roi_shape),\ f"Need proper ROI shape: {roi_shape}" image_shape = list(image.shape[2:]) result = np.zeros(shape=(1, 3, *image_shape), dtype=image.dtype) norm_map = np.zeros_like(result) norm_patch = gaussian_kernel( roi_shape[0], 0.125*roi_shape[0]).astype(norm_map.dtype) return result, norm_map, norm_patch def runtime_measure(function): """ A decorator for runtime measurement Custom-tailored for measuring inference latency Also prints str: mystr that summarizes work in SUT """ return get_latency
32.101911
91
0.698611
5f7d2edfb9acb222096440265492c363f375f8a6
3,047
py
Python
fdtool/modules/GetFDs.py
dancps/FDTool
0958f79fccbb3bb7d55cf9031ee4bd411e9c9b5a
[ "CC0-1.0" ]
13
2019-03-22T13:30:04.000Z
2022-02-01T04:46:44.000Z
fdtool/modules/GetFDs.py
dancps/FDTool
0958f79fccbb3bb7d55cf9031ee4bd411e9c9b5a
[ "CC0-1.0" ]
3
2020-07-01T11:17:40.000Z
2022-02-13T11:20:34.000Z
fdtool/modules/GetFDs.py
dancps/FDTool
0958f79fccbb3bb7d55cf9031ee4bd411e9c9b5a
[ "CC0-1.0" ]
11
2018-07-02T23:46:31.000Z
2021-12-14T12:29:38.000Z
import binaryRepr # Create decorator function to see how many times functions are called # Calculate Partition (C_k, r(U)) - the partitions # of each candidate at level k are calculated # Takes in data frame of relation and a candidate in C_km1 # Outputs partition of Candidate in C_km1 in relation to data frame # Obtain FDs(C_km1) - checks the FDs of each # candidate X in C_k # - FDs of the form X -> v_i, where # v_i *Exists* U - X^{+} are checked by # comparing *Partition* X and *Partition* X v_i # # F = Null_Set # for each candidate X in C_km1 # for each v_i *exists* U - X^{+} \\Pruning rule 3 # if (Cardinality(*Partition* X) == Cardinality(*Partition X v_i)) then # { # X* = X *Union* {v_i} # F = F *Union* {X -> v_i} \\Theorem 2 # } # return (F); def f(C_km1, df, Closure, U, Cardinality): # Set F to null list; Initialize U_c to remaining columns in data frame F = []; U_c = list(df.head(0)); # Identify the subsets whose cardinality of partition should be tested SubsetsToCheck = [list(Subset) for Subset in set([frozenset(Candidate + [v_i]) for Candidate in C_km1 for v_i in list(set(U_c).difference(Closure[binaryRepr.toBin(Candidate, U)]))])]; # Add singleton set to SubsetsToCheck if on first k-level if len(C_km1[0]) == 1: SubsetsToCheck += C_km1; # Iterate through subsets mapped to the Cardinality of Partition function for Cand, Card in zip(SubsetsToCheck, map(CardOfPartition, SubsetsToCheck, [df]*len(SubsetsToCheck))): # Add Cardinality of Partition to dictionary Cardinality[binaryRepr.toBin(Cand, U)] = Card; # Iterate through candidates of C_km1 for Candidate in C_km1: # Iterate though attribute subsets that are not in U - X{+}; difference b/t U and inclusive closure of candidate for v_i in list(set(U_c).difference(Closure[binaryRepr.toBin(Candidate, U)])): # Check if the cardinality of the partition of {Candidate} is equal to that of {Candidate, v_i} if Cardinality[binaryRepr.toBin(Candidate, U)] == Cardinality[binaryRepr.toBin(Candidate + [v_i], U)]: # Add attribute v_i to closure Closure[binaryRepr.toBin(Candidate, U)].add(v_i) # Add list (Candidate, v_i) to F F.append([tuple(Candidate), v_i]); return Closure, F, Cardinality;
43.528571
187
0.637348
5f7e6f4612c23637da085f15ec80d97da8c65063
1,712
py
Python
experiments/benchmarks/activity_benchmark.py
Oidlichtnwoada/LongTermDependenciesLearning
f2913e86183588107f16402b402524a57b6ea057
[ "MIT" ]
1
2021-01-16T15:42:01.000Z
2021-01-16T15:42:01.000Z
experiments/benchmarks/activity_benchmark.py
Oidlichtnwoada/LongTermDependenciesLearning
f2913e86183588107f16402b402524a57b6ea057
[ "MIT" ]
null
null
null
experiments/benchmarks/activity_benchmark.py
Oidlichtnwoada/LongTermDependenciesLearning
f2913e86183588107f16402b402524a57b6ea057
[ "MIT" ]
null
null
null
import os import numpy as np import pandas as pd import experiments.benchmarks.benchmark as benchmark ActivityBenchmark()
45.052632
139
0.624416
5f8081343c9866235ed311ae6467c672bfbe7609
4,685
py
Python
apps/menuplans/views.py
jajadinimueter/recipe
f3f0a4054a14637bf4e49728876fe7b0a029a21f
[ "MIT" ]
null
null
null
apps/menuplans/views.py
jajadinimueter/recipe
f3f0a4054a14637bf4e49728876fe7b0a029a21f
[ "MIT" ]
null
null
null
apps/menuplans/views.py
jajadinimueter/recipe
f3f0a4054a14637bf4e49728876fe7b0a029a21f
[ "MIT" ]
null
null
null
import xml.etree.ElementTree as et from dateutil import parser from django.shortcuts import render from django.shortcuts import redirect from django.core.urlresolvers import reverse import untangle from .forms import MenuplanSearchForm from .forms import MenuplanCreateForm from .tables import MenuplanTable from .dbaccess import add_menuplan from .dbaccess import get_menuplans from .dbaccess import create_menuplan from .dbaccess import get_menuplan_display
30.225806
81
0.547492
5f809ea0bdda1d52d937bea676c3f2375a0406e8
6,448
py
Python
data-detective-airflow/data_detective_airflow/operators/sinks/pg_scd1_df_update_insert.py
dmitriy-e/metadata-governance
018a879951dee3f3c2c05ac8e05b8360dd7f4ab3
[ "Apache-2.0" ]
5
2021-12-01T09:55:23.000Z
2021-12-21T16:23:33.000Z
data-detective-airflow/data_detective_airflow/operators/sinks/pg_scd1_df_update_insert.py
dmitriy-e/metadata-governance
018a879951dee3f3c2c05ac8e05b8360dd7f4ab3
[ "Apache-2.0" ]
1
2022-03-14T16:50:41.000Z
2022-03-14T16:50:41.000Z
data-detective-airflow/data_detective_airflow/operators/sinks/pg_scd1_df_update_insert.py
dmitriy-e/metadata-governance
018a879951dee3f3c2c05ac8e05b8360dd7f4ab3
[ "Apache-2.0" ]
2
2021-11-03T09:43:09.000Z
2021-11-17T10:16:29.000Z
from contextlib import closing from io import StringIO import numpy import pandas from airflow.providers.postgres.hooks.postgres import PostgresHook from psycopg2.extensions import connection as psycopg2_connection from data_detective_airflow.dag_generator.works import WorkType from data_detective_airflow.operators.sinks.pg_loader import PgLoader, MAX_INSERT_ROWS_NUMBER
39.317073
109
0.640199
5f83b8fcb8f9923c7beb83eb883b788a12549bf3
32,588
py
Python
plangym/core.py
FragileTech/plangym
9a1482bea099f12f82bae27f1c5d13393daa8032
[ "MIT" ]
3
2020-03-25T22:19:17.000Z
2020-11-02T16:11:32.000Z
plangym/core.py
FragileTech/plangym
9a1482bea099f12f82bae27f1c5d13393daa8032
[ "MIT" ]
44
2020-03-25T14:17:54.000Z
2022-03-12T00:18:48.000Z
plangym/core.py
FragileTech/plangym
9a1482bea099f12f82bae27f1c5d13393daa8032
[ "MIT" ]
2
2020-03-25T12:17:12.000Z
2020-06-19T23:07:52.000Z
"""Plangym API implementation.""" from abc import ABC from typing import Any, Callable, Dict, Generator, Iterable, Optional, Tuple, Union import gym from gym.envs.registration import registry as gym_registry from gym.spaces import Space import numpy import numpy as np wrap_callable = Union[Callable[[], gym.Wrapper], Tuple[Callable[..., gym.Wrapper], Dict[str, Any]]] def step( self, action: Union[numpy.ndarray, int, float], state: numpy.ndarray = None, dt: int = 1, ) -> tuple: """ Step the environment applying the supplied action. Optionally set the state to the supplied state before stepping it. Take ``dt`` simulation steps and make the environment evolve in multiples \ of ``self.frameskip`` for a total of ``dt`` * ``self.frameskip`` steps. Args: action: Chosen action applied to the environment. state: Set the environment to the given state before stepping it. dt: Consecutive number of times that the action will be applied. Returns: if state is None returns ``(observs, reward, terminal, info)`` else returns ``(new_state, observs, reward, terminal, info)`` """ if state is not None: self.set_state(state) obs, reward, terminal, info = self.step_with_dt(action=action, dt=dt) if state is not None: new_state = self.get_state() data = new_state, obs, reward, terminal, info else: data = obs, reward, terminal, info if terminal and self.autoreset: self.reset(return_state=False) return data def step_batch( self, actions: Union[numpy.ndarray, Iterable[Union[numpy.ndarray, int]]], states: Union[numpy.ndarray, Iterable] = None, dt: Union[int, numpy.ndarray] = 1, ) -> Tuple[numpy.ndarray, ...]: """ Vectorized version of the `step` method. It allows to step a vector of \ states and actions. The signature and behaviour is the same as `step`, but taking a list of \ states, actions and dts as input. Args: actions: Iterable containing the different actions to be applied. states: Iterable containing the different states to be set. dt: int or array containing the frameskips that will be applied. Returns: if states is None returns ``(observs, rewards, ends, infos)`` else returns ``(new_states, observs, rewards, ends, infos)`` """ dt = ( dt if isinstance(dt, (numpy.ndarray, Iterable)) else numpy.ones(len(actions), dtype=int) * dt ) no_states = states is None or states[0] is None states = [None] * len(actions) if no_states else states data = [self.step(action, state, dt=dt) for action, state, dt in zip(actions, states, dt)] return tuple(list(x) for x in zip(*data)) def init_env(self) -> None: """ Run environment initialization. Including in this function all the code which makes the environment impossible to serialize will allow to dispatch the environment to different workers and initialize it once it's copied to the target process. """ pass def close(self) -> None: """Tear down the current environment.""" pass def sample_action(self): """ Return a valid action that can be used to step the Environment. Implementing this method is optional, and it's only intended to make the testing process of the Environment easier. """ pass def step_with_dt(self, action: Union[numpy.ndarray, int, float], dt: int = 1) -> tuple: """ Take ``dt`` simulation steps and make the environment evolve in multiples \ of ``self.frameskip`` for a total of ``dt`` * ``self.frameskip`` steps. Args: action: Chosen action applied to the environment. dt: Consecutive number of times that the action will be applied. Returns: tuple containing ``(observs, reward, terminal, info)``. """ raise NotImplementedError() def reset( self, return_state: bool = True, ) -> Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray]]: """ Restart the environment. Args: return_state: If ``True`` it will return the state of the environment. Returns: ``obs`` if ```return_state`` is ``True`` else return ``(state, obs)``. """ raise NotImplementedError() def get_state(self) -> Any: """ Recover the internal state of the simulation. A state must completely describe the Environment at a given moment. """ raise NotImplementedError() def set_state(self, state: Any) -> None: """ Set the internal state of the simulation. Args: state: Target state to be set in the environment. Returns: None """ raise NotImplementedError() def get_image(self) -> Union[None, np.ndarray]: """ Return a numpy array containing the rendered view of the environment. Square matrices are interpreted as a greyscale image. Three-dimensional arrays are interpreted as RGB images with channels (Height, Width, RGB) """ return None def clone(self) -> "BaseEnvironment": """Return a copy of the environment.""" raise NotImplementedError() class PlanEnvironment(BaseEnvironment): """Base class for implementing OpenAI ``gym`` environments in ``plangym``.""" def __init__( self, name: str, frameskip: int = 1, episodic_live: bool = False, autoreset: bool = True, wrappers: Iterable[wrap_callable] = None, delay_init: bool = False, remove_time_limit=True, ): """ Initialize a :class:`PlanEnvironment`. Args: name: Name of the environment. Follows standard gym syntax conventions. frameskip: Number of times an action will be applied for each ``dt``. episodic_live: Return ``end = True`` when losing a live. autoreset: Automatically reset the environment when the OpenAI environment returns ``end = True``. wrappers: Wrappers that will be applied to the underlying OpenAI env. \ Every element of the iterable can be either a :class:`gym.Wrapper` \ or a tuple containing ``(gym.Wrapper, kwargs)``. delay_init: If ``True`` do not initialize the ``gym.Environment`` \ and wait for ``init_env`` to be called later. remove_time_limit: If True, remove the time limit from the environment. """ self._gym_env = None self.episodic_life = episodic_live self.remove_time_limit = remove_time_limit self._wrappers = wrappers super(PlanEnvironment, self).__init__( name=name, frameskip=frameskip, autoreset=autoreset, delay_init=delay_init, ) def init_env(self): """Initialize the target :class:`gym.Env` instance.""" self._gym_env = self.init_gym_env() if self._wrappers is not None: self.apply_wrappers(self._wrappers) def get_image(self) -> np.ndarray: """ Return a numpy array containing the rendered view of the environment. Square matrices are interpreted as a greyscale image. Three-dimensional arrays are interpreted as RGB images with channels (Height, Width, RGB) """ if hasattr(self.gym_env, "render"): return self.gym_env.render(mode="rgb_array") def reset( self, return_state: bool = True, ) -> Union[numpy.ndarray, Tuple[numpy.ndarray, numpy.ndarray]]: """ Restart the environment. Args: return_state: If ``True`` it will return the state of the environment. Returns: ``obs`` if ```return_state`` is ``True`` else return ``(state, obs)``. """ if self.gym_env is None and self.delay_init: self.init_env() obs = self.gym_env.reset() return (self.get_state(), obs) if return_state else obs def step_with_dt(self, action: Union[numpy.ndarray, int, float], dt: int = 1): """ Take ``dt`` simulation steps and make the environment evolve in multiples\ of ``self.frameskip`` for a total of ``dt`` * ``self.frameskip`` steps. Args: action: Chosen action applied to the environment. dt: Consecutive number of times that the action will be applied. Returns: if state is None returns ``(observs, reward, terminal, info)`` else returns ``(new_state, observs, reward, terminal, info)`` """ reward = 0 obs, lost_live, terminal, oob = None, False, False, False info = {"lives": -1} n_steps = 0 for _ in range(int(dt)): for _ in range(self.frameskip): obs, _reward, _oob, _info = self.gym_env.step(action) _info["lives"] = self.get_lives_from_info(_info) lost_live = info["lives"] > _info["lives"] or lost_live oob = oob or _oob custom_terminal = self.custom_terminal_condition(info, _info, _oob) terminal = terminal or oob or custom_terminal terminal = (terminal or lost_live) if self.episodic_life else terminal info = _info.copy() reward += _reward n_steps += 1 if terminal: break if terminal: break # This allows to get the original values even when using an episodic life environment info["terminal"] = terminal info["lost_live"] = lost_live info["oob"] = oob info["win"] = self.get_win_condition(info) info["n_steps"] = n_steps return obs, reward, terminal, info def sample_action(self) -> Union[int, np.ndarray]: """Return a valid action that can be used to step the Environment chosen at random.""" if hasattr(self.action_space, "sample"): return self.action_space.sample() def clone(self) -> "PlanEnvironment": """Return a copy of the environment.""" return self.__class__( name=self.name, frameskip=self.frameskip, wrappers=self._wrappers, episodic_live=self.episodic_life, autoreset=self.autoreset, delay_init=self.delay_init, ) def close(self): """Close the underlying :class:`gym.Env`.""" if hasattr(self, "_gym_env") and hasattr(self._gym_env, "close"): return self._gym_env.close() def init_gym_env(self) -> gym.Env: """Initialize the :class:`gym.Env`` instance that the current class is wrapping.""" # Remove any undocumented wrappers spec = gym_registry.spec(self.name) if self.remove_time_limit: if hasattr(spec, "max_episode_steps"): spec._max_episode_steps = spec.max_episode_steps if hasattr(spec, "max_episode_time"): spec._max_episode_time = spec.max_episode_time spec.max_episode_steps = None spec.max_episode_time = None gym_env: gym.Env = spec.make() gym_env.reset() return gym_env def seed(self, seed=None): """Seed the underlying :class:`gym.Env`.""" if hasattr(self.gym_env, "seed"): return self.gym_env.seed(seed) def apply_wrappers(self, wrappers: Iterable[wrap_callable]): """Wrap the underlying OpenAI gym environment.""" for item in wrappers: if isinstance(item, tuple): wrapper, kwargs = item self.wrap(wrapper, **kwargs) else: self.wrap(item) def wrap(self, wrapper: Callable, *args, **kwargs): """Apply a single OpenAI gym wrapper to the environment.""" self._gym_env = wrapper(self.gym_env, *args, **kwargs) def render(self, mode=None): """Render the environment using OpenGL. This wraps the OpenAI render method.""" if hasattr(self.gym_env, "render"): return self.gym_env.render(mode=mode) class VideogameEnvironment(PlanEnvironment): """Common interface for working with video games that run using an emulator.""" def __init__( self, name: str, frameskip: int = 5, episodic_live: bool = False, autoreset: bool = True, delay_init: bool = False, remove_time_limit: bool = True, obs_type: str = "rgb", # ram | rgb | grayscale mode: int = 0, # game mode, see Machado et al. 2018 difficulty: int = 0, # game difficulty, see Machado et al. 2018 repeat_action_probability: float = 0.0, # Sticky action probability full_action_space: bool = False, # Use all actions render_mode: Optional[str] = None, # None | human | rgb_array possible_to_win: bool = False, wrappers: Iterable[wrap_callable] = None, ): """ Initialize a :class:`VideogameEnvironment`. Args: name: Name of the environment. Follows standard gym syntax conventions. frameskip: Number of times an action will be applied for each step in dt. episodic_live: Return ``end = True`` when losing a life. autoreset: Restart environment when reaching a terminal state. delay_init: If ``True`` do not initialize the ``gym.Environment`` and wait for ``init_env`` to be called later. remove_time_limit: If True, remove the time limit from the environment. obs_type: One of {"rgb", "ram", "gryscale"}. mode: Integer or string indicating the game mode, when available. difficulty: Difficulty level of the game, when available. repeat_action_probability: Repeat the last action with this probability. full_action_space: Whether to use the full range of possible actions or only those available in the game. render_mode: One of {None, "human", "rgb_aray"}. possible_to_win: It is possible to finish the Atari game without getting a terminal state that is not out of bounds or doest not involve losing a life. wrappers: Wrappers that will be applied to the underlying OpenAI env. Every element of the iterable can be either a :class:`gym.Wrapper` or a tuple containing ``(gym.Wrapper, kwargs)``. """ self._remove_time_limit = remove_time_limit self.possible_to_win = possible_to_win self._obs_type = obs_type self._mode = mode self._difficulty = difficulty self._repeat_action_probability = repeat_action_probability self._full_action_space = full_action_space self._render_mode = render_mode super(VideogameEnvironment, self).