hexsha
stringlengths 40
40
| size
int64 5
2.06M
| ext
stringclasses 11
values | lang
stringclasses 1
value | max_stars_repo_path
stringlengths 3
251
| max_stars_repo_name
stringlengths 4
130
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
sequencelengths 1
10
| max_stars_count
int64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
251
| max_issues_repo_name
stringlengths 4
130
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
sequencelengths 1
10
| max_issues_count
int64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
251
| max_forks_repo_name
stringlengths 4
130
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
sequencelengths 1
10
| max_forks_count
int64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 1
1.05M
| avg_line_length
float64 1
1.02M
| max_line_length
int64 3
1.04M
| alphanum_fraction
float64 0
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
39bfed4c3b2ea966740de31f26fe83daafbdbab5 | 171 | py | Python | setup.py | andribas404/splay_benchmark | 1ba2fe4d715b25db806c0b241c6adadd8d442a77 | [
"MIT"
] | null | null | null | setup.py | andribas404/splay_benchmark | 1ba2fe4d715b25db806c0b241c6adadd8d442a77 | [
"MIT"
] | null | null | null | setup.py | andribas404/splay_benchmark | 1ba2fe4d715b25db806c0b241c6adadd8d442a77 | [
"MIT"
] | null | null | null | """
Setup.
python setup.py build_ext --inplace
"""
from distutils.core import setup
from Cython.Build import cythonize
setup(ext_modules=cythonize('splay_tree.pyx'))
| 13.153846 | 46 | 0.760234 |
39c13236092aa20981aa814b36bf7e898a69daef | 343 | py | Python | app.py | victorathanasio/KPI-test | cbc24ebc9b6e9304c7ff0428458c827d09bd99aa | [
"MIT"
] | null | null | null | app.py | victorathanasio/KPI-test | cbc24ebc9b6e9304c7ff0428458c827d09bd99aa | [
"MIT"
] | null | null | null | app.py | victorathanasio/KPI-test | cbc24ebc9b6e9304c7ff0428458c827d09bd99aa | [
"MIT"
] | null | null | null | from WebApp.mainapp import app
import dash_html_components as html
import flask
from REST_API.rest_api import API
from WebApp.Layout import Layout
app.layout = Layout()
app.server.register_blueprint(API)
server = app.server
if __name__ == '__main__':
# app.run_server(debug=False, host='0.0.0.0', port=90)
app.run_server(debug=True)
| 24.5 | 58 | 0.766764 |
39c16bfed4316959a8bb44396e89b0248bfc5ee5 | 719 | py | Python | URI/multiplicador.py | LuccasTraumer/pythonRepositorio | 52d4455cea0615c8eba7ab4c6224ce3350bbcf47 | [
"MIT"
] | null | null | null | URI/multiplicador.py | LuccasTraumer/pythonRepositorio | 52d4455cea0615c8eba7ab4c6224ce3350bbcf47 | [
"MIT"
] | null | null | null | URI/multiplicador.py | LuccasTraumer/pythonRepositorio | 52d4455cea0615c8eba7ab4c6224ce3350bbcf47 | [
"MIT"
] | null | null | null | '''
Leia 2 valores inteiros (A e B). Aps, o programa deve mostrar uma mensagem "Sao Multiplos" ou
"Nao sao Multiplos", indicando se os valores lidos so mltiplos entre si.
'''
data = str(input())
values = data.split(' ')
first_value = int(values[0])
second_value = int(values[1])
if(second_value > first_value):
resul = second_value / first_value
if(first_value * resul == second_value and second_value % first_value == 0):
print('Sao Multiplos')
else:
print('Nao sao Multiplos')
else:
result = first_value / second_value
if(second_value * result == first_value and first_value % second_value == 0):
print('Sao Multiplos')
else:
print('Nao sao Multiplos')
| 27.653846 | 94 | 0.673157 |
39c247e8b1fdf8e3efae1a8994e7cba05bbc1477 | 2,767 | py | Python | app/listeners.py | seratch/slack_learning_app_ja | 9552489b1d5d3adc61a7c73645a1ae09abc9d933 | [
"MIT"
] | 11 | 2020-10-28T08:04:16.000Z | 2022-03-18T09:12:29.000Z | app/listeners.py | seratch/slack_learning_app_ja | 9552489b1d5d3adc61a7c73645a1ae09abc9d933 | [
"MIT"
] | 1 | 2020-10-29T23:10:52.000Z | 2020-10-29T23:37:00.000Z | app/listeners.py | seratch/slack_learning_app_ja | 9552489b1d5d3adc61a7c73645a1ae09abc9d933 | [
"MIT"
] | null | null | null | import re
from slack_bolt import App
from app.onboarding import (
message_multi_users_select,
message_multi_users_select_lazy,
)
from app.tutorials import (
tutorial_page_transition,
tutorial_page_transition_lazy,
app_home_opened,
app_home_opened_lazy,
page1_home_tab_button_click,
page1_home_tab_button_click_lazy,
page1_home_tab_users_select_lazy,
page1_home_tab_users_select,
page2_modal,
page2_modal_lazy,
page2_modal_submission,
page4_create_channel,
page4_create_channel_lazy,
page4_create_channel_submission,
page4_create_channel_submission_lazy,
page4_create_channel_setup,
page4_create_channel_setup_lazy,
global_shortcut_handler,
global_shortcut_view_submission,
global_shortcut_view_submission_lazy,
message_shortcut_handler,
message_shortcut_handler_lazy,
external_data_source_handler,
)
| 30.744444 | 88 | 0.734731 |
39c310b2a22377850644e8e3e7bb4274bb90e2dd | 1,213 | py | Python | project2/redactor.py | m-harikiran/cs5293sp21-project2 | 48547543001813aee17731399f617f82043e4a8f | [
"MIT"
] | null | null | null | project2/redactor.py | m-harikiran/cs5293sp21-project2 | 48547543001813aee17731399f617f82043e4a8f | [
"MIT"
] | null | null | null | project2/redactor.py | m-harikiran/cs5293sp21-project2 | 48547543001813aee17731399f617f82043e4a8f | [
"MIT"
] | null | null | null | import nltk
import re
from nltk.corpus import wordnet
# This method reads the file and redacts names in it and writes redacted data to file with extension python3.redacted
| 32.783784 | 117 | 0.660346 |
39c3360de5ed5436c13f0b5c11ff3ff8f4c1e5e8 | 935 | py | Python | python3/max_area_of_island.py | joshiaj7/CodingChallenges | f95dd79132f07c296e074d675819031912f6a943 | [
"MIT"
] | 1 | 2020-10-08T09:17:40.000Z | 2020-10-08T09:17:40.000Z | python3/max_area_of_island.py | joshiaj7/CodingChallenges | f95dd79132f07c296e074d675819031912f6a943 | [
"MIT"
] | null | null | null | python3/max_area_of_island.py | joshiaj7/CodingChallenges | f95dd79132f07c296e074d675819031912f6a943 | [
"MIT"
] | null | null | null | # Space : O(n)
# Time : O(m*n)
| 25.972222 | 61 | 0.37754 |
39c42e302788d37384d6aba69dfd98df2d11d258 | 1,000 | py | Python | datasets/linear/parking/lr.py | diego1q2w/lregret | 823c7f609559d1012ed52f619b1aa1297d5f2517 | [
"Apache-2.0"
] | null | null | null | datasets/linear/parking/lr.py | diego1q2w/lregret | 823c7f609559d1012ed52f619b1aa1297d5f2517 | [
"Apache-2.0"
] | null | null | null | datasets/linear/parking/lr.py | diego1q2w/lregret | 823c7f609559d1012ed52f619b1aa1297d5f2517 | [
"Apache-2.0"
] | null | null | null | import os
from datetime import datetime
import time
import pandas as pd
from datasets.linear import LinearProblem
from regresion.linear.feature import PolFeatures
from regresion.linear.linear import LinearRegression
# lr = LinearRegression()
# p = ParkingProblem(lr)
# p.fit_solving()
| 29.411765 | 100 | 0.678 |
39c714143377ff9b1982f6d7182df1f2ee8d4c39 | 244 | py | Python | output/models/nist_data/atomic/name/schema_instance/nistschema_sv_iv_atomic_name_max_length_1_xsd/__init__.py | tefra/xsdata-w3c-tests | b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f | [