__init__( name=name, frameskip=frameskip, episodic_live=episodic_live, autoreset=autoreset, wrappers=wrappers, delay_init=delay_init, ) def clone(self, **kwargs) -> "VideogameEnvironment": """Return a copy of the environment.""" params = dict( name=self.name, frameskip=self.frameskip, wrappers=self._wrappers, episodic_live=self.episodic_life, autoreset=self.autoreset, delay_init=self.delay_init, possible_to_win=self.possible_to_win, clone_seeds=self.clone_seeds, mode=self.mode, difficulty=self.difficulty, obs_type=self.obs_type, repeat_action_probability=self.repeat_action_probability, full_action_space=self.full_action_space, render_mode=self.render_mode, remove_time_limit=self._remove_time_limit, ) params.update(**kwargs) return self.__class__(**params) def get_ram(self) -> np.ndarray: """Return the ram of the emulator as a numpy array.""" raise NotImplementedError() class VectorizedEnvironment(BaseEnvironment, ABC): """ Base class that defines the API for working with vectorized environments. A vectorized environment allows to step several copies of the environment in parallel when calling ``step_batch``. It creates a local copy of the environment that is the target of all the other methods of :class:`BaseEnvironment`. In practise, a :class:`VectorizedEnvironment` acts as a wrapper of an environment initialized with the provided parameters when calling __init__. """ def __init__( self, env_class, name: str, frameskip: int = 1, autoreset: bool = True, delay_init: bool = False, n_workers: int = 8, **kwargs, ): """ Initialize a :class:`VectorizedEnvironment`. Args: env_class: Class of the environment to be wrapped. name: Name of the environment. frameskip: Number of times ``step`` will me called with the same action. autoreset: Ignored. Always set to True. Automatically reset the environment when the OpenAI environment returns ``end = True``. delay_init: If ``True`` do not initialize the ``gym.Environment`` \ and wait for ``init_env`` to be called later. env_callable: Callable that returns an instance of the environment \ that will be parallelized. n_workers: Number of workers that will be used to step the env. **kwargs: Additional keyword arguments passed to env_class.__init__. """ self._n_workers = n_workers self._env_class = env_class self._env_kwargs = kwargs self._plangym_env = None self.SINGLETON = env_class.SINGLETON if hasattr(env_class, "SINGLETON") else False self.RETURNS_GYM_TUPLE = ( env_class.RETURNS_GYM_TUPLE if hasattr(env_class, "RETURNS_GYM_TUPLE") else True ) self.STATE_IS_ARRAY = ( env_class.STATE_IS_ARRAY if hasattr(env_class, "STATE_IS_ARRAY") else True ) super(VectorizedEnvironment, self).__init__( name=name, frameskip=frameskip, autoreset=autoreset, delay_init=delay_init, ) def __getattr__(self, item): """Forward attributes to the wrapped environment.""" return getattr(self.plangym_env, item) def create_env_callable(self, **kwargs) -> Callable[..., BaseEnvironment]: """Return a callable that initializes the environment that is being vectorized.""" callable_kwargs = dict( env_class=self._env_class, name=self.name, frameskip=self.frameskip, delay_init=self._env_class.SINGLETON, **self._env_kwargs, ) callable_kwargs.update(kwargs) return create_env_callable(**callable_kwargs) def init_env(self) -> None: """Initialize the target environment with the parameters provided at __init__.""" self._plangym_env: BaseEnvironment = self.create_env_callable()() self._plangym_env.init_env() def step(self, action: numpy.ndarray, state: numpy.ndarray = None, dt: int = 1): """ Step the environment applying a given action from an arbitrary state. If is not provided the signature matches the one from OpenAI gym. It allows \ to apply arbitrary boundary conditions to define custom end states in case \ the env was initialized with a "CustomDeath' object. Args: action: Array containing the action to be applied. state: State to be set before stepping the environment. dt: Consecutive number of times to apply the given action. Returns: if states is None returns `(observs, rewards, ends, infos) `else \ `(new_states, observs, rewards, ends, infos)`. """ return self.plangym_env.step(action=action, state=state, dt=dt) def reset(self, return_state: bool = True): """ Reset the environment and returns the first observation, or the first \ (state, obs) tuple. Args: return_state: If true return a also the initial state of the env. Returns: Observation of the environment if `return_state` is False. Otherwise, return (state, obs) after reset. """ state, obs = self.plangym_env.reset(return_state=True) self.sync_states(state) return (state, obs) if return_state else obs def get_state(self): """ Recover the internal state of the simulation. An state completely describes the Environment at a given moment. Returns: State of the simulation. """ return self.plangym_env.get_state() def set_state(self, state): """ Set the internal state of the simulation. Args: state: Target state to be set in the environment. """ self.plangym_env.set_state(state) self.sync_states(state) def render(self, mode="human"): """Render the environment using OpenGL. This wraps the OpenAI render method.""" return self.plangym_env.render(mode) def get_image(self) -> np.ndarray: """ Return a numpy array containing the rendered view of the environment. Square matrices are interpreted as a greyscale image. Three-dimensional arrays are interpreted as RGB images with channels (Height, Width, RGB) """ return self.plangym_env.get_image() def step_with_dt(self, action: Union[numpy.ndarray, int, float], dt: int = 1) -> tuple: """ Take ``dt`` simulation steps and make the environment evolve in multiples\ of ``self.frameskip`` for a total of ``dt`` * ``self.frameskip`` steps. Args: action: Chosen action applied to the environment. dt: Consecutive number of times that the action will be applied. Returns: If state is None returns ``(observs, reward, terminal, info)`` else returns ``(new_state, observs, reward, terminal, info)`` """ return self.plangym_env.step_with_dt(action=action, dt=dt) def sample_action(self): """ Return a valid action that can be used to step the Environment. Implementing this method is optional, and it's only intended to make the testing process of the Environment easier. """ return self.plangym_env.sample_action() def sync_states(self, state: None): """ Synchronize the workers' states with the state of ``self.gym_env``. Set all the states of the different workers of the internal :class:`BatchEnv`\ to the same state as the internal :class:`Environment` used to apply the\ non-vectorized steps. """ raise NotImplementedError() def step_batch( self, actions: numpy.ndarray, states: numpy.ndarray = None, dt: [numpy.ndarray, int] = 1, ): """ Vectorized version of the ``step`` method. It allows to step a vector of states and actions. The signature and \ behaviour is the same as ``step``, but taking a list of states, actions \ and dts as input. Args: actions: Iterable containing the different actions to be applied. states: Iterable containing the different states to be set. dt: int or array containing the frameskips that will be applied. Returns: if states is None returns ``(observs, rewards, ends, infos)`` else \ ``(new_states, observs, rewards, ends, infos)`` """ raise NotImplementedError() def clone(self, **kwargs) -> "BaseEnvironment": """Return a copy of the environment.""" self_kwargs = dict( name=self.name, frameskip=self.frameskip, delay_init=self.delay_init, env_class=self._env_class, n_workers=self.n_workers, **self._env_kwargs, ) self_kwargs.update(kwargs) env = self.__class__(**self_kwargs) return env
36.574635
99
0.613232
5f890b9328d6983928b109fecc583fe7148f59dc
6,426
py
Python
L2.py
coka28/AlignmentCluster
11a4e5fc578258bd3a2181a13bdaa60346eca8da
[ "MIT" ]
null
null
null
L2.py
coka28/AlignmentCluster
11a4e5fc578258bd3a2181a13bdaa60346eca8da
[ "MIT" ]
null
null
null
L2.py
coka28/AlignmentCluster
11a4e5fc578258bd3a2181a13bdaa60346eca8da
[ "MIT" ]
null
null
null
# Layer 2 server script # project worker '''-. +#_p'-..... *+...:(loop):.............................................. m}: \ >!: 1. register clients \ &w^: 2. distribute WLs and add them to pending \ j/6: 3. move results to results dir \ @%: 4. remove timed-out from pending and re-open them : #$: 5. check if done / 6@y: 6. backup and call htmlUpdate / <: / %$":......................................................../ %&"$%!.- $"!.- ''' import sys, os, pickle, shutil, htmlTool from time import time, sleep os.chdir(os.path.expanduser("~")) project = sys.argv[-1] projDir = f'apps/aligner/projects/{project}' clientsDir = f'{projDir}/clients' regDir = f'{projDir}/registrations' backupDir = f'{projDir}/backup' resDir = f'{projDir}/results' # load from backup with open(f'{backupDir}/openWLs','rb') as tmp: openWLs = pickle.load(tmp) with open(f'{backupDir}/pendingWLs','rb') as tmp: pendingWLs = pickle.load(tmp) with open(f'{backupDir}/assignmentTimes','rb') as tmp: assignmentTimes = pickle.load(tmp) print(f'{project}: \tretrieved data from project backup (open: {len(openWLs)}; pending: {len(pendingWLs)})') backup_counter = 0 done = False while not done: # 1. for ID in os.listdir(regDir): registerClient(ID) os.remove(f'{regDir}/{ID}') # 2. passWLs() # 3. moveResults() # 4. reopen() # 5. if checkDone(): done = True # 6. if backup_counter == 100 or done: backup() try: htmlTool.update() except: pass backup_counter = 0 if done: os.rename(projDir,f'{projDir}__done__') backup_counter += 1 sleep(1.74)
36.931034
124
0.495331
5f8a8dc4b802b22d26a8494296192bb50d7f2d9a
2,677
py
Python
test/factory/schedule_factory.py
choonho/statistics
31fbae2d0772a2e8b717ac12c8de9edd9d8f1734
[ "Apache-2.0" ]
null
null
null
test/factory/schedule_factory.py
choonho/statistics
31fbae2d0772a2e8b717ac12c8de9edd9d8f1734
[ "Apache-2.0" ]
null
null
null
test/factory/schedule_factory.py
choonho/statistics
31fbae2d0772a2e8b717ac12c8de9edd9d8f1734
[ "Apache-2.0" ]
null
null
null
import factory from spaceone.core import utils from spaceone.statistics.model.schedule_model import Schedule, Scheduled, JoinQuery, Formula, QueryOption
26.245098
105
0.548001
5f9164c1cc7e9494a573895e93fd39680b8520f6
1,324
py
Python
ymir/backend/src/ymir_app/app/models/iteration.py
Zhang-SJ930104/ymir
dd6481be6f229ade4cf8fba64ef44a15357430c4
[ "Apache-2.0" ]
null
null
null
ymir/backend/src/ymir_app/app/models/iteration.py
Zhang-SJ930104/ymir
dd6481be6f229ade4cf8fba64ef44a15357430c4
[ "Apache-2.0" ]
1
2022-01-18T09:28:29.000Z
2022-01-18T09:28:29.000Z
ymir/backend/src/ymir_app/app/models/iteration.py
Aryalfrat/ymir
d4617ed00ef67a77ab4e1944763f608bface4be6
[ "Apache-2.0" ]
null
null
null
from datetime import datetime from sqlalchemy import Boolean, Column, DateTime, Integer, SmallInteger, String from app.config import settings from app.db.base_class import Base from app.models.task import Task # noqa
36.777778
79
0.749245
5f92da5358e075a34f655feb29ca353ec1f92807
2,833
py
Python
src/jenova/components/common.py
inova-tecnologias/jenova
c975f0894b8663c6a9c9fdc7fa33590a219a6ad3
[ "Apache-2.0" ]
2
2016-08-10T15:08:47.000Z
2016-10-25T14:27:51.000Z
src/jenova/components/common.py
inova-tecnologias/jenova
c975f0894b8663c6a9c9fdc7fa33590a219a6ad3
[ "Apache-2.0" ]
41
2016-08-04T20:19:49.000Z
2017-03-07T20:05:53.000Z
src/jenova/components/common.py
inova-tecnologias/jenova
c975f0894b8663c6a9c9fdc7fa33590a219a6ad3
[ "Apache-2.0" ]
3
2016-09-26T19:04:51.000Z
2017-10-26T22:13:45.000Z
import uuid, hashlib, os, yaml, logging.config, json, requests, re from bcrypt import hashpw, gensalt from collections import namedtuple from sqlalchemy import create_engine from datetime import datetime CONFIG_FILE = os.environ.get('CONFIG_PATH_FILE') ZimbraGrant = namedtuple( 'ZimbraGrant', [ 'target_name', 'target_type', 'grantee_name', 'grantee_type', 'right', 'deny' ] ) logger = CallLogger.logger()
26.726415
85
0.693611
5f9463815346a08c07f5a3a2ec02e760f4e9de1f
3,569
py
Python
hbutils/binary/base.py
HansBug/hbutils
6872311c8a441c5955572e0093b10189a2b90708
[ "Apache-2.0" ]
null
null
null
hbutils/binary/base.py
HansBug/hbutils
6872311c8a441c5955572e0093b10189a2b90708
[ "Apache-2.0" ]
25
2021-10-03T06:19:05.000Z
2022-03-27T12:48:57.000Z
hbutils/binary/base.py
HansBug/hbutils
6872311c8a441c5955572e0093b10189a2b90708
[ "Apache-2.0" ]
null
null
null
import struct from typing import BinaryIO def write(self, file: BinaryIO, val): raise NotImplementedError # pragma: no cover class CMarkedType(CFixedType): """ Overview: Type with struct mark, which can be directly read by ``struct`` module. """ def __init__(self, mark: str, size: int): """ Constructor of :class:`CMarkedType`. :param mark: Mark of the type. :param size: Size of the type. """ CFixedType.__init__(self, size) self.__mark = mark def read(self, file: BinaryIO): """ Read from binary with ``struct`` module. :param file: Binary file, ``io.BytesIO`` is supported as well. :return: Result value. """ r, = struct.unpack(self.mark, file.read(self.size)) return r def write(self, file: BinaryIO, val): """ Write value to binary IO with ``struct`` module. :param file: Binary file, ``io.BytesIO`` is supported as well. :param val: Writing value. """ file.write(struct.pack(self.mark, float(val)))
24.445205
87
0.55842
5f94b482c019a016c621810412b2112d18748236
958
py
Python
Rosalind/iprb.py
yuriyshapovalov/Prototypes
1fc4af4434440a8f59a4bcb486e79fd53d199a7d
[ "Apache-2.0" ]
null
null
null
Rosalind/iprb.py
yuriyshapovalov/Prototypes
1fc4af4434440a8f59a4bcb486e79fd53d199a7d
[ "Apache-2.0" ]
1
2015-03-25T22:35:52.000Z
2015-03-25T22:35:52.000Z
Rosalind/iprb.py
yuriyshapovalov/Prototypes
1fc4af4434440a8f59a4bcb486e79fd53d199a7d
[ "Apache-2.0" ]
null
null
null
# Mendel's First Law # http://rosalind.info/problems/iprb/ import sys import unittest if __name__ == '__main__': hom_dom = int(sys.argv[1]) het = int(sys.argv[2]) hom_rec = int(sys.argv[3]) if hom_dom == 0 or het == 0 or hom_rec == 0: raise Exception("ERROR: Incorrect parameters") result = iprb().main(hom_dom, het, hom_rec) print(result)
23.365854
51
0.654489
5f96125b242a38cf3339aa9cccbeb3af52c0c4f9
3,679
py
Python
boltzmann.py
jkotrc/2D-Elastic-Gas
ee7632518adb03076a684dae48f0fb6f8c44efa3
[ "Unlicense" ]
null
null
null
boltzmann.py
jkotrc/2D-Elastic-Gas
ee7632518adb03076a684dae48f0fb6f8c44efa3
[ "Unlicense" ]
null
null
null
boltzmann.py
jkotrc/2D-Elastic-Gas
ee7632518adb03076a684dae48f0fb6f8c44efa3
[ "Unlicense" ]
null
null
null
#MAIN method and graphics try: from OpenGL.GL import * from OpenGL import GLU import OpenGL.GL.shaders except: print("OpenGL wrapper for python not found") import glfw import numpy as np from computation import Computation if __name__ == "__main__": #A good configuration: 80x80 balls, space 24, width=height=1000, size=8, speedrange=20, frameskip=3, epsilon=0.01, blocksize=512 comp=Computation(width=1000, height=1000, space=20, xballs=100, yballs=100, speedrange=20,size=4,frameskip=1,epsilon=0.01,blocksize=512) g=Graphics(1000, 1000,comp) g.mainloop();
44.325301
141
0.651264
5f972ab5ab25213d75c3f56834078dbd2a9d9668
706
py
Python
python/src/day06.py
azuline/aoc2020
849b48adf3a67ac0eeb485818e38a4b3a72fc03a
[ "Apache-2.0" ]
3
2020-12-09T11:36:31.000Z
2020-12-11T01:41:52.000Z
python/src/day06.py
azuline/aoc2020
849b48adf3a67ac0eeb485818e38a4b3a72fc03a
[ "Apache-2.0" ]
null
null
null
python/src/day06.py
azuline/aoc2020
849b48adf3a67ac0eeb485818e38a4b3a72fc03a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python from itertools import chain from pathlib import Path from typing import List INPUT_FILE = Path.cwd().parent / "inputs" / "day06.txt" AnswerGroup = List[str] if __name__ == "__main__": with INPUT_FILE.open("r") as f: input = transform_input(f.read()) print(f"Part 1: {part1(input)}") print(f"Part 2: {part2(input)}")
23.533333
75
0.660057
5f979d09341797e001c31791e45f05729f30d0c6
933
py
Python
symopt/objective.py
spcornelius/symopt
6f276ca07cc266af1cd58758a0cf413ab85f2591
[ "MIT" ]
null
null
null
symopt/objective.py
spcornelius/symopt
6f276ca07cc266af1cd58758a0cf413ab85f2591
[ "MIT" ]
null
null
null
symopt/objective.py
spcornelius/symopt
6f276ca07cc266af1cd58758a0cf413ab85f2591
[ "MIT" ]
null
null
null
from symopt.base import SymOptExpr import sympy as sym
27.441176
72
0.608789
5f97f0b8c3e75f1f6f491e876381487088f22f49
771
py
Python
batch_run.py
hrishioa/Oyente
76c8943426727c93ab161a4e196dc6abdf636fe2
[ "MIT" ]
4
2017-01-25T05:25:52.000Z
2021-02-18T08:48:51.000Z
batch_run.py
hrishioa/Oyente
76c8943426727c93ab161a4e196dc6abdf636fe2
[ "MIT" ]
null
null
null
batch_run.py
hrishioa/Oyente
76c8943426727c93ab161a4e196dc6abdf636fe2
[ "MIT" ]
1
2018-08-09T20:57:31.000Z
2018-08-09T20:57:31.000Z
import json import glob from tqdm import tqdm import os contract_dir = 'contract_data' cfiles = glob.glob(contract_dir+'/contract*.json') cjson = {} print "Loading contracts..." for cfile in tqdm(cfiles): cjson.update(json.loads(open(cfile).read())) results = {} missed = [] print "Running analysis..." for c in tqdm(cjson): with open('tmp.evm','w') as of: # print "Out: "+cjson[c][1][2:] of.write(cjson[c][1][2:]+"\0") os.system('python oyente.py tmp.evm -j -b') try: results[c] = json.loads(open('tmp.evm.json').read()) except: missed.append(c) print "Writing results..." with open('results.json', 'w') as of: of.write(json.dumps(results,indent=1)) with open('missed.json', 'w') as of: of.write(json.dumps(missed,indent=1)) print "Completed."
19.769231
54
0.66537
5f981f7b480688c0f261ed48cbccc55b236c176c
2,266
py
Python
tests/test_statistics.py
BENR0/textory
0f81b8b6726298b9181be27da7aaac2dd25bd763
[ "MIT" ]
1
2020-07-01T14:40:10.000Z
2020-07-01T14:40:10.000Z
tests/test_statistics.py
BENR0/textory
0f81b8b6726298b9181be27da7aaac2dd25bd763
[ "MIT" ]
9
2020-02-07T11:58:51.000Z
2021-09-07T16:23:38.000Z
tests/test_statistics.py
BENR0/textory
0f81b8b6726298b9181be27da7aaac2dd25bd763
[ "MIT" ]
1
2019-11-20T05:53:13.000Z
2019-11-20T05:53:13.000Z
#! /usr/bin/python # -*- coding: utf-8 -*- import pytest import numpy as np from textory.util import neighbour_diff_squared, num_neighbours, neighbour_count, create_kernel from textory.statistics import variogram, pseudo_cross_variogram def test_variogram(init_np_arrays): """THIS TEST ONLY COVERS THE VERSION WITH INEXACT NEIGHBOUR COUNT ON THE EDGES This test needs improvement in calculation and what is tested. Much code is shared with the "neighbour_diff_squared" test in test_util. """ a, _ = init_np_arrays tmp = np.zeros_like(a) lag = 1 lags = range(-lag, lag + 1) rows, cols = a.shape #calculate variogram difference for i in range(0, cols): for j in range(0, rows): for l in lags: for k in lags: if (i+l < 0) | (i+l >= cols) | (j+k < 0) | (j+k >= rows) | ((l == 0) & (k == 0)): continue else: tmp[i,j] += np.square((a[i, j] - a[i+l, j+k])) tmp = np.nansum(tmp) res = tmp / 40000 assert variogram(a, lag=1) == res def test_pseudo_cross_variogram(init_np_arrays): """THIS TEST ONLY COVERS THE VERSION WITH INEXACT NEIGHBOUR COUNT ON THE EDGES This test needs improvement in calculation and what is tested. Much code is shared with the "neighbour_diff_squared" test in test_util. """ a, b = init_np_arrays tmp = np.zeros_like(a) lag = 1 lags = range(-lag, lag + 1) rows, cols = a.shape #calculate variogram difference for i in range(0, cols): for j in range(0, rows): for l in lags: for k in lags: if (i+l < 0) | (i+l >= cols) | (j+k < 0) | (j+k >= rows) | ((l == 0) & (k == 0)): continue else: tmp[i,j] += np.square((a[i, j] - b[i+l, j+k])) tmp = np.nansum(tmp) res = tmp / 40000 assert pseudo_cross_variogram(a, b, lag=1) == res
27.634146
101
0.566637
5f9861c2730925ff3619b6059676dc2a261cbae6
827
py
Python
question_bank/lemonade-change/lemonade-change.py
yatengLG/leetcode-python
5d48aecb578c86d69835368fad3d9cc21961c226
[ "Apache-2.0" ]
9
2020-08-12T10:01:00.000Z
2022-01-05T04:37:48.000Z
question_bank/lemonade-change/lemonade-change.py
yatengLG/leetcode-python
5d48aecb578c86d69835368fad3d9cc21961c226
[ "Apache-2.0" ]
1
2021-02-16T10:19:31.000Z
2021-02-16T10:19:31.000Z
question_bank/lemonade-change/lemonade-change.py
yatengLG/leetcode-python
5d48aecb578c86d69835368fad3d9cc21961c226
[ "Apache-2.0" ]
4
2020-08-12T10:13:31.000Z
2021-11-05T01:26:58.000Z
# -*- coding: utf-8 -*- # @Author : LG """ 152 ms, Python3 96.83% 14 MB, Python3 12.45% """
27.566667
59
0.41717
5f98d7e1817b744273f69d626fee4ccb8dd5c371
319
py
Python
pythonProject/MUNDO 2/Desafio 57.py
lucasjlgc/Aulas-de-Python-
6aaed1c660487a680e9c449210600ccdfa326612
[ "MIT" ]
null
null
null
pythonProject/MUNDO 2/Desafio 57.py
lucasjlgc/Aulas-de-Python-
6aaed1c660487a680e9c449210600ccdfa326612
[ "MIT" ]
1
2021-06-25T15:29:11.000Z
2021-06-25T15:29:11.000Z
pythonProject/MUNDO 2/Desafio 57.py
lucasjlgc/Aulas-de-Python-
6aaed1c660487a680e9c449210600ccdfa326612
[ "MIT" ]
null
null
null
#Leia o sexo de uma pessoa, s aceite as letras M ou F; Caso contrario, pea a digitao novamente sexo= str(input('Digite seu sexo [M/F]: ')).strip().upper()[0] while sexo not in 'MF': sexo=str(input('DIGITE O SEXO [M/F]: ')).strip().upper()[0] print('seu sexo {} e est registrado com sucesso!'.format(sexo))
39.875
98
0.670846
5f993e929da96965b346f667b7d028433a1f27c0
2,157
py
Python
plugins/uma/plugins/uma_whois/__init__.py
liangzimiao/miyubot
c2788712255e39348c8980c8ace2f6f75fb6621c
[ "Apache-2.0" ]
null
null
null
plugins/uma/plugins/uma_whois/__init__.py
liangzimiao/miyubot
c2788712255e39348c8980c8ace2f6f75fb6621c
[ "Apache-2.0" ]
null
null
null
plugins/uma/plugins/uma_whois/__init__.py
liangzimiao/miyubot
c2788712255e39348c8980c8ace2f6f75fb6621c
[ "Apache-2.0" ]
null
null
null
from nonebot.adapters.onebot.v11.event import MessageEvent from nonebot.typing import T_State from nonebot.adapters.onebot.v11 import Bot, Message from plugins.uma.plugins.uma_whois.data_source import UmaWhois from plugins.uma import chara #matcher =on_endswith({'','?',''},priority=5) matcher =UmaWhois().on_regex(r'^(.*)([? ])?',"whois") #matcher =on_startswith('',priority=5) matcher =UmaWhois().on_regex(r'^(.*)([? ])?',"whois")
32.19403
94
0.623551
5f99e058ef025684556e0579c4ec1d81fb084ff1
8,288
py
Python
analyzer/views.py
jonfang/CMPE295_DataAnalyzer
6d74f55fa7e38ff8d25aecc388a5ed87c95037ae
[ "MIT" ]
1
2020-10-12T18:17:05.000Z
2020-10-12T18:17:05.000Z
analyzer/views.py
jonfang/CMPE295_DataAnalyzer
6d74f55fa7e38ff8d25aecc388a5ed87c95037ae
[ "MIT" ]
3
2019-11-19T20:41:50.000Z
2021-06-10T21:48:44.000Z
analyzer/views.py
jonfang/CMPE295_DataAnalyzer
6d74f55fa7e38ff8d25aecc388a5ed87c95037ae
[ "MIT" ]
2
2019-10-30T23:18:57.000Z
2019-11-23T00:23:17.000Z
from django.http import HttpResponse from pyspark.sql import SparkSession from django.shortcuts import render from datetime import datetime from core.chartfactory import createBarChart, createPieChart from core.dataprocessor import DataProcessor def sample(request): """ sample python report """ keys = ('Python', 'C++', 'Java', 'Perl', 'Scala', 'Lisp') values = [10,8,6,4,2,1] image_base64 = createBarChart(keys, values, 'Usage', 'Programming language usages') return render( request, 'analyzer/main.html', { 'name': "Jon", 'date': datetime.now(), 'image_base64':image_base64, } ) #google play app report 1 #google play app report 2 #google play app report 3
35.418803
131
0.595077
5f9a0e11f9d9a926bf4cc162d77896b7f50869b6
4,668
py
Python
utils/augment_data.py
caiobarrosv/object-detection-for-grasping
2ac2f58700dff73032836ce33d3b98ebf3f29257
[ "BSD-3-Clause" ]
null
null
null
utils/augment_data.py
caiobarrosv/object-detection-for-grasping
2ac2f58700dff73032836ce33d3b98ebf3f29257
[ "BSD-3-Clause" ]
4
2020-07-24T19:31:51.000Z
2022-03-12T00:41:28.000Z
utils/augment_data.py
caiobarrosv/object-detection-for-grasping
2ac2f58700dff73032836ce33d3b98ebf3f29257
[ "BSD-3-Clause" ]
null
null
null
from mxnet import nd import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname( __file__ ), '..'))) import utils.common as dataset_commons import cv2 import numpy as np import glob import pandas as pd from gluoncv.data.transforms.presets.ssd import SSDDefaultTrainTransform from matplotlib import pyplot as plt ''' This code only gives you a tool to visualize the images pointed in the csv file and the related bounding boxes using openCV ''' data_common = dataset_commons.get_dataset_files() # classes_keys = [key for key in data_common['classes']] if __name__ == "__main__": source_images_path = data_common['image_folder'] source_csv_path = data_common['csv_path'] # TODO: Set the file save path images_path_save = 'images_augmented/' # Folder that will contain the resized images csv_path_save = 'images_augmented/csv/val_dataset.csv' img_height = 300 img_width = 300 csv_converter = load_images_from_csv_and_augment(source_images_path, source_csv_path, images_path_save, img_width, img_height) if not os.path.exists(images_path_save): try: os.makedirs(images_path_save + 'csv') except OSError as e: if e.errno != errno.EEXIST: raise csv_converter.to_csv(csv_path_save, index=None) print('Successfully converted to a new csv file.')
33.826087
130
0.633248
5f9a91b6b4cb83726c16979ae7cd27a95c8fd08d
12,235
py
Python
ultracart/models/apply_library_item_response.py
UltraCart/rest_api_v2_sdk_python
d734ea13fabc7a57872ff68bac06861edb8fd882
[ "Apache-2.0" ]
1
2018-03-15T16:56:23.000Z
2018-03-15T16:56:23.000Z
ultracart/models/apply_library_item_response.py
UltraCart/rest_api_v2_sdk_python
d734ea13fabc7a57872ff68bac06861edb8fd882
[ "Apache-2.0" ]
null
null
null
ultracart/models/apply_library_item_response.py
UltraCart/rest_api_v2_sdk_python
d734ea13fabc7a57872ff68bac06861edb8fd882
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ UltraCart Rest API V2 UltraCart REST API Version 2 # noqa: E501 OpenAPI spec version: 2.0.0 Contact: support@ultracart.com Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ApplyLibraryItemResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
31.211735
213
0.621087
5f9b09cbcd120955bb173c4d9f5b1fd61f32f6e1
103
py
Python
notebooks/python_recap/_solutions/python_rehearsal6.py
jonasvdd/DS-python-data-analysis
835226f562ee0b0631d70e48a17c4526ff58a538
[ "BSD-3-Clause" ]
65
2017-03-21T09:15:40.000Z
2022-02-01T23:43:08.000Z
notebooks/python_recap/_solutions/python_rehearsal6.py
jonasvdd/DS-python-data-analysis
835226f562ee0b0631d70e48a17c4526ff58a538
[ "BSD-3-Clause" ]
100
2016-12-15T03:44:06.000Z
2022-03-07T08:14:07.000Z
notebooks/python_recap/_solutions/python_rehearsal6.py
jonasvdd/DS-python-data-analysis
835226f562ee0b0631d70e48a17c4526ff58a538
[ "BSD-3-Clause" ]
52
2016-12-19T07:48:52.000Z
2022-02-19T17:53:48.000Z
np_pressures_hPa * math.exp(-gravit_acc * molar_mass_earth* height/(gas_constant*standard_temperature))
103
103
0.84466
5f9b8fe1beadc23d6a4c015ccb7948ee8af7a618
322
py
Python
test/test_coverage.py
atupilojon/-resources--pytest
eae62b54828bb82dc534b37d9b46b83cb6d31c03
[ "MIT" ]
null
null
null
test/test_coverage.py
atupilojon/-resources--pytest
eae62b54828bb82dc534b37d9b46b83cb6d31c03
[ "MIT" ]
null
null
null
test/test_coverage.py
atupilojon/-resources--pytest
eae62b54828bb82dc534b37d9b46b83cb6d31c03
[ "MIT" ]
null
null
null
from pytest import mark # if setup.py present, code could be installed as library # so that there's no need include path # pip install -e . from pytest_resources import do_lower_case # from src.for_testing import do_lower_case
24.769231
57
0.773292
5f9c3b49af1837552a765743d83f19677ef7b0fe
3,476
py
Python
targets/simple_router/flow_radar_bm/change_bm.py
tsihang-zz/FlowRadar-P4
1b4f92b83257ba8f34475c098bce8b84daa35b7c
[ "Apache-2.0" ]
15
2018-08-21T10:49:38.000Z
2021-06-23T14:33:32.000Z
targets/simple_router/flow_radar_bm/change_bm.py
harvard-cns/FlowRadar-P4
1b4f92b83257ba8f34475c098bce8b84daa35b7c
[ "Apache-2.0" ]
1
2017-10-16T07:49:06.000Z
2017-10-16T13:45:36.000Z
targets/simple_router/flow_radar_bm/change_bm.py
USC-NSL/FlowRadar-P4
1b4f92b83257ba8f34475c098bce8b84daa35b7c
[ "Apache-2.0" ]
6
2016-07-26T15:47:46.000Z
2018-03-23T01:50:06.000Z
import re import os # copy required files # change actions.c to add flow_radar lock # change p4_pd_rpc_server.ipp if __name__ == "__main__": copy_files() change_actions_c() change_p4_pd_rpc_server_ipp() change_p4_pd_rpc_thrift()
31.035714
148
0.649597
5f9c54619428b0b6d3296e3c0080e9ec17335d9c
2,807
py
Python
elecalc.py
shka86/py_calc
780167bc10e2a74741ac9620dbc859c0d310e299
[ "MIT" ]
null
null
null
elecalc.py
shka86/py_calc
780167bc10e2a74741ac9620dbc859c0d310e299
[ "MIT" ]
null
null
null
elecalc.py
shka86/py_calc
780167bc10e2a74741ac9620dbc859c0d310e299
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- # calculation tool for a bridge circuit with two input current sources # two current sources can supply from both of top of the bridge and middle of the bridge # define the voltage name as follows: # Vp: voltage at the top of the bridge # Vn: voltage at the middle of the bridge if __name__ == '__main__': main()
25.990741
88
0.540791
5f9c577bd20e78c6c12bbdda22baa4f5a81a595e
618
py
Python
Python/Armstrong_Number.py
shashwat-agarwal/hacktoberfest-2
552a4278ffd671603f8659562427b0f1ac5127a4
[ "Apache-2.0" ]
17
2020-10-02T03:28:33.000Z
2020-10-24T04:08:30.000Z
Python/Armstrong_Number.py
shubhamgoel90/hacktoberfest
e7b1aa18485c4a080b2568910f82e98a5feb6f37
[ "Apache-2.0" ]
22
2020-10-01T20:00:56.000Z
2020-10-31T01:56:10.000Z
Python/Armstrong_Number.py
shubhamgoel90/hacktoberfest
e7b1aa18485c4a080b2568910f82e98a5feb6f37
[ "Apache-2.0" ]
139
2020-10-01T19:51:40.000Z
2020-11-02T19:58:19.000Z
#Program to check whether the number is an armstrong number or not #Ask user to enter the number number=int(input("Enter the number you want to check armstrong: ")) #To calculate the length of number entered. order=len(str(number)) #Initialise sum to 0 sum=0 temp=number while temp>0: num=temp%10 sum+=num**order temp//=10 if (number==sum): print("The number you have entered is an Armstrong number.") else: print("The number you have entered is not an Armstrong number.") #OUTPUT: #Enter the number you want to check armstrong: 1634 #The number you have entered is an Armstrong number.
21.310345
68
0.723301
5f9c87648a4e17596d684c15485c9c92d81abb57
304
py
Python
pyexlatex/models/format/hline.py
whoopnip/py-ex-latex
66f5fadc35a0bfdce5f1ccb3c80dce8885b061b6
[ "MIT" ]
4
2020-06-08T07:17:12.000Z
2021-11-04T21:39:52.000Z
pyexlatex/models/format/hline.py
nickderobertis/py-ex-latex
66f5fadc35a0bfdce5f1ccb3c80dce8885b061b6
[ "MIT" ]
24
2020-02-17T17:20:44.000Z
2021-12-20T00:10:19.000Z
pyexlatex/models/format/hline.py
nickderobertis/py-ex-latex
66f5fadc35a0bfdce5f1ccb3c80dce8885b061b6
[ "MIT" ]
null
null
null
from pyexlatex.models.sizes.textwidth import TextWidth from pyexlatex.models.format.rule import Rule
25.333333
65
0.710526
5f9d943e1c5e5e036c07d0eb1ed8c96b9fd06019
4,038
py
Python
sixx/plugins/images.py
TildeBeta/6X
1814eb8f394b7c25b49decdd7d7249567c85f30f
[ "MIT" ]
2
2018-03-06T20:39:49.000Z
2018-03-17T04:28:57.000Z
sixx/plugins/images.py
TildeBeta/TwitterImages
1814eb8f394b7c25b49decdd7d7249567c85f30f
[ "MIT" ]
2
2018-03-06T20:39:46.000Z
2018-03-15T17:03:03.000Z
sixx/plugins/images.py
TildeBeta/TwitterImages
1814eb8f394b7c25b49decdd7d7249567c85f30f
[ "MIT" ]
1
2018-04-25T22:24:40.000Z
2018-04-25T22:24:40.000Z
from math import sqrt import asks import datetime import numpy as np import random from PIL import Image from PIL.ImageDraw import Draw from PIL.ImageEnhance import Brightness from PIL.ImageFont import truetype from curio import spawn_thread from curious.commands import Context, Plugin, command from io import BytesIO from sixx.plugins.utils.pillow import add_noise, add_scanlines, antialiased_text, save_image SCANLINES, NOISE, BOTH = range(3)
40.38
124
0.488856
5f9df6e37fc71858adef3ee969afe3699916d4a6
2,669
py
Python
plugins/DonorlessOperation/__init__.py
j-h-m/Media-Journaling-Tool
4ab6961e2768dc002c9bbad182f83188631f01bd
[ "BSD-3-Clause" ]
null
null
null
plugins/DonorlessOperation/__init__.py
j-h-m/Media-Journaling-Tool
4ab6961e2768dc002c9bbad182f83188631f01bd
[ "BSD-3-Clause" ]
null
null
null
plugins/DonorlessOperation/__init__.py
j-h-m/Media-Journaling-Tool
4ab6961e2768dc002c9bbad182f83188631f01bd
[ "BSD-3-Clause" ]
null
null
null
import logging from maskgen import video_tools import random import maskgen.video_tools import os import maskgen import json plugin = "DonorPicker"
38.128571
124
0.557887
5f9e0f831db1b36f8edc783c6c1bfaa61c116474
1,228
py
Python
track_model/eval_avg_scores.py
QUVA-Lab/lang-tracker
6cb3630471765565b6f2d34a160f0cd51d95a082
[ "BSD-2-Clause-FreeBSD" ]
31
2017-09-13T13:40:59.000Z
2022-01-25T16:55:19.000Z
track_model/eval_avg_scores.py
zhenyangli/lang-tracker
dddd808a22582573ab0a5e4c3dbf0ba054e42d61
[ "BSD-3-Clause" ]
4
2017-09-14T01:56:58.000Z
2021-01-28T00:58:58.000Z
track_model/eval_avg_scores.py
QUVA-Lab/lang-tracker
6cb3630471765565b6f2d34a160f0cd51d95a082
[ "BSD-2-Clause-FreeBSD" ]
9
2017-09-28T03:22:08.000Z
2021-01-19T10:56:44.000Z
import caffe import numpy as np import os import sys import track_model_train as track_model import train_config max_iter = 1000 if __name__ == '__main__': config = train_config.Config() eval_avg_scores(config)
29.95122
90
0.643322
5f9e1b47610239b65145f24fa61ab7d89533b94e
1,968
py
Python
tests/group_test.py
gekkeharry13/api-python
b18d1694c19f5f972a126ee9ff3d3971a08815cb
[ "Apache-2.0" ]
1
2018-05-31T17:29:30.000Z
2018-05-31T17:29:30.000Z
tests/group_test.py
gekkeharry13/api-python
b18d1694c19f5f972a126ee9ff3d3971a08815cb
[ "Apache-2.0" ]
8
2015-02-20T16:22:12.000Z
2019-04-25T23:57:43.000Z
tests/group_test.py
gekkeharry13/api-python
b18d1694c19f5f972a126ee9ff3d3971a08815cb
[ "Apache-2.0" ]
8
2015-02-28T06:56:15.000Z
2020-01-02T22:42:09.000Z
# # Copyright (C) 2014 Conjur Inc # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from mock import patch import conjur api = conjur.new_from_key('foo', 'bar') group = api.group('v1/admins')
37.132075
82
0.757622
5f9e9628295536489ee271571858b5c113c24c7c
99,362
py
Python
Scripts/generated/protocolbuffers/Social_pb2.py
velocist/TS4CheatsInfo
b59ea7e5f4bd01d3b3bd7603843d525a9c179867
[ "Apache-2.0" ]
null
null
null
Scripts/generated/protocolbuffers/Social_pb2.py
velocist/TS4CheatsInfo
b59ea7e5f4bd01d3b3bd7603843d525a9c179867
[ "Apache-2.0" ]
null
null
null
Scripts/generated/protocolbuffers/Social_pb2.py
velocist/TS4CheatsInfo
b59ea7e5f4bd01d3b3bd7603843d525a9c179867
[ "Apache-2.0" ]
null
null
null
# uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: D:\dev\TS4\_deploy\Client\Releasex64\Python\Generated\protocolbuffers\Social_pb2.py # Compiled at: 2020-12-13 14:24:09 # Size of source mod 2**32: 103336 bytes from google.protobuf import descriptor from google.protobuf import message from google.protobuf import reflection from google.protobuf import descriptor_pb2 import protocolbuffers.Consts_pb2 as Consts_pb2 import protocolbuffers.Chat_pb2 as Chat_pb2 import protocolbuffers.S4Common_pb2 as S4Common_pb2 import protocolbuffers.Localization_pb2 as Localization_pb2 import protocolbuffers.Exchange_pb2 as Exchange_pb2 DESCRIPTOR = descriptor.FileDescriptor(name='Social.proto', package='EA.Sims4.Network', serialized_pb='\n\x0cSocial.proto\x12\x10EA.Sims4.Network\x1a\x0cConsts.proto\x1a\nChat.proto\x1a\x0eS4Common.proto\x1a\x12Localization.proto\x1a\x0eExchange.proto"v\n\x0fSocialFriendMsg\x12\r\n\x05simId\x18\x01 \x01(\x04\x12\x11\n\tnucleusid\x18\x02 \x01(\x04\x12\x0c\n\x04note\x18\x03 \x01(\t\x12\x0e\n\x06prefix\x18\x04 \x01(\t\x12\x0f\n\x07persona\x18\x05 \x01(\t\x12\x12\n\ncheatForce\x18\x06 \x01(\x08",\n\x18SocialPersonaResponseMsg\x12\x10\n\x08personas\x18\x01 \x03(\t"\x7f\n\x15SocialGenericResponse\x12\r\n\x05error\x18\x01 \x01(\r\x121\n\x08msg_type\x18\x02 \x01(\x0e2\x1f.EA.Sims4.Network.SocialOpTypes\x12\x0e\n\x06postId\x18\x03 \x01(\x0c\x12\x14\n\x0cpostParentId\x18\x04 \x01(\x0c"\x02\n\x14SocialPlayerInfoList\x12B\n\x07players\x18\x01 \x03(\x0b21.EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo\x1a\x01\n\nPlayerInfo\x12\x13\n\x0bAccountName\x18\x01 \x01(\t\x12\x14\n\x0cAccountNotes\x18\x02 \x01(\t\x128\n\x08presence\x18\x03 \x01(\x0e2&.EA.Sims4.Network.OnlinePresenceStatus\x12\x15\n\rOnlineStatus2\x18\x04 \x01(\t\x12\x11\n\tNucleusId\x18\t \x01(\x04\x12\x11\n\tPlayerBio\x18\n \x01(\t\x12\x18\n\x10exclude_reported\x18\x0b \x01(\x08\x12\x15\n\rIsUserBlocked\x18\x0c \x01(\x08"a\n\x0fSocialSearchMsg\x12\x0e\n\x06prefix\x18\x01 \x01(\t\x12>\n\x0esearch_results\x18\x02 \x03(\x0b2&.EA.Sims4.Network.LocalizedStringToken"=\n\x12OriginErrorMessage\x12\x11\n\terrorcode\x18\x01 \x01(\r\x12\x14\n\x0cerrormessage\x18\x02 \x01(\t"\x97\x01\n\x1bSocialInviteResponseMessage\x12\x14\n\x0cinvitationid\x18\x01 \x01(\t\x12\x16\n\x0einvitationtype\x18\x02 \x01(\r\x12\x18\n\x10inviternucleusid\x18\x03 \x01(\x04\x12\x19\n\x11accepternucleusid\x18\x04 \x01(\x04\x12\x15\n\ractionSuccess\x18\x05 \x01(\x08"J\n\x13SocialCassandraTest\x123\n\x06opcode\x18\x01 \x01(\x0e2#.EA.Sims4.Network.CassandraTestCode"\x88\x01\n\x1eSocialFriendListRequestMessage\x12\x12\n\naccount_id\x18\x01 \x01(\x04\x12\x11\n\tfriend_id\x18\x02 \x01(\x04\x12\x13\n\x0baddress_str\x18\x03 \x01(\t\x12\x12\n\nobject_str\x18\x04 \x01(\t\x12\x16\n\x0ereply_proxy_id\x18\x05 \x01(\x04"_\n!SocialRequestNucleusIdFromPersona\x12\x11\n\trequestid\x18\x01 \x01(\x04\x12\x13\n\x0bpersonaName\x18\x02 \x01(\t\x12\x12\n\nmessage_id\x18\x03 \x01(\r"^\n"SocialNucleusIdFromPersonaResponse\x12\x11\n\trequestid\x18\x01 \x01(\x04\x12\x11\n\tnucleusid\x18\x02 \x01(\x04\x12\x12\n\nmessage_id\x18\x03 \x01(\r"S\n\x15SocialExchangeMessage\x12:\n\x08envelope\x18\x01 \x01(\x0b2(.EA.Sims4.Network.ExchangeSocialEnvelope"+\n\x16SocialFollowersMessage\x12\x11\n\tsfim_blob\x18\x01 \x03(\x0c"\x02\n\x15SocialFeedItemMessage\x12\x0f\n\x07feed_id\x18\x01 \x01(\x0c\x127\n\tfeed_type\x18\x02 \x01(\x0e2$.EA.Sims4.Network.SocialFeedItemType\x120\n\x08metadata\x18\x03 \x01(\x0b2\x1e.EA.Sims4.Network.TrayMetadata\x12\x11\n\tnucleusid\x18\x04 \x01(\x04\x12\x0f\n\x07persona\x18\x05 \x01(\t\x12\x10\n\x08quantity\x18\x06 \x01(\x04\x12\x1a\n\x12follower_nucleusid\x18\x07 \x01(\x04\x12\x18\n\x10follower_persona\x18\x08 \x01(\t\x12@\n\x0efollowers_blob\x18\t \x01(\x0b2(.EA.Sims4.Network.SocialFollowersMessage\x12\x18\n\x10is_maxis_curated\x18\n \x01(\x08"Z\n!SocialFeedItemUnserializedMessage\x12\x0f\n\x07feed_id\x18\x01 \x01(\x0c\x12\x0c\n\x04data\x18\x02 \x01(\x0c\x12\x16\n\x0ecount_override\x18\x03 \x01(\x04"d\n\x18SocialWallCommentMessage\x12\x0c\n\x04uuid\x18\x01 \x01(\x0c\x12\x11\n\tauthor_id\x18\x02 \x01(\x04\x12\x16\n\x0eauthor_persona\x18\x03 \x01(\t\x12\x0f\n\x07message\x18\x04 \x01(\t"\x01\n\x1cSocialGetWallCommentsMessage\x12\x11\n\tnucleusid\x18\x01 \x01(\x04\x12\x12\n\ngallery_id\x18\x02 \x01(\x0c\x12\x15\n\rstarting_uuid\x18\x03 \x01(\x0c\x12\x13\n\x0bnum_results\x18\x04 \x01(\r\x12<\n\x08messages\x18\x05 \x03(\x0b2*.EA.Sims4.Network.SocialWallCommentMessage\x12\x0e\n\x06hidden\x18\x06 \x01(\x08\x12\x18\n\x10exclude_reported\x18\x07 \x01(\x08"\x82\x01\n\x1cSocialPostWallCommentMessage\x12\x11\n\tnucleusid\x18\x01 \x01(\x04\x12\x12\n\ngallery_id\x18\x02 \x01(\x0c\x12;\n\x07message\x18\x03 \x01(\x0b2*.EA.Sims4.Network.SocialWallCommentMessage"U\n\x1eSocialDeleteWallCommentMessage\x12\x11\n\tnucleusid\x18\x01 \x01(\x04\x12\x12\n\ngallery_id\x18\x02 \x01(\x0c\x12\x0c\n\x04uuid\x18\x03 \x01(\x0c"\x01\n\x1cSocialRequestFeedWallMessage\x12\x13\n\x0bending_uuid\x18\x01 \x01(\x0c\x129\n\x08messages\x18\x02 \x03(\x0b2\'.EA.Sims4.Network.SocialFeedItemMessage\x12R\n\x15unserialized_messages\x18\x03 \x03(\x0b23.EA.Sims4.Network.SocialFeedItemUnserializedMessage\x12\x11\n\tnum_items\x18\x04 \x01(\r"m\n\x1dSocialRequestFollowersMessage\x12\x10\n\x08playerid\x18\x01 \x01(\x04\x12\n\n\x02id\x18\x02 \x01(\t\x12\x19\n\x11prev_last_persona\x18\x03 \x01(\t\x12\x13\n\x0bnum_request\x18\x04 \x01(\r";\n\x1eSocialRequestIgnoreListMessage\x12\x19\n\x11player_nucleus_id\x18\x01 \x01(\x04"\x01\n\x1eSocialGetPlayerInfoListMessage\x12\x19\n\x11player_nucleus_id\x18\x01 \x01(\x04\x12U\n\x10player_info_list\x18\x02 \x03(\x0b2;.EA.Sims4.Network.SocialGetPlayerInfoListMessage.PlayerInfo\x1aU\n\nPlayerInfo\x12\x12\n\nnucleus_id\x18\x01 \x01(\x04\x12\x16\n\x0eorigin_persona\x18\x02 \x01(\t\x12\x1b\n\x13first_party_persona\x18\x03 \x01(\t"X\n\x1cSocialCommentPetitionMessage\x12\x11\n\tnucleusid\x18\x01 \x01(\x04\x12\x11\n\tcommentid\x18\x02 \x01(\x0c\x12\x12\n\ncommentKey\x18\x03 \x01(\t"D\n\x18SocialBioPetitionMessage\x12\x11\n\tnucleusid\x18\x01 \x01(\x04\x12\x15\n\rbio_nucleusid\x18\x02 \x01(\x04"+\n\x18SocialFeedRemovalMessage\x12\x0f\n\x07feed_id\x18\x01 \x01(\x0c"\x8f\x12\n\x14SocialControlMessage\x12/\n\x06opcode\x18\x01 \x02(\x0e2\x1f.EA.Sims4.Network.SocialOpTypes\x12.\n\x05subop\x18\x02 \x01(\x0e2\x1f.EA.Sims4.Network.SocialOpTypes\x12\x15\n\rtransactionId\x18\x03 \x01(\x04\x12\x0e\n\x06result\x18d \x01(\r\x12J\n\x12getwallcommentsmsg\x18\x04 \x01(\x0b2..EA.Sims4.Network.SocialGetWallCommentsMessage\x12J\n\x12postwallcommentmsg\x18\x05 \x01(\x0b2..EA.Sims4.Network.SocialPostWallCommentMessage\x12N\n\x14deletewallcommentmsg\x18\x06 \x01(\x0b20.EA.Sims4.Network.SocialDeleteWallCommentMessage\x124\n\tfriendmsg\x18\x07 \x01(\x0b2!.EA.Sims4.Network.SocialFriendMsg\x12@\n\x0fgenericresponse\x18\x08 \x01(\x0b2\'.EA.Sims4.Network.SocialGenericResponse\x12:\n\nplayerinfo\x18\t \x01(\x0b2&.EA.Sims4.Network.SocialPlayerInfoList\x12:\n\nfeedsubmsg\x18\n \x01(\x0b2&.EA.Sims4.Network.SocialFeedSubMessage\x12:\n\x0fsearchresultmsg\x18\x0b \x01(\x0b2!.EA.Sims4.Network.SocialSearchMsg\x12H\n\x11inviteresponsemsg\x18\x0c \x01(\x0b2-.EA.Sims4.Network.SocialInviteResponseMessage\x129\n\x0boriginerror\x18\r \x01(\x0b2$.EA.Sims4.Network.OriginErrorMessage\x12B\n\x13socialcassandratest\x18\x0e \x01(\x0b2%.EA.Sims4.Network.SocialCassandraTest\x12T\n\x1asocialfriendlistrequestmsg\x18\x0f \x01(\x0b20.EA.Sims4.Network.SocialFriendListRequestMessage\x12^\n!socialrequestnucleusidfrompersona\x18\x10 \x01(\x0b23.EA.Sims4.Network.SocialRequestNucleusIdFromPersona\x12`\n"socialnucleusidfrompersonaresponse\x18\x11 \x01(\x0b24.EA.Sims4.Network.SocialNucleusIdFromPersonaResponse\x12F\n\x15socialexchangemessage\x18\x12 \x01(\x0b2\'.EA.Sims4.Network.SocialExchangeMessage\x12T\n\x1csocialrequestfeedwallmessage\x18\x13 \x01(\x0b2..EA.Sims4.Network.SocialRequestFeedWallMessage\x12A\n\x0cstat_tickers\x18\x15 \x01(\x0b2+.EA.Sims4.Network.ExchangeStatTickerMessage\x12L\n\x14comment_petition_msg\x18\x16 \x01(\x0b2..EA.Sims4.Network.SocialCommentPetitionMessage\x12B\n\x0efeedremovalmsg\x18\x17 \x01(\x0b2*.EA.Sims4.Network.SocialFeedRemovalMessage\x12D\n\x10bio_petition_msg\x18\x18 \x01(\x0b2*.EA.Sims4.Network.SocialBioPetitionMessage\x12B\n\x0cfb_event_msg\x18\x19 \x01(\x0b2,.EA.Sims4.Network.SocialFacebookEventMessage\x12M\n\x14requestfollowers_msg\x18\x1a \x01(\x0b2/.EA.Sims4.Network.SocialRequestFollowersMessage\x12O\n\x15responsefollowers_msg\x18\x1b \x01(\x0b20.EA.Sims4.Network.SocialResponseFollowersMessage\x12O\n\x15requestignorelist_msg\x18\x1c \x01(\x0b20.EA.Sims4.Network.SocialRequestIgnoreListMessage\x12W\n\x1dresponse_player_info_list_msg\x18\x1d \x01(\x0b20.EA.Sims4.Network.SocialGetPlayerInfoListMessage\x12_\n\x1eplayer_identification_list_msg\x18\x1e \x01(\x0b27.EA.Sims4.Network.ServerPlayerIdentificationListMessage\x12@\n\rcandidate_msg\x18\x1f \x01(\x0b2).EA.Sims4.Network.SocialCandidatesMessage\x12P\n\x16evaluation_results_msg\x18 \x01(\x0b20.EA.Sims4.Network.SocialEvaluationResultsMessage\x12>\n\rcg_update_msg\x18! \x01(\x0b2\'.EA.Sims4.Network.SocialCGUpdateMessage"7\n\x13SocialInvalidateMsg\x12\x13\n\x0bcache_index\x18\x01 \x01(\r\x12\x0b\n\x03key\x18\x02 \x01(\x0c"t\n"SocialControlQueueBroadcastMessage\x127\n\x07control\x18\x01 \x01(\x0b2&.EA.Sims4.Network.SocialControlMessage\x12\x15\n\tfriendIds\x18\x03 \x03(\x04B\x02\x10\x01"5\n\x10LifeEventMessage\x12\x0c\n\x04type\x18\x01 \x01(\r\x12\x13\n\x07sim_ids\x18\x02 \x03(\x06B\x02\x10\x01"Q\n\x1aSocialFacebookEventMessage\x12\x10\n\x08objectId\x18\x01 \x02(\t\x12\x13\n\x0baccessToken\x18\x02 \x02(\t\x12\x0c\n\x04guid\x18\x03 \x02(\t"\x01\n"SocialCandidateStatisticSubmessage\x12\x11\n\tremote_id\x18\x01 \x01(\x0c\x12\x13\n\x0bviews_count\x18\x02 \x01(\r\x12\x12\n\nwins_count\x18\x03 \x01(\r\x12\x10\n\x08platform\x18\x04 \x01(\r\x12\x10\n\x08category\x18\x05 \x01(\r\x12\x18\n\x0cwas_reported\x18\x06 \x01(\x08B\x02\x18\x01\x12\x19\n\x11expires_epoch_sec\x18\x07 \x01(\x04"\x01\n\x17SocialCandidatesMessage\x12\r\n\x05count\x18\x01 \x01(\r\x12\x1c\n\x14platform_restriction\x18\x02 \x01(\r\x12\x1c\n\x14category_restriction\x18\x03 \x01(\r\x12\x11\n\tchallenge\x18\x04 \x01(\t\x12\x0e\n\x06digest\x18\x05 \x01(\x0c\x12H\n\ncandidates\x18\x06 \x03(\x0b24.EA.Sims4.Network.SocialCandidateStatisticSubmessage\x12\x19\n\x11expire_epoch_secs\x18\x07 \x01(\x04"W\n\x1eSocialEvaluationResultsMessage\x12\x12\n\nwinner_ids\x18\x01 \x03(\t\x12\x11\n\tloser_ids\x18\x02 \x03(\t\x12\x0e\n\x06digest\x18\x03 \x01(\x0c"t\n\x15SocialCGDigestMessage\x12\x11\n\tchallenge\x18\x01 \x01(\t\x12H\n\ncandidates\x18\x02 \x03(\x0b24.EA.Sims4.Network.SocialCandidateStatisticSubmessage*\x01\n\x12SocialFeedItemType\x12\x17\n\x13SFI_ITEM_DOWNLOADED\x10\x00\x12\x15\n\x11SFI_ITEM_UPLOADED\x10\x01\x12\x16\n\x12SFI_ITEM_FAVORITED\x10\x02\x12\x16\n\x12SFI_ITEM_COMMENTED\x10\x03\x12\x16\n\x12SFI_ITEM_SHOWCASED\x10\x04\x12\x19\n\x15SFI_PROFILE_COMMENTED\x10\x05\x12\x15\n\x11SFI_NEW_FOLLOWERS\x10\x06*\x86\x02\n\x18SocialClusterMessageType\x12\r\n\tSOC_LOGIN\x10\x00\x12\x0e\n\nSOC_LOGOFF\x10\x01\x12\x16\n\x12SOC_PRESENCEUPDATE\x10\x02\x12\x12\n\x0eSOC_FEEDUPDATE\x10\x03\x12\x13\n\x0fSOC_ADD_FEEDSUB\x10\x04\x12\x16\n\x12SOC_REMOVE_FEEDSUB\x10\x05\x12\x18\n\x14SOC_BROADCAST_PRIVOP\x10\x06\x12\x18\n\x14SOC_BROADCAST_QUEUED\x10\x08\x12"\n\x1eSOC_BROADCAST_CACHE_INVALIDATE\x10\t\x12\x1a\n\x16SOC_REST_USER_REGISTER\x10\n') _SOCIALFEEDITEMTYPE = descriptor.EnumDescriptor(name='SocialFeedItemType', full_name='EA.Sims4.Network.SocialFeedItemType', filename=None, file=DESCRIPTOR, values=[ descriptor.EnumValueDescriptor(name='SFI_ITEM_DOWNLOADED', index=0, number=0, options=None, type=None), descriptor.EnumValueDescriptor(name='SFI_ITEM_UPLOADED', index=1, number=1, options=None, type=None), descriptor.EnumValueDescriptor(name='SFI_ITEM_FAVORITED', index=2, number=2, options=None, type=None), descriptor.EnumValueDescriptor(name='SFI_ITEM_COMMENTED', index=3, number=3, options=None, type=None), descriptor.EnumValueDescriptor(name='SFI_ITEM_SHOWCASED', index=4, number=4, options=None, type=None), descriptor.EnumValueDescriptor(name='SFI_PROFILE_COMMENTED', index=5, number=5, options=None, type=None), descriptor.EnumValueDescriptor(name='SFI_NEW_FOLLOWERS', index=6, number=6, options=None, type=None)], containing_type=None, options=None, serialized_start=6663, serialized_end=6853) _SOCIALCLUSTERMESSAGETYPE = descriptor.EnumDescriptor(name='SocialClusterMessageType', full_name='EA.Sims4.Network.SocialClusterMessageType', filename=None, file=DESCRIPTOR, values=[ descriptor.EnumValueDescriptor(name='SOC_LOGIN', index=0, number=0, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_LOGOFF', index=1, number=1, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_PRESENCEUPDATE', index=2, number=2, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_FEEDUPDATE', index=3, number=3, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_ADD_FEEDSUB', index=4, number=4, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_REMOVE_FEEDSUB', index=5, number=5, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_BROADCAST_PRIVOP', index=6, number=6, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_BROADCAST_QUEUED', index=7, number=8, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_BROADCAST_CACHE_INVALIDATE', index=8, number=9, options=None, type=None), descriptor.EnumValueDescriptor(name='SOC_REST_USER_REGISTER', index=9, number=10, options=None, type=None)], containing_type=None, options=None, serialized_start=6856, serialized_end=7118) SFI_ITEM_DOWNLOADED = 0 SFI_ITEM_UPLOADED = 1 SFI_ITEM_FAVORITED = 2 SFI_ITEM_COMMENTED = 3 SFI_ITEM_SHOWCASED = 4 SFI_PROFILE_COMMENTED = 5 SFI_NEW_FOLLOWERS = 6 SOC_LOGIN = 0 SOC_LOGOFF = 1 SOC_PRESENCEUPDATE = 2 SOC_FEEDUPDATE = 3 SOC_ADD_FEEDSUB = 4 SOC_REMOVE_FEEDSUB = 5 SOC_BROADCAST_PRIVOP = 6 SOC_BROADCAST_QUEUED = 8 SOC_BROADCAST_CACHE_INVALIDATE = 9 SOC_REST_USER_REGISTER = 10 _SOCIALFRIENDMSG = descriptor.Descriptor(name='SocialFriendMsg', full_name='EA.Sims4.Network.SocialFriendMsg', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='simId', full_name='EA.Sims4.Network.SocialFriendMsg.simId', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialFriendMsg.nucleusid', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='note', full_name='EA.Sims4.Network.SocialFriendMsg.note', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='prefix', full_name='EA.Sims4.Network.SocialFriendMsg.prefix', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='persona', full_name='EA.Sims4.Network.SocialFriendMsg.persona', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='cheatForce', full_name='EA.Sims4.Network.SocialFriendMsg.cheatForce', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=112, serialized_end=230) _SOCIALPERSONARESPONSEMSG = descriptor.Descriptor(name='SocialPersonaResponseMsg', full_name='EA.Sims4.Network.SocialPersonaResponseMsg', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='personas', full_name='EA.Sims4.Network.SocialPersonaResponseMsg.personas', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=232, serialized_end=276) _SOCIALGENERICRESPONSE = descriptor.Descriptor(name='SocialGenericResponse', full_name='EA.Sims4.Network.SocialGenericResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='error', full_name='EA.Sims4.Network.SocialGenericResponse.error', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='msg_type', full_name='EA.Sims4.Network.SocialGenericResponse.msg_type', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='postId', full_name='EA.Sims4.Network.SocialGenericResponse.postId', index=2, number=3, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='postParentId', full_name='EA.Sims4.Network.SocialGenericResponse.postParentId', index=3, number=4, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=278, serialized_end=405) _SOCIALPLAYERINFOLIST_PLAYERINFO = descriptor.Descriptor(name='PlayerInfo', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='AccountName', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.AccountName', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='AccountNotes', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.AccountNotes', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='presence', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.presence', index=2, number=3, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='OnlineStatus2', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.OnlineStatus2', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='NucleusId', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.NucleusId', index=4, number=9, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='PlayerBio', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.PlayerBio', index=5, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='exclude_reported', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.exclude_reported', index=6, number=11, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='IsUserBlocked', full_name='EA.Sims4.Network.SocialPlayerInfoList.PlayerInfo.IsUserBlocked', index=7, number=12, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=501, serialized_end=724) _SOCIALPLAYERINFOLIST = descriptor.Descriptor(name='SocialPlayerInfoList', full_name='EA.Sims4.Network.SocialPlayerInfoList', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='players', full_name='EA.Sims4.Network.SocialPlayerInfoList.players', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[ _SOCIALPLAYERINFOLIST_PLAYERINFO], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=408, serialized_end=724) _SOCIALSEARCHMSG = descriptor.Descriptor(name='SocialSearchMsg', full_name='EA.Sims4.Network.SocialSearchMsg', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='prefix', full_name='EA.Sims4.Network.SocialSearchMsg.prefix', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='search_results', full_name='EA.Sims4.Network.SocialSearchMsg.search_results', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=726, serialized_end=823) _ORIGINERRORMESSAGE = descriptor.Descriptor(name='OriginErrorMessage', full_name='EA.Sims4.Network.OriginErrorMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='errorcode', full_name='EA.Sims4.Network.OriginErrorMessage.errorcode', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='errormessage', full_name='EA.Sims4.Network.OriginErrorMessage.errormessage', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=825, serialized_end=886) _SOCIALINVITERESPONSEMESSAGE = descriptor.Descriptor(name='SocialInviteResponseMessage', full_name='EA.Sims4.Network.SocialInviteResponseMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='invitationid', full_name='EA.Sims4.Network.SocialInviteResponseMessage.invitationid', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='invitationtype', full_name='EA.Sims4.Network.SocialInviteResponseMessage.invitationtype', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='inviternucleusid', full_name='EA.Sims4.Network.SocialInviteResponseMessage.inviternucleusid', index=2, number=3, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='accepternucleusid', full_name='EA.Sims4.Network.SocialInviteResponseMessage.accepternucleusid', index=3, number=4, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='actionSuccess', full_name='EA.Sims4.Network.SocialInviteResponseMessage.actionSuccess', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=889, serialized_end=1040) _SOCIALCASSANDRATEST = descriptor.Descriptor(name='SocialCassandraTest', full_name='EA.Sims4.Network.SocialCassandraTest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='opcode', full_name='EA.Sims4.Network.SocialCassandraTest.opcode', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1042, serialized_end=1116) _SOCIALFRIENDLISTREQUESTMESSAGE = descriptor.Descriptor(name='SocialFriendListRequestMessage', full_name='EA.Sims4.Network.SocialFriendListRequestMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='account_id', full_name='EA.Sims4.Network.SocialFriendListRequestMessage.account_id', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='friend_id', full_name='EA.Sims4.Network.SocialFriendListRequestMessage.friend_id', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='address_str', full_name='EA.Sims4.Network.SocialFriendListRequestMessage.address_str', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='object_str', full_name='EA.Sims4.Network.SocialFriendListRequestMessage.object_str', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='reply_proxy_id', full_name='EA.Sims4.Network.SocialFriendListRequestMessage.reply_proxy_id', index=4, number=5, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1119, serialized_end=1255) _SOCIALREQUESTNUCLEUSIDFROMPERSONA = descriptor.Descriptor(name='SocialRequestNucleusIdFromPersona', full_name='EA.Sims4.Network.SocialRequestNucleusIdFromPersona', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='requestid', full_name='EA.Sims4.Network.SocialRequestNucleusIdFromPersona.requestid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='personaName', full_name='EA.Sims4.Network.SocialRequestNucleusIdFromPersona.personaName', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='message_id', full_name='EA.Sims4.Network.SocialRequestNucleusIdFromPersona.message_id', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1257, serialized_end=1352) _SOCIALNUCLEUSIDFROMPERSONARESPONSE = descriptor.Descriptor(name='SocialNucleusIdFromPersonaResponse', full_name='EA.Sims4.Network.SocialNucleusIdFromPersonaResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='requestid', full_name='EA.Sims4.Network.SocialNucleusIdFromPersonaResponse.requestid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialNucleusIdFromPersonaResponse.nucleusid', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='message_id', full_name='EA.Sims4.Network.SocialNucleusIdFromPersonaResponse.message_id', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1354, serialized_end=1448) _SOCIALEXCHANGEMESSAGE = descriptor.Descriptor(name='SocialExchangeMessage', full_name='EA.Sims4.Network.SocialExchangeMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='envelope', full_name='EA.Sims4.Network.SocialExchangeMessage.envelope', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1450, serialized_end=1533) _SOCIALFOLLOWERSMESSAGE = descriptor.Descriptor(name='SocialFollowersMessage', full_name='EA.Sims4.Network.SocialFollowersMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='sfim_blob', full_name='EA.Sims4.Network.SocialFollowersMessage.sfim_blob', index=0, number=1, type=12, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1535, serialized_end=1578) _SOCIALFEEDITEMMESSAGE = descriptor.Descriptor(name='SocialFeedItemMessage', full_name='EA.Sims4.Network.SocialFeedItemMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='feed_id', full_name='EA.Sims4.Network.SocialFeedItemMessage.feed_id', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='feed_type', full_name='EA.Sims4.Network.SocialFeedItemMessage.feed_type', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='metadata', full_name='EA.Sims4.Network.SocialFeedItemMessage.metadata', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialFeedItemMessage.nucleusid', index=3, number=4, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='persona', full_name='EA.Sims4.Network.SocialFeedItemMessage.persona', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='quantity', full_name='EA.Sims4.Network.SocialFeedItemMessage.quantity', index=5, number=6, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='follower_nucleusid', full_name='EA.Sims4.Network.SocialFeedItemMessage.follower_nucleusid', index=6, number=7, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='follower_persona', full_name='EA.Sims4.Network.SocialFeedItemMessage.follower_persona', index=7, number=8, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='followers_blob', full_name='EA.Sims4.Network.SocialFeedItemMessage.followers_blob', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='is_maxis_curated', full_name='EA.Sims4.Network.SocialFeedItemMessage.is_maxis_curated', index=9, number=10, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1581, serialized_end=1928) _SOCIALFEEDITEMUNSERIALIZEDMESSAGE = descriptor.Descriptor(name='SocialFeedItemUnserializedMessage', full_name='EA.Sims4.Network.SocialFeedItemUnserializedMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='feed_id', full_name='EA.Sims4.Network.SocialFeedItemUnserializedMessage.feed_id', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='data', full_name='EA.Sims4.Network.SocialFeedItemUnserializedMessage.data', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='count_override', full_name='EA.Sims4.Network.SocialFeedItemUnserializedMessage.count_override', index=2, number=3, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=1930, serialized_end=2020) _SOCIALWALLCOMMENTMESSAGE = descriptor.Descriptor(name='SocialWallCommentMessage', full_name='EA.Sims4.Network.SocialWallCommentMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='uuid', full_name='EA.Sims4.Network.SocialWallCommentMessage.uuid', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='author_id', full_name='EA.Sims4.Network.SocialWallCommentMessage.author_id', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='author_persona', full_name='EA.Sims4.Network.SocialWallCommentMessage.author_persona', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='message', full_name='EA.Sims4.Network.SocialWallCommentMessage.message', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2022, serialized_end=2122) _SOCIALGETWALLCOMMENTSMESSAGE = descriptor.Descriptor(name='SocialGetWallCommentsMessage', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage.nucleusid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='gallery_id', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage.gallery_id', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='starting_uuid', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage.starting_uuid', index=2, number=3, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='num_results', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage.num_results', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='messages', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage.messages', index=4, number=5, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='hidden', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage.hidden', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='exclude_reported', full_name='EA.Sims4.Network.SocialGetWallCommentsMessage.exclude_reported', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2125, serialized_end=2342) _SOCIALPOSTWALLCOMMENTMESSAGE = descriptor.Descriptor(name='SocialPostWallCommentMessage', full_name='EA.Sims4.Network.SocialPostWallCommentMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialPostWallCommentMessage.nucleusid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='gallery_id', full_name='EA.Sims4.Network.SocialPostWallCommentMessage.gallery_id', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='message', full_name='EA.Sims4.Network.SocialPostWallCommentMessage.message', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2345, serialized_end=2475) _SOCIALDELETEWALLCOMMENTMESSAGE = descriptor.Descriptor(name='SocialDeleteWallCommentMessage', full_name='EA.Sims4.Network.SocialDeleteWallCommentMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialDeleteWallCommentMessage.nucleusid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='gallery_id', full_name='EA.Sims4.Network.SocialDeleteWallCommentMessage.gallery_id', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='uuid', full_name='EA.Sims4.Network.SocialDeleteWallCommentMessage.uuid', index=2, number=3, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2477, serialized_end=2562) _SOCIALREQUESTFEEDWALLMESSAGE = descriptor.Descriptor(name='SocialRequestFeedWallMessage', full_name='EA.Sims4.Network.SocialRequestFeedWallMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='ending_uuid', full_name='EA.Sims4.Network.SocialRequestFeedWallMessage.ending_uuid', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='messages', full_name='EA.Sims4.Network.SocialRequestFeedWallMessage.messages', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='unserialized_messages', full_name='EA.Sims4.Network.SocialRequestFeedWallMessage.unserialized_messages', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='num_items', full_name='EA.Sims4.Network.SocialRequestFeedWallMessage.num_items', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2565, serialized_end=2778) _SOCIALREQUESTFOLLOWERSMESSAGE = descriptor.Descriptor(name='SocialRequestFollowersMessage', full_name='EA.Sims4.Network.SocialRequestFollowersMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='playerid', full_name='EA.Sims4.Network.SocialRequestFollowersMessage.playerid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='id', full_name='EA.Sims4.Network.SocialRequestFollowersMessage.id', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='prev_last_persona', full_name='EA.Sims4.Network.SocialRequestFollowersMessage.prev_last_persona', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='num_request', full_name='EA.Sims4.Network.SocialRequestFollowersMessage.num_request', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2780, serialized_end=2889) _SOCIALREQUESTIGNORELISTMESSAGE = descriptor.Descriptor(name='SocialRequestIgnoreListMessage', full_name='EA.Sims4.Network.SocialRequestIgnoreListMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='player_nucleus_id', full_name='EA.Sims4.Network.SocialRequestIgnoreListMessage.player_nucleus_id', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2891, serialized_end=2950) _SOCIALGETPLAYERINFOLISTMESSAGE_PLAYERINFO = descriptor.Descriptor(name='PlayerInfo', full_name='EA.Sims4.Network.SocialGetPlayerInfoListMessage.PlayerInfo', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='nucleus_id', full_name='EA.Sims4.Network.SocialGetPlayerInfoListMessage.PlayerInfo.nucleus_id', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='origin_persona', full_name='EA.Sims4.Network.SocialGetPlayerInfoListMessage.PlayerInfo.origin_persona', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='first_party_persona', full_name='EA.Sims4.Network.SocialGetPlayerInfoListMessage.PlayerInfo.first_party_persona', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=3101, serialized_end=3186) _SOCIALGETPLAYERINFOLISTMESSAGE = descriptor.Descriptor(name='SocialGetPlayerInfoListMessage', full_name='EA.Sims4.Network.SocialGetPlayerInfoListMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='player_nucleus_id', full_name='EA.Sims4.Network.SocialGetPlayerInfoListMessage.player_nucleus_id', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='player_info_list', full_name='EA.Sims4.Network.SocialGetPlayerInfoListMessage.player_info_list', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[ _SOCIALGETPLAYERINFOLISTMESSAGE_PLAYERINFO], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=2953, serialized_end=3186) _SOCIALCOMMENTPETITIONMESSAGE = descriptor.Descriptor(name='SocialCommentPetitionMessage', full_name='EA.Sims4.Network.SocialCommentPetitionMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialCommentPetitionMessage.nucleusid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='commentid', full_name='EA.Sims4.Network.SocialCommentPetitionMessage.commentid', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='commentKey', full_name='EA.Sims4.Network.SocialCommentPetitionMessage.commentKey', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=3188, serialized_end=3276) _SOCIALBIOPETITIONMESSAGE = descriptor.Descriptor(name='SocialBioPetitionMessage', full_name='EA.Sims4.Network.SocialBioPetitionMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='nucleusid', full_name='EA.Sims4.Network.SocialBioPetitionMessage.nucleusid', index=0, number=1, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='bio_nucleusid', full_name='EA.Sims4.Network.SocialBioPetitionMessage.bio_nucleusid', index=1, number=2, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=3278, serialized_end=3346) _SOCIALFEEDREMOVALMESSAGE = descriptor.Descriptor(name='SocialFeedRemovalMessage', full_name='EA.Sims4.Network.SocialFeedRemovalMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='feed_id', full_name='EA.Sims4.Network.SocialFeedRemovalMessage.feed_id', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=3348, serialized_end=3391) _SOCIALCONTROLMESSAGE = descriptor.Descriptor(name='SocialControlMessage', full_name='EA.Sims4.Network.SocialControlMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='opcode', full_name='EA.Sims4.Network.SocialControlMessage.opcode', index=0, number=1, type=14, cpp_type=8, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='subop', full_name='EA.Sims4.Network.SocialControlMessage.subop', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='transactionId', full_name='EA.Sims4.Network.SocialControlMessage.transactionId', index=2, number=3, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='result', full_name='EA.Sims4.Network.SocialControlMessage.result', index=3, number=100, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='getwallcommentsmsg', full_name='EA.Sims4.Network.SocialControlMessage.getwallcommentsmsg', index=4, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='postwallcommentmsg', full_name='EA.Sims4.Network.SocialControlMessage.postwallcommentmsg', index=5, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='deletewallcommentmsg', full_name='EA.Sims4.Network.SocialControlMessage.deletewallcommentmsg', index=6, number=6, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='friendmsg', full_name='EA.Sims4.Network.SocialControlMessage.friendmsg', index=7, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='genericresponse', full_name='EA.Sims4.Network.SocialControlMessage.genericresponse', index=8, number=8, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='playerinfo', full_name='EA.Sims4.Network.SocialControlMessage.playerinfo', index=9, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='feedsubmsg', full_name='EA.Sims4.Network.SocialControlMessage.feedsubmsg', index=10, number=10, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='searchresultmsg', full_name='EA.Sims4.Network.SocialControlMessage.searchresultmsg', index=11, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='inviteresponsemsg', full_name='EA.Sims4.Network.SocialControlMessage.inviteresponsemsg', index=12, number=12, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='originerror', full_name='EA.Sims4.Network.SocialControlMessage.originerror', index=13, number=13, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='socialcassandratest', full_name='EA.Sims4.Network.SocialControlMessage.socialcassandratest', index=14, number=14, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='socialfriendlistrequestmsg', full_name='EA.Sims4.Network.SocialControlMessage.socialfriendlistrequestmsg', index=15, number=15, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='socialrequestnucleusidfrompersona', full_name='EA.Sims4.Network.SocialControlMessage.socialrequestnucleusidfrompersona', index=16, number=16, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='socialnucleusidfrompersonaresponse', full_name='EA.Sims4.Network.SocialControlMessage.socialnucleusidfrompersonaresponse', index=17, number=17, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='socialexchangemessage', full_name='EA.Sims4.Network.SocialControlMessage.socialexchangemessage', index=18, number=18, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='socialrequestfeedwallmessage', full_name='EA.Sims4.Network.SocialControlMessage.socialrequestfeedwallmessage', index=19, number=19, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='stat_tickers', full_name='EA.Sims4.Network.SocialControlMessage.stat_tickers', index=20, number=21, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='comment_petition_msg', full_name='EA.Sims4.Network.SocialControlMessage.comment_petition_msg', index=21, number=22, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='feedremovalmsg', full_name='EA.Sims4.Network.SocialControlMessage.feedremovalmsg', index=22, number=23, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='bio_petition_msg', full_name='EA.Sims4.Network.SocialControlMessage.bio_petition_msg', index=23, number=24, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='fb_event_msg', full_name='EA.Sims4.Network.SocialControlMessage.fb_event_msg', index=24, number=25, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='requestfollowers_msg', full_name='EA.Sims4.Network.SocialControlMessage.requestfollowers_msg', index=25, number=26, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='responsefollowers_msg', full_name='EA.Sims4.Network.SocialControlMessage.responsefollowers_msg', index=26, number=27, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='requestignorelist_msg', full_name='EA.Sims4.Network.SocialControlMessage.requestignorelist_msg', index=27, number=28, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='response_player_info_list_msg', full_name='EA.Sims4.Network.SocialControlMessage.response_player_info_list_msg', index=28, number=29, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='player_identification_list_msg', full_name='EA.Sims4.Network.SocialControlMessage.player_identification_list_msg', index=29, number=30, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='candidate_msg', full_name='EA.Sims4.Network.SocialControlMessage.candidate_msg', index=30, number=31, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='evaluation_results_msg', full_name='EA.Sims4.Network.SocialControlMessage.evaluation_results_msg', index=31, number=32, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='cg_update_msg', full_name='EA.Sims4.Network.SocialControlMessage.cg_update_msg', index=32, number=33, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=3394, serialized_end=5713) _SOCIALINVALIDATEMSG = descriptor.Descriptor(name='SocialInvalidateMsg', full_name='EA.Sims4.Network.SocialInvalidateMsg', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='cache_index', full_name='EA.Sims4.Network.SocialInvalidateMsg.cache_index', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='key', full_name='EA.Sims4.Network.SocialInvalidateMsg.key', index=1, number=2, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=5715, serialized_end=5770) _SOCIALCONTROLQUEUEBROADCASTMESSAGE = descriptor.Descriptor(name='SocialControlQueueBroadcastMessage', full_name='EA.Sims4.Network.SocialControlQueueBroadcastMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='control', full_name='EA.Sims4.Network.SocialControlQueueBroadcastMessage.control', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='friendIds', full_name='EA.Sims4.Network.SocialControlQueueBroadcastMessage.friendIds', index=1, number=3, type=4, cpp_type=4, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=(descriptor._ParseOptions(descriptor_pb2.FieldOptions(), '\x10\x01')))], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=5772, serialized_end=5888) _LIFEEVENTMESSAGE = descriptor.Descriptor(name='LifeEventMessage', full_name='EA.Sims4.Network.LifeEventMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='type', full_name='EA.Sims4.Network.LifeEventMessage.type', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='sim_ids', full_name='EA.Sims4.Network.LifeEventMessage.sim_ids', index=1, number=2, type=6, cpp_type=4, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=(descriptor._ParseOptions(descriptor_pb2.FieldOptions(), '\x10\x01')))], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=5890, serialized_end=5943) _SOCIALFACEBOOKEVENTMESSAGE = descriptor.Descriptor(name='SocialFacebookEventMessage', full_name='EA.Sims4.Network.SocialFacebookEventMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='objectId', full_name='EA.Sims4.Network.SocialFacebookEventMessage.objectId', index=0, number=1, type=9, cpp_type=9, label=2, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='accessToken', full_name='EA.Sims4.Network.SocialFacebookEventMessage.accessToken', index=1, number=2, type=9, cpp_type=9, label=2, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='guid', full_name='EA.Sims4.Network.SocialFacebookEventMessage.guid', index=2, number=3, type=9, cpp_type=9, label=2, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=5945, serialized_end=6026) _SOCIALCANDIDATESTATISTICSUBMESSAGE = descriptor.Descriptor(name='SocialCandidateStatisticSubmessage', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='remote_id', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage.remote_id', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='views_count', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage.views_count', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='wins_count', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage.wins_count', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='platform', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage.platform', index=3, number=4, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='category', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage.category', index=4, number=5, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='was_reported', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage.was_reported', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=(descriptor._ParseOptions(descriptor_pb2.FieldOptions(), '\x18\x01'))), descriptor.FieldDescriptor(name='expires_epoch_sec', full_name='EA.Sims4.Network.SocialCandidateStatisticSubmessage.expires_epoch_sec', index=6, number=7, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=6029, serialized_end=6214) _SOCIALCANDIDATESMESSAGE = descriptor.Descriptor(name='SocialCandidatesMessage', full_name='EA.Sims4.Network.SocialCandidatesMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='count', full_name='EA.Sims4.Network.SocialCandidatesMessage.count', index=0, number=1, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='platform_restriction', full_name='EA.Sims4.Network.SocialCandidatesMessage.platform_restriction', index=1, number=2, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='category_restriction', full_name='EA.Sims4.Network.SocialCandidatesMessage.category_restriction', index=2, number=3, type=13, cpp_type=3, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='challenge', full_name='EA.Sims4.Network.SocialCandidatesMessage.challenge', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='digest', full_name='EA.Sims4.Network.SocialCandidatesMessage.digest', index=4, number=5, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='candidates', full_name='EA.Sims4.Network.SocialCandidatesMessage.candidates', index=5, number=6, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='expire_epoch_secs', full_name='EA.Sims4.Network.SocialCandidatesMessage.expire_epoch_secs', index=6, number=7, type=4, cpp_type=4, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=6217, serialized_end=6453) _SOCIALEVALUATIONRESULTSMESSAGE = descriptor.Descriptor(name='SocialEvaluationResultsMessage', full_name='EA.Sims4.Network.SocialEvaluationResultsMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='winner_ids', full_name='EA.Sims4.Network.SocialEvaluationResultsMessage.winner_ids', index=0, number=1, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='loser_ids', full_name='EA.Sims4.Network.SocialEvaluationResultsMessage.loser_ids', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='digest', full_name='EA.Sims4.Network.SocialEvaluationResultsMessage.digest', index=2, number=3, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b'', message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=6455, serialized_end=6542) _SOCIALCGDIGESTMESSAGE = descriptor.Descriptor(name='SocialCGDigestMessage', full_name='EA.Sims4.Network.SocialCGDigestMessage', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ descriptor.FieldDescriptor(name='challenge', full_name='EA.Sims4.Network.SocialCGDigestMessage.challenge', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=((b'').decode('utf-8')), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), descriptor.FieldDescriptor(name='candidates', full_name='EA.Sims4.Network.SocialCGDigestMessage.candidates', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None)], extensions=[], nested_types=[], enum_types=[], options=None, is_extendable=False, extension_ranges=[], serialized_start=6544, serialized_end=6660) _SOCIALGENERICRESPONSE.fields_by_name['msg_type'].enum_type = Consts_pb2._SOCIALOPTYPES _SOCIALPLAYERINFOLIST_PLAYERINFO.fields_by_name['presence'].enum_type = Consts_pb2._ONLINEPRESENCESTATUS _SOCIALPLAYERINFOLIST_PLAYERINFO.containing_type = _SOCIALPLAYERINFOLIST _SOCIALPLAYERINFOLIST.fields_by_name['players'].message_type = _SOCIALPLAYERINFOLIST_PLAYERINFO _SOCIALSEARCHMSG.fields_by_name['search_results'].message_type = Localization_pb2._LOCALIZEDSTRINGTOKEN _SOCIALCASSANDRATEST.fields_by_name['opcode'].enum_type = Consts_pb2._CASSANDRATESTCODE _SOCIALEXCHANGEMESSAGE.fields_by_name['envelope'].message_type = Exchange_pb2._EXCHANGESOCIALENVELOPE _SOCIALFEEDITEMMESSAGE.fields_by_name['feed_type'].enum_type = _SOCIALFEEDITEMTYPE _SOCIALFEEDITEMMESSAGE.fields_by_name['metadata'].message_type = Exchange_pb2._TRAYMETADATA _SOCIALFEEDITEMMESSAGE.fields_by_name['followers_blob'].message_type = _SOCIALFOLLOWERSMESSAGE _SOCIALGETWALLCOMMENTSMESSAGE.fields_by_name['messages'].message_type = _SOCIALWALLCOMMENTMESSAGE _SOCIALPOSTWALLCOMMENTMESSAGE.fields_by_name['message'].message_type = _SOCIALWALLCOMMENTMESSAGE _SOCIALREQUESTFEEDWALLMESSAGE.fields_by_name['messages'].message_type = _SOCIALFEEDITEMMESSAGE _SOCIALREQUESTFEEDWALLMESSAGE.fields_by_name['unserialized_messages'].message_type = _SOCIALFEEDITEMUNSERIALIZEDMESSAGE _SOCIALGETPLAYERINFOLISTMESSAGE_PLAYERINFO.containing_type = _SOCIALGETPLAYERINFOLISTMESSAGE _SOCIALGETPLAYERINFOLISTMESSAGE.fields_by_name['player_info_list'].message_type = _SOCIALGETPLAYERINFOLISTMESSAGE_PLAYERINFO _SOCIALCONTROLMESSAGE.fields_by_name['opcode'].enum_type = Consts_pb2._SOCIALOPTYPES _SOCIALCONTROLMESSAGE.fields_by_name['subop'].enum_type = Consts_pb2._SOCIALOPTYPES _SOCIALCONTROLMESSAGE.fields_by_name['getwallcommentsmsg'].message_type = _SOCIALGETWALLCOMMENTSMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['postwallcommentmsg'].message_type = _SOCIALPOSTWALLCOMMENTMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['deletewallcommentmsg'].message_type = _SOCIALDELETEWALLCOMMENTMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['friendmsg'].message_type = _SOCIALFRIENDMSG _SOCIALCONTROLMESSAGE.fields_by_name['genericresponse'].message_type = _SOCIALGENERICRESPONSE _SOCIALCONTROLMESSAGE.fields_by_name['playerinfo'].message_type = _SOCIALPLAYERINFOLIST _SOCIALCONTROLMESSAGE.fields_by_name['feedsubmsg'].message_type = Exchange_pb2._SOCIALFEEDSUBMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['searchresultmsg'].message_type = _SOCIALSEARCHMSG _SOCIALCONTROLMESSAGE.fields_by_name['inviteresponsemsg'].message_type = _SOCIALINVITERESPONSEMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['originerror'].message_type = _ORIGINERRORMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['socialcassandratest'].message_type = _SOCIALCASSANDRATEST _SOCIALCONTROLMESSAGE.fields_by_name['socialfriendlistrequestmsg'].message_type = _SOCIALFRIENDLISTREQUESTMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['socialrequestnucleusidfrompersona'].message_type = _SOCIALREQUESTNUCLEUSIDFROMPERSONA _SOCIALCONTROLMESSAGE.fields_by_name['socialnucleusidfrompersonaresponse'].message_type = _SOCIALNUCLEUSIDFROMPERSONARESPONSE _SOCIALCONTROLMESSAGE.fields_by_name['socialexchangemessage'].message_type = _SOCIALEXCHANGEMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['socialrequestfeedwallmessage'].message_type = _SOCIALREQUESTFEEDWALLMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['stat_tickers'].message_type = Exchange_pb2._EXCHANGESTATTICKERMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['comment_petition_msg'].message_type = _SOCIALCOMMENTPETITIONMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['feedremovalmsg'].message_type = _SOCIALFEEDREMOVALMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['bio_petition_msg'].message_type = _SOCIALBIOPETITIONMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['fb_event_msg'].message_type = _SOCIALFACEBOOKEVENTMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['requestfollowers_msg'].message_type = _SOCIALREQUESTFOLLOWERSMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['responsefollowers_msg'].message_type = Exchange_pb2._SOCIALRESPONSEFOLLOWERSMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['requestignorelist_msg'].message_type = _SOCIALREQUESTIGNORELISTMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['response_player_info_list_msg'].message_type = _SOCIALGETPLAYERINFOLISTMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['player_identification_list_msg'].message_type = Exchange_pb2._SERVERPLAYERIDENTIFICATIONLISTMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['candidate_msg'].message_type = _SOCIALCANDIDATESMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['evaluation_results_msg'].message_type = _SOCIALEVALUATIONRESULTSMESSAGE _SOCIALCONTROLMESSAGE.fields_by_name['cg_update_msg'].message_type = Exchange_pb2._SOCIALCGUPDATEMESSAGE _SOCIALCONTROLQUEUEBROADCASTMESSAGE.fields_by_name['control'].message_type = _SOCIALCONTROLMESSAGE _SOCIALCANDIDATESMESSAGE.fields_by_name['candidates'].message_type = _SOCIALCANDIDATESTATISTICSUBMESSAGE _SOCIALCGDIGESTMESSAGE.fields_by_name['candidates'].message_type = _SOCIALCANDIDATESTATISTICSUBMESSAGE DESCRIPTOR.message_types_by_name['SocialFriendMsg'] = _SOCIALFRIENDMSG DESCRIPTOR.message_types_by_name['SocialPersonaResponseMsg'] = _SOCIALPERSONARESPONSEMSG DESCRIPTOR.message_types_by_name['SocialGenericResponse'] = _SOCIALGENERICRESPONSE DESCRIPTOR.message_types_by_name['SocialPlayerInfoList'] = _SOCIALPLAYERINFOLIST DESCRIPTOR.message_types_by_name['SocialSearchMsg'] = _SOCIALSEARCHMSG DESCRIPTOR.message_types_by_name['OriginErrorMessage'] = _ORIGINERRORMESSAGE DESCRIPTOR.message_types_by_name['SocialInviteResponseMessage'] = _SOCIALINVITERESPONSEMESSAGE DESCRIPTOR.message_types_by_name['SocialCassandraTest'] = _SOCIALCASSANDRATEST DESCRIPTOR.message_types_by_name['SocialFriendListRequestMessage'] = _SOCIALFRIENDLISTREQUESTMESSAGE DESCRIPTOR.message_types_by_name['SocialRequestNucleusIdFromPersona'] = _SOCIALREQUESTNUCLEUSIDFROMPERSONA DESCRIPTOR.message_types_by_name['SocialNucleusIdFromPersonaResponse'] = _SOCIALNUCLEUSIDFROMPERSONARESPONSE DESCRIPTOR.message_types_by_name['SocialExchangeMessage'] = _SOCIALEXCHANGEMESSAGE DESCRIPTOR.message_types_by_name['SocialFollowersMessage'] = _SOCIALFOLLOWERSMESSAGE DESCRIPTOR.message_types_by_name['SocialFeedItemMessage'] = _SOCIALFEEDITEMMESSAGE DESCRIPTOR.message_types_by_name['SocialFeedItemUnserializedMessage'] = _SOCIALFEEDITEMUNSERIALIZEDMESSAGE DESCRIPTOR.message_types_by_name['SocialWallCommentMessage'] = _SOCIALWALLCOMMENTMESSAGE DESCRIPTOR.message_types_by_name['SocialGetWallCommentsMessage'] = _SOCIALGETWALLCOMMENTSMESSAGE DESCRIPTOR.message_types_by_name['SocialPostWallCommentMessage'] = _SOCIALPOSTWALLCOMMENTMESSAGE DESCRIPTOR.message_types_by_name['SocialDeleteWallCommentMessage'] = _SOCIALDELETEWALLCOMMENTMESSAGE DESCRIPTOR.message_types_by_name['SocialRequestFeedWallMessage'] = _SOCIALREQUESTFEEDWALLMESSAGE DESCRIPTOR.message_types_by_name['SocialRequestFollowersMessage'] = _SOCIALREQUESTFOLLOWERSMESSAGE DESCRIPTOR.message_types_by_name['SocialRequestIgnoreListMessage'] = _SOCIALREQUESTIGNORELISTMESSAGE DESCRIPTOR.message_types_by_name['SocialGetPlayerInfoListMessage'] = _SOCIALGETPLAYERINFOLISTMESSAGE DESCRIPTOR.message_types_by_name['SocialCommentPetitionMessage'] = _SOCIALCOMMENTPETITIONMESSAGE DESCRIPTOR.message_types_by_name['SocialBioPetitionMessage'] = _SOCIALBIOPETITIONMESSAGE DESCRIPTOR.message_types_by_name['SocialFeedRemovalMessage'] = _SOCIALFEEDREMOVALMESSAGE DESCRIPTOR.message_types_by_name['SocialControlMessage'] = _SOCIALCONTROLMESSAGE DESCRIPTOR.message_types_by_name['SocialInvalidateMsg'] = _SOCIALINVALIDATEMSG DESCRIPTOR.message_types_by_name['SocialControlQueueBroadcastMessage'] = _SOCIALCONTROLQUEUEBROADCASTMESSAGE DESCRIPTOR.message_types_by_name['LifeEventMessage'] = _LIFEEVENTMESSAGE DESCRIPTOR.message_types_by_name['SocialFacebookEventMessage'] = _SOCIALFACEBOOKEVENTMESSAGE DESCRIPTOR.message_types_by_name['SocialCandidateStatisticSubmessage'] = _SOCIALCANDIDATESTATISTICSUBMESSAGE DESCRIPTOR.message_types_by_name['SocialCandidatesMessage'] = _SOCIALCANDIDATESMESSAGE DESCRIPTOR.message_types_by_name['SocialEvaluationResultsMessage'] = _SOCIALEVALUATIONRESULTSMESSAGE DESCRIPTOR.message_types_by_name['SocialCGDigestMessage'] = _SOCIALCGDIGESTMESSAGE
31.050625
10,693
0.763723
5f9ec6c74b57542c9787a229e40967ba3e06098c
56
py
Python
NumpyUtility/__init__.py
PaulKGrimes/NumpyUtility
35607725d07952deca10d7342043db7e77756278
[ "MIT" ]
null
null
null
NumpyUtility/__init__.py
PaulKGrimes/NumpyUtility
35607725d07952deca10d7342043db7e77756278
[ "MIT" ]
null
null
null
NumpyUtility/__init__.py
PaulKGrimes/NumpyUtility
35607725d07952deca10d7342043db7e77756278
[ "MIT" ]
null
null
null
__all__ = ["NumpyUtility"] from .NumpyUtility import *
14
27
0.732143
5f9f9ecefb3439db4ca570e4a61b0846cf1331d6
188
py
Python
09-Data-Analysis/Sweetviz/ReprotViz.py
NguyenQuangBinh803/Python-Heritage
7da72b2926cefc4903086a1cab7de3a64764d648
[ "MIT" ]
1
2021-01-10T12:06:26.000Z
2021-01-10T12:06:26.000Z
09-Data-Analysis/Sweetviz/ReprotViz.py
NguyenQuangBinh803/Python-Heritage
7da72b2926cefc4903086a1cab7de3a64764d648
[ "MIT" ]
null
null
null
09-Data-Analysis/Sweetviz/ReprotViz.py
NguyenQuangBinh803/Python-Heritage
7da72b2926cefc4903086a1cab7de3a64764d648
[ "MIT" ]
null
null
null
import sweetviz import pandas as pd if __name__ == '__main__': df = pd.read_csv("BankChurners_clean.csv") report = sweetviz.analyze(df, "Attrition_Flag") report.show_html()
20.888889
51
0.707447
5fa0436f9f5d626cf4b365a484376d1f5343ee15
5,046
py
Python
FTPShell/FTPShell.py
dsogo/H4CKING
58aaaabc25995dbff9aa4985e8308a963772b87e
[ "MIT" ]
17
2020-10-07T01:37:32.000Z
2021-12-11T21:23:25.000Z
FTPShell/FTPShell.py
Al0nnso/H4CKING
58aaaabc25995dbff9aa4985e8308a963772b87e
[ "MIT" ]
null
null
null
FTPShell/FTPShell.py
Al0nnso/H4CKING
58aaaabc25995dbff9aa4985e8308a963772b87e
[ "MIT" ]
8
2020-09-22T03:14:51.000Z
2022-03-07T16:03:24.000Z
from pyftpdlib.authorizers import DummyAuthorizer from pyftpdlib.handlers import FTPHandler from multiprocessing import Process from pyftpdlib import servers from time import sleep from requests import get import socket import psutil import win32api # Al0nnso - 2019 # FTP Reverse Shell # NOT TESTED WITH EXTERN NETWORK try: ip = get('https://api.ipify.org').text except: ip='ERROR' pass ftp=None server = None disk = "\\" address = ("0.0.0.0", 21) user = None host = '192.168.15.5'# YOUR IP OR HOST port = 443 if __name__ == '__main__': socketConn(ftp)
35.535211
92
0.441538
5fa103b113b3be7f53cb7ec2e64ba88c2cf38693
8,321
py
Python
tests/test_io.py
wellcometrust/deep_reference_parser
b58e4616f4de9bfe18ab41e90f696f80ab876245
[ "MIT" ]
13
2020-02-19T02:09:00.000Z
2021-12-16T23:15:58.000Z
tests/test_io.py
wellcometrust/deep_reference_parser
b58e4616f4de9bfe18ab41e90f696f80ab876245
[ "MIT" ]
33
2020-02-12T11:21:51.000Z
2022-02-10T00:48:17.000Z
tests/test_io.py
wellcometrust/deep_reference_parser
b58e4616f4de9bfe18ab41e90f696f80ab876245
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # coding: utf-8 import os import pytest from deep_reference_parser.io.io import ( read_jsonl, write_jsonl, load_tsv, write_tsv, _split_list_by_linebreaks, _unpack, ) from deep_reference_parser.reference_utils import yield_token_label_pairs from .common import TEST_JSONL, TEST_TSV_TRAIN, TEST_TSV_PREDICT, TEST_LOAD_TSV def test_load_tsv_train(): """ Text of TEST_TSV_TRAIN: ``` the i-r focus i-r in i-r Daloa i-r , i-r Cte i-r dIvoire]. i-r Bulletin i-r de i-r la i-r Socit i-r de i-r Pathologie i-r Exotique i-r et i-r ``` """ expected = ( ( ("the", "focus", "in", "Daloa", ",", "Cte", "dIvoire]."), ("Bulletin", "de", "la", "Socit", "de", "Pathologie"), ("Exotique", "et"), ), ( ("i-r", "i-r", "i-r", "i-r", "i-r", "i-r", "i-r"), ("i-r", "i-r", "i-r", "i-r", "i-r", "i-r"), ("i-r", "i-r"), ), ) actual = load_tsv(TEST_TSV_TRAIN) assert len(actual[0][0]) == len(expected[0][0]) assert len(actual[0][1]) == len(expected[0][1]) assert len(actual[0][2]) == len(expected[0][2]) assert len(actual[1][0]) == len(expected[1][0]) assert len(actual[1][1]) == len(expected[1][1]) assert len(actual[1][2]) == len(expected[1][2]) assert actual == expected def test_load_tsv_predict(): """ Text of TEST_TSV_PREDICT: ``` the focus in Daloa , Cte dIvoire]. Bulletin de la Socit de Pathologie Exotique et ``` """ expected = ( ( ("the", "focus", "in", "Daloa", ",", "Cte", "dIvoire]."), ("Bulletin", "de", "la", "Socit", "de", "Pathologie"), ("Exotique", "et"), ), ) actual = load_tsv(TEST_TSV_PREDICT) assert actual == expected def test_load_tsv_train_multiple_labels(): """ Text of TEST_TSV_TRAIN: ``` the i-r a focus i-r a in i-r a Daloa i-r a , i-r a Cte i-r a dIvoire]. i-r a Bulletin i-r a de i-r a la i-r a Socit i-r a de i-r a Pathologie i-r a Exotique i-r a et i-r a token ``` """ expected = ( ( ("the", "focus", "in", "Daloa", ",", "Cte", "dIvoire]."), ("Bulletin", "de", "la", "Socit", "de", "Pathologie"), ("Exotique", "et"), ), ( ("i-r", "i-r", "i-r", "i-r", "i-r", "i-r", "i-r"), ("i-r", "i-r", "i-r", "i-r", "i-r", "i-r"), ("i-r", "i-r"), ), ( ("a", "a", "a", "a", "a", "a", "a"), ("a", "a", "a", "a", "a", "a"), ("a", "a"), ), ) actual = load_tsv(TEST_LOAD_TSV) assert actual == expected
24.259475
88
0.414373
5fa141b264762a22f9a2b6309a86900f4d79fb07
389
py
Python
tests/unit/test_priorities.py
anshumangoyal/testrail-api
a9b2983a59667999a8432fa0af034c1fbd07e1cc
[ "MIT" ]
21
2019-04-15T07:25:48.000Z
2022-03-19T04:21:43.000Z
tests/unit/test_priorities.py
anshumangoyal/testrail-api
a9b2983a59667999a8432fa0af034c1fbd07e1cc
[ "MIT" ]
30
2019-04-15T07:18:59.000Z
2022-03-19T07:26:57.000Z
tests/unit/test_priorities.py
anshumangoyal/testrail-api
a9b2983a59667999a8432fa0af034c1fbd07e1cc
[ "MIT" ]
16
2019-02-21T11:59:32.000Z
2022-02-23T17:33:16.000Z
import json import responses
24.3125
93
0.59383
5fa14c2eb69ff76b5ae4ab590ca445b49132d179
37,185
py
Python
prescient/gosm/tester.py
iSoron/Prescient
a3c1d7c5840893ff43dca48c40dc90f083292d26
[ "BSD-3-Clause" ]
21
2020-06-03T13:54:22.000Z
2022-02-27T18:20:35.000Z
prescient/gosm/tester.py
iSoron/Prescient
a3c1d7c5840893ff43dca48c40dc90f083292d26
[ "BSD-3-Clause" ]
79
2020-07-30T17:29:04.000Z
2022-03-09T00:06:39.000Z
prescient/gosm/tester.py
bknueven/Prescient
6289c06a5ea06c137cf1321603a15e0c96ddfb85
[ "BSD-3-Clause" ]
16
2020-07-14T17:05:56.000Z
2022-02-17T17:51:13.000Z
# ___________________________________________________________________________ # # Prescient # Copyright 2020 National Technology & Engineering Solutions of Sandia, LLC # (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, the U.S. # Government retains certain rights in this software. # This software is distributed under the Revised BSD License. # ___________________________________________________________________________ from timer import Timer,tic,toc import unittest from copula import GaussianCopula,FrankCopula,GumbelCopula,ClaytonCopula,StudentCopula, WeightedCombinedCopula import numpy as np import scipy import scipy.integrate as spi import scipy.special as sps import scipy.stats as spst from base_distribution import BaseDistribution,MultiDistr from distributions import UnivariateEmpiricalDistribution, UnivariateEpiSplineDistribution from distributions import UnivariateNormalDistribution,MultiNormalDistribution,UnivariateStudentDistribution, MultiStudentDistribution from vine import CVineCopula,DVineCopula import matplotlib.pyplot as plt import copula_experiments from copula_experiments.copula_diagonal import diag from copula_experiments.copula_evaluate import RankHistogram,emd_sort,emd_pyomo from distribution_factory import distribution_factory def initialize(dim=2,precision = None,copula_string='independence-copula'): if dim==1: mymean = 0 myvar = 2 dimkeys = ["solar"] data_array = np.random.multivariate_normal([mymean], [[myvar]], 1000) dictin = {"solar": data_array[:, 0]} distr_class = distribution_factory(copula_string) mydistr = distr_class(dimkeys, dictin) return mydistr if dim==2: # For some tests, gaussian and student are less precised so we change so precision asked : dimkeys = ["solar", "wind"] ourmean = [3, 4] rho=0.5 ourcov = [[1, rho], [rho, 1]] data_array = np.random.multivariate_normal(ourmean, ourcov, 1000) dictin = dict.fromkeys(dimkeys) for i in range(dim): dictin[dimkeys[i]] = data_array[:, i] valuedict = {"solar": 0.14, "wind": 0.49} distr_class = distribution_factory(copula_string) mydistr = distr_class(dimkeys, dictin) return mydistr if dim==3: dimkeys = ["solar", "wind", "tide"] dimension = len(dimkeys) # dictin = {"solar": np.random.randn(200), "wind": np.random.randn(200)} ourmean = [0, 0, 0] rho01 = 0.1 rho02 = 0.3 rho12 = 0 ourcov = [[1, rho01, rho02], [rho01, 2, rho12], [rho02, rho12, 3]] marginals = {"solar": UnivariateNormalDistribution(var=ourcov[0][0], mean=ourmean[0]), "wind": UnivariateNormalDistribution(var=ourcov[1][1], mean=ourmean[1]), "tide": UnivariateNormalDistribution(var=ourcov[2][2], mean=ourmean[2])} data_array = np.random.multivariate_normal(ourmean, ourcov, 1000) dictin = dict.fromkeys(dimkeys) for i in range(dimension): dictin[dimkeys[i]] = data_array[:, i] distr_class = distribution_factory(copula_string) mydistr = distr_class(dimkeys, dictin) return mydistr if __name__ == '__main__': i=0 for distr in ['empirical-copula']: CopulaTester().test_plot(distr) i=+1 print(i)
43.644366
134
0.61584
5fa27ee2e5dad2743d90292ecca26ad61a23a586
615
py
Python
inbound/admin.py
nilesh-kr-dubey/django-inbound-rules
5ca122bf915d17c04a63b1464048bba91006e854
[ "MIT" ]
1
2020-07-31T06:34:27.000Z
2020-07-31T06:34:27.000Z
inbound/admin.py
nilesh-kr-dubey/django-inbound-rules
5ca122bf915d17c04a63b1464048bba91006e854
[ "MIT" ]
null
null
null
inbound/admin.py
nilesh-kr-dubey/django-inbound-rules
5ca122bf915d17c04a63b1464048bba91006e854
[ "MIT" ]
null
null
null
from django.contrib import admin from inbound.models import Rule, InboundIP # Register your models here. admin.site.register(Rule, RuleAdmin)
25.625
98
0.676423
5fa29ec1b9e32e73683aab09293ca2018836774b
397
py
Python
firldBuzzUserEntryApp/login/loginForm.py
sir-rasel/backend-api-integration
41e3d44caa6ec10382efbb482cb9d0f77bd4a5fb
[ "MIT" ]
2
2020-12-11T12:45:34.000Z
2021-11-09T11:25:23.000Z
firldBuzzUserEntryApp/login/loginForm.py
sir-rasel/backend-api-integration
41e3d44caa6ec10382efbb482cb9d0f77bd4a5fb
[ "MIT" ]
null
null
null
firldBuzzUserEntryApp/login/loginForm.py
sir-rasel/backend-api-integration
41e3d44caa6ec10382efbb482cb9d0f77bd4a5fb
[ "MIT" ]
null
null
null
from django import forms
49.625
89
0.722922
5fa32fa26545cc0a0f75090c1a789058c3f6ac3d
751
py
Python
src/level2/뉴스클러스터링.py
iml1111/programmers_coding_study
07e89220c59c3b40dd92edc39d1b573d018efae4
[ "MIT" ]
1
2021-01-03T13:01:33.000Z
2021-01-03T13:01:33.000Z
src/level2/뉴스클러스터링.py
iml1111/programmers_coding_study
07e89220c59c3b40dd92edc39d1b573d018efae4
[ "MIT" ]
null
null
null
src/level2/뉴스클러스터링.py
iml1111/programmers_coding_study
07e89220c59c3b40dd92edc39d1b573d018efae4
[ "MIT" ]
null
null
null
from collections import Counter if __name__ == '__main__': #print(solution("FRANCE", "french")) print(solution("E=M*C^2", "e=m*c^2"))
31.291667
77
0.609854
5fa6b75aa0e33eeec7402b44584c8450dcb054c7
1,226
py
Python
gssClients/gssPythonClients/download_gss.py
SemWES/client_libs
48c3af519ceaf80b3f33cf509c72376b9b3d9582
[ "Zlib" ]
null
null
null
gssClients/gssPythonClients/download_gss.py
SemWES/client_libs
48c3af519ceaf80b3f33cf509c72376b9b3d9582
[ "Zlib" ]
null
null
null
gssClients/gssPythonClients/download_gss.py
SemWES/client_libs
48c3af519ceaf80b3f33cf509c72376b9b3d9582
[ "Zlib" ]
null
null
null
#!/bin/env python # Copyright STIFTELSEN SINTEF 2016 import suds import urllib2 import sys if len(sys.argv) < 4: print ("Usage:") print ("\t %s gss-url outputfilename token" % sys.argv[0]) exit() # get url: url = sys.argv[1] outputfileName = sys.argv[2] sessionToken = sys.argv[3] wsdlLocation = "https://api.caxman.eu/sintef/infrastructure/gss-0.1/FileUtilities?wsdl" client = suds.client.Client(wsdlLocation) resourceInformation = client.service.getResourceInformation(url, sessionToken) readDescription = resourceInformation.readDescription if readDescription.supported: headers = {} headers[readDescription.sessionTokenField] = sessionToken if hasattr(readDescription, "headers"): for headerField in readDescription.headers: headers[headerField.key] = headerField.value with open(outputfileName, "wb") as outputFile: request = urllib2.Request(url = readDescription.url, headers=headers) result = urllib2.urlopen(request) while True: buffer = result.read() if not buffer: break outputFile.write(buffer) else: print "The given gss_url does not support read/download."
29.190476
88
0.686786
5faad04658ea51684534a077173c5f03481fc86f
6,728
py
Python
Zmuggler.py
electronicbots/Zmuggler
5b9df5919367dffb588b18c5acd567e20135d2b7
[ "MIT" ]
1
2021-07-28T06:02:44.000Z
2021-07-28T06:02:44.000Z
Zmuggler.py
electronicbots/Zmuggler
5b9df5919367dffb588b18c5acd567e20135d2b7
[ "MIT" ]
null
null
null
Zmuggler.py
electronicbots/Zmuggler
5b9df5919367dffb588b18c5acd567e20135d2b7
[ "MIT" ]
null
null
null
#!/usr/bin/python3 from requests import Request, Session from requests.exceptions import ReadTimeout import urllib3, requests, collections, http.client, optparse, sys, os print("""\033[1;36m _____ _ |__ /_ __ ___ _ _ __ _ __ _| | ___ _ __ / /| '_ ` _ \| | | |/ _` |/ _` | |/ _ \ '__| / /_| | | | | | |_| | (_| | (_| | | __/ | /____|_| |_| |_|\__,_|\__, |\__, |_|\___|_| |___/ |___/ | Zmuggler | | @electronicbots | \033[1;m""") http.client._header_name = lambda x: True http.client._header_value = lambda x: False urllib3.disable_warnings() if __name__ == '__main__': arguments = Args() if '--target' in str(sys.argv): target = (arguments.link) hrs = ZSmuggler(target) hrs.expl0it() else: print("Try ./Zmuggler.py --help")
35.597884
148
0.5
5faed7df0481d882b8814038712e8be58ef77e17
3,397
py
Python
cosmosis-standard-library/shear/cl_to_xi_fullsky/cl_to_xi_interface.py
ktanidis2/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra
07e5d308c6a8641a369a3e0b8d13c4104988cd2b
[ "BSD-2-Clause" ]
1
2021-09-15T10:10:26.000Z
2021-09-15T10:10:26.000Z
cosmosis-standard-library/shear/cl_to_xi_fullsky/cl_to_xi_interface.py
ktanidis2/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra
07e5d308c6a8641a369a3e0b8d13c4104988cd2b
[ "BSD-2-Clause" ]
null
null
null
cosmosis-standard-library/shear/cl_to_xi_fullsky/cl_to_xi_interface.py
ktanidis2/Modified_CosmoSIS_for_galaxy_number_count_angular_power_spectra
07e5d308c6a8641a369a3e0b8d13c4104988cd2b
[ "BSD-2-Clause" ]
1
2021-06-11T15:29:43.000Z
2021-06-11T15:29:43.000Z
#coding: utf-8 #import cl_to_xi_full from __future__ import print_function from builtins import range import numpy as np from cosmosis.datablock import option_section, names as section_names from cl_to_xi import save_xi_00_02, save_xi_22, arcmin_to_radians, SpectrumInterp from legendre import get_legfactors_00, get_legfactors_02, precomp_GpGm
36.138298
87
0.657345
5fafc8dcb4215c91fc9ae3f825e9c6da430bff4a
326
py
Python
software/glasgow/applet/video/__init__.py
electroniceel/Glasgow
f6d8fda1d5baec006a6c43fa3d2547a33bdee666
[ "Apache-2.0", "0BSD" ]
1,014
2019-10-05T16:21:43.000Z
2022-03-31T09:26:43.000Z
software/glasgow/applet/video/__init__.py
attie/glasgow
eca2cb278478d9cb9a102e6e99dfc5bd2d77a549
[ "Apache-2.0", "0BSD" ]
113
2019-10-06T07:49:37.000Z
2022-03-24T04:33:08.000Z
software/glasgow/applet/video/__init__.py
attie/glasgow
eca2cb278478d9cb9a102e6e99dfc5bd2d77a549
[ "Apache-2.0", "0BSD" ]
79
2019-10-08T07:36:03.000Z
2022-03-21T07:00:27.000Z
""" The ``video`` taxon groups applets implementing video interfaces, that is, interfaces for periodic transfers of 2d arrays of samples of electromagnetic wave properties. Examples: VGA output, TFT LCD capture, TFT LCD output. Counterexamples: SCSI scanner (use taxon ``photo``), SPI LCD output (use taxon ``display``). """
40.75
98
0.757669
5fb11bba5257814c53fdaf00b36feffb7caef7ad
22,329
py
Python
aiida_vasp/parsers/content_parsers/vasprun.py
DropD/aiida_vasp
9967f5501a6fc1c67981154068135cec7be5396a
[ "MIT" ]
3
2016-11-18T07:19:57.000Z
2016-11-28T08:28:38.000Z
aiida_vasp/parsers/content_parsers/vasprun.py
DropD/aiida_vasp
9967f5501a6fc1c67981154068135cec7be5396a
[ "MIT" ]
null
null
null
aiida_vasp/parsers/content_parsers/vasprun.py
DropD/aiida_vasp
9967f5501a6fc1c67981154068135cec7be5396a
[ "MIT" ]
null
null
null
""" The vasprun.xml parser interface. --------------------------------- Contains the parsing interfaces to ``parsevasp`` used to parse ``vasprun.xml`` content. """ # pylint: disable=abstract-method, too-many-public-methods import numpy as np from parsevasp.vasprun import Xml from parsevasp import constants as parsevaspct from aiida_vasp.parsers.content_parsers.base import BaseFileParser from aiida_vasp.utils.compare_bands import get_band_properties def _build_structure(lattice): """Builds a structure according to AiiDA spec.""" structure_dict = {} structure_dict['unitcell'] = lattice['unitcell'] structure_dict['sites'] = [] # AiiDA wants the species as symbols, so invert elements = _invert_dict(parsevaspct.elements) for pos, specie in zip(lattice['positions'], lattice['species']): site = {} site['position'] = np.dot(pos, lattice['unitcell']) site['symbol'] = elements[specie].title() site['kind_name'] = elements[specie].title() structure_dict['sites'].append(site) return structure_dict def _invert_dict(dct): return dct.__class__(map(reversed, dct.items()))
31.898571
132
0.578261
5fb1b34629d1b25a94935e87aa37911d21e8edb9
704
py
Python
estoque/admin.py
Felipebros/mini_curso_django
965dd5e8837db9dea4485e889c2b8703fb5e902d
[ "MIT" ]
8
2019-06-18T20:20:39.000Z
2019-11-09T20:21:06.000Z
estoque/admin.py
Felipebros/mini_curso_django
965dd5e8837db9dea4485e889c2b8703fb5e902d
[ "MIT" ]
8
2019-12-04T23:26:42.000Z
2022-02-10T12:02:19.000Z
estoque/admin.py
Felipebros/mini_curso_django
965dd5e8837db9dea4485e889c2b8703fb5e902d
[ "MIT" ]
3
2019-06-21T22:37:32.000Z
2019-10-31T00:38:45.000Z
from django.contrib import admin from .models import Produto, TipoProduto, Estoque # Register your models here. admin.site.register(TipoProduto, TipoProdutoAdmin) admin.site.register(Estoque, EstoqueAdmin) admin.site.register(Produto, ProdutoAdmin)
35.2
105
0.755682
5fb1ba21e31a7c2b9e588c895f10ae57243ce651
3,137
py
Python
star/star.py
gd-star-pp/star-pp
24c7289199215961fe5462b99ec600907b305d3f
[ "MIT" ]
2
2021-10-10T23:42:30.000Z
2022-03-31T19:43:13.000Z
star/star.py
lotus-gd/azalea
24c7289199215961fe5462b99ec600907b305d3f
[ "MIT" ]
null
null
null
star/star.py
lotus-gd/azalea
24c7289199215961fe5462b99ec600907b305d3f
[ "MIT" ]
null
null
null
import gd, itertools from cube import calculate_cube from ball import calculate_ball from helpers import average client = gd.Client() modes = {gd.PortalType.CUBE: calculate_cube, gd.PortalType.SHIP: calculate_ship, gd.PortalType.BALL: calculate_ball, gd.PortalType.BALL: calculate_ufo, gd.PortalType.UFO: calculate_ufo, gd.PortalType.WAVE: calculate_wave, gd.PortalType.ROBOT: calculate_robot, gd.PortalType.SPIDER: calculate_spider, gd.Gamemode.CUBE: calculate_cube, gd.Gamemode.SHIP: calculate_ship, gd.Gamemode.BALL: calculate_ball, gd.Gamemode.BALL: calculate_ufo, gd.Gamemode.UFO: calculate_ufo, gd.Gamemode.WAVE: calculate_wave, gd.Gamemode.ROBOT: calculate_robot, gd.Gamemode.SPIDER: calculate_spider} if __name__ == "__main__": star = main() print(star)
36.057471
203
0.646159
5fb3ccf7fca90c61707cbd90f3475846779b54b9
341
py
Python
clash-of-code/shortest/number_categories.py
jonasnic/codingame
f1a7fe8007b9ca63bdf30cd72f4d6ac41a5ac721
[ "MIT" ]
30
2016-04-30T01:56:05.000Z
2022-03-09T22:19:12.000Z
clash-of-code/shortest/number_categories.py
jonasnic/codingame
f1a7fe8007b9ca63bdf30cd72f4d6ac41a5ac721
[ "MIT" ]
1
2021-05-19T19:36:45.000Z
2021-05-19T19:36:45.000Z
clash-of-code/shortest/number_categories.py
jonasnic/codingame
f1a7fe8007b9ca63bdf30cd72f4d6ac41a5ac721
[ "MIT" ]
17
2020-01-28T13:54:06.000Z
2022-03-26T09:49:27.000Z
from collections import defaultdict c=defaultdict(set) f=lambda:[int(i) for i in input().split()] a,b=f() s,e=f() for i in range(s,e+1): x=i%a==0 y=i%b==0 if x and y: c[3].add(i) elif x and not y: c[1].add(i) elif y and not x: c[2].add(i) else: c[4].add(i) o=[] for i in range(1,5): o.append(str(len(c[i]))) print(' '.join(o))
17.05
42
0.58651
5fb5e0196946388daa9f3a5d9e0cb39eba4f8a0c
520
py
Python
interpreter/src/parser/errors.py
Cdayz/simple_lang
dc19d6ef76bb69c87981c8b826cf8f71b0cc475b
[ "MIT" ]
3
2019-08-22T01:20:16.000Z
2021-02-05T09:11:50.000Z
interpreter/src/parser/errors.py
Cdayz/simple_lang
dc19d6ef76bb69c87981c8b826cf8f71b0cc475b
[ "MIT" ]
null
null
null
interpreter/src/parser/errors.py
Cdayz/simple_lang
dc19d6ef76bb69c87981c8b826cf8f71b0cc475b
[ "MIT" ]
2
2019-08-22T01:20:18.000Z
2021-05-27T14:40:12.000Z
"""Module with useful exceptions for Parser."""
22.608696
52
0.696154
5fb78ad70383d16f179dd4a23ab825be06e844e6
1,919
py
Python
apps/DuelingBanditsPureExploration/dashboard/Dashboard.py
erinzm/NEXT-chemistry
d6ca0a80640937b36f9cafb5ead371e7a8677734
[ "Apache-2.0" ]
155
2015-11-01T17:48:41.000Z
2022-02-06T21:37:41.000Z
apps/DuelingBanditsPureExploration/dashboard/Dashboard.py
erinzm/NEXT-chemistry
d6ca0a80640937b36f9cafb5ead371e7a8677734
[ "Apache-2.0" ]
193
2015-09-29T21:40:31.000Z
2020-04-21T15:09:13.000Z
apps/DuelingBanditsPureExploration/dashboard/Dashboard.py
erinzm/NEXT-chemistry
d6ca0a80640937b36f9cafb5ead371e7a8677734
[ "Apache-2.0" ]
54
2015-09-30T15:51:05.000Z
2022-02-13T05:26:20.000Z
import json import next.utils as utils from next.apps.AppDashboard import AppDashboard
47.975
158
0.604482
5fba9266d157d784d487f4f6d96c252ab58bc927
221
py
Python
modules/module0/02_datastructures_and_geometry/datastructures_0b.py
tetov/ITA19
1af68a8885caf83acd98f4136d0286539ccbe63b
[ "MIT" ]
7
2019-11-13T20:29:54.000Z
2020-02-26T14:30:54.000Z
modules/module0/02_datastructures_and_geometry/datastructures_0b.py
GeneKao/ITA19
c4b10dc183599eed4ed60d922b6ef5922d173bdb
[ "MIT" ]
4
2019-11-07T20:57:51.000Z
2020-03-04T11:43:18.000Z
modules/module0/02_datastructures_and_geometry/datastructures_0b.py
GeneKao/ITA19
c4b10dc183599eed4ed60d922b6ef5922d173bdb
[ "MIT" ]
6
2019-10-30T13:25:54.000Z
2020-02-14T14:06:09.000Z
import os import compas from compas.datastructures import Mesh HERE = os.path.dirname(__file__) DATA = os.path.join(HERE, 'data') FILE = os.path.join(DATA, 'faces.obj') mesh = Mesh.from_obj(FILE) print(mesh.summary())
18.416667
38
0.737557
5fbebd443ba2cc788cd34ccb4de7f2967a894072
3,957
py
Python
vis_utils/animation/group_animation_controller.py
eherr/vis_utils
b757b01f42e6da02ad62130c3b0e61e9eaa3886f
[ "MIT" ]
4
2020-05-20T03:55:19.000Z
2020-12-24T06:33:40.000Z
vis_utils/animation/group_animation_controller.py
eherr/vis_utils
b757b01f42e6da02ad62130c3b0e61e9eaa3886f
[ "MIT" ]
1
2020-05-18T11:21:35.000Z
2020-07-07T21:25:57.000Z
vis_utils/animation/group_animation_controller.py
eherr/vis_utils
b757b01f42e6da02ad62130c3b0e61e9eaa3886f
[ "MIT" ]
1
2020-07-20T06:57:13.000Z
2020-07-20T06:57:13.000Z
#!/usr/bin/env python # # Copyright 2019 DFKI GmbH. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the # following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE # USE OR OTHER DEALINGS IN THE SOFTWARE. from PySignal import Signal from .animation_controller import AnimationController from ..scene.components import ComponentBase
39.57
98
0.706849