"MIT"
] | 1 | 2021-08-14T17:59:21.000Z | 2021-08-14T17:59:21.000Z | output/models/nist_data/atomic/name/schema_instance/nistschema_sv_iv_atomic_name_max_length_1_xsd/__init__.py | tefra/xsdata-w3c-tests | b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f | [
"MIT"
] | 4 | 2020-02-12T21:30:44.000Z | 2020-04-15T20:06:46.000Z | output/models/nist_data/atomic/name/schema_instance/nistschema_sv_iv_atomic_name_max_length_1_xsd/__init__.py | tefra/xsdata-w3c-tests | b6b6a4ac4e0ab610e4b50d868510a8b7105b1a5f | [
"MIT"
] | null | null | null | from output.models.nist_data.atomic.name.schema_instance.nistschema_sv_iv_atomic_name_max_length_1_xsd.nistschema_sv_iv_atomic_name_max_length_1 import NistschemaSvIvAtomicNameMaxLength1
__all__ = [
"NistschemaSvIvAtomicNameMaxLength1",
]
| 40.666667 | 186 | 0.889344 |
39c80db6883ae8bab680917b15a4a104eed100d2 | 4,888 | py | Python | vl/h5/mg_genome/norm_h5.py | hurwitzlab/viral-learning | 8d7aebc0d58fa32a429f4a47593452ee2722ba82 | [
"MIT"
] | 1 | 2018-02-23T16:49:30.000Z | 2018-02-23T16:49:30.000Z | vl/h5/mg_genome/norm_h5.py | hurwitzlab/viral-learning | 8d7aebc0d58fa32a429f4a47593452ee2722ba82 | [
"MIT"
] | null | null | null | vl/h5/mg_genome/norm_h5.py | hurwitzlab/viral-learning | 8d7aebc0d58fa32a429f4a47593452ee2722ba82 | [
"MIT"
] | null | null | null | """
1. Normalizing the entire dataset with mean and variance, shuffle, compression=9 runs for more than 8 hours on
ocelote and results in a file of more than 150GB.
2. Try normalizing with only variance and without shuffle.
"""
import os.path
import sys
import time
import h5py
import numpy as np
def calculate_mean_variance(dsets):
"""
Given a list of datasets calculate the mean and variance for all rows in all datasets.
Arguments:
dsets: sequence of datasets with matching column counts
Returns:
(mean, variance): tuple of mean vector and variance vector
"""
print('calculating mean and variance for "{}"'.format([dset.name for dset in dsets]))
t0 = time.time()
mean = np.zeros((1, dsets[0].shape[1]))
M2 = np.zeros((1, dsets[0].shape[1]))
count = 0
for dset in dsets:
# find the right subset size to load without running out of memory
# if dset has more than 10,000 rows use 10,000
# if dset has fewer than 10,000 rows load the whole dset
dsubset = np.zeros((min(10000, dset.shape[0]), dset.shape[1]))
print(' working on "{}"'.format(dset.name))
for n in range(0, dset.shape[0], dsubset.shape[0]):
m = min(n + dsubset.shape[0], dset.shape[0])
dset.read_direct(dsubset, source_sel=np.s_[n:m, :])
t00 = time.time()
for i in range(0, dsubset.shape[0]):
count = count + 1
delta = dsubset[i, :] - mean
mean += delta / count
delta2 = dsubset[i, :] - mean
M2 += delta * delta2
print(' processed slice [{}:{}] {:5.2f}s'.format(n, m, time.time()-t00))
print(' finished mean and variance in {:5.2f}s'.format(time.time()-t0))
# return mean, variance
return (mean, M2/(count - 1))
if __name__ == '__main__':
main() | 35.678832 | 110 | 0.557897 |
39c9516fadde5be713c7c8c8f3a12e5d1178fce7 | 780 | py | Python | app/controller/api/fields/comment.py | Arianxx/LoniceraBlog | 1f13d336f42c7041b16293dc8f1af62cc98ce2f4 | [
"MIT"
] | 8 | 2018-09-08T04:41:01.000Z | 2018-09-08T13:15:59.000Z | app/controller/api/fields/comment.py | Arianxx/LoniceraBlog | 1f13d336f42c7041b16293dc8f1af62cc98ce2f4 | [
"MIT"
] | null | null | null | app/controller/api/fields/comment.py | Arianxx/LoniceraBlog | 1f13d336f42c7041b16293dc8f1af62cc98ce2f4 | [
"MIT"
] | 6 | 2018-09-08T08:51:50.000Z | 2018-09-11T00:29:20.000Z | from flask_restful import fields
from .custom import Num, EdgeUrl, PaginateUrl
getCommentField = {
"id": fields.Integer,
"time": fields.DateTime(attribute="timestamp"),
"author_name": fields.String(attribute="username"),
"article_id": fields.Integer(attribute="postid"),
"body": fields.String,
"urls": {
"arthor": fields.Url("api.user", absolute=True),
"post": fields.Url("api.post", absolute=True),
},
}
getPostCommentsField = {
"prev": EdgeUrl("api.post_comments", 0),
"next": EdgeUrl("api.post_comments", 1),
"all_comments": fields.Integer(attribute="total"),
"all_pages": fields.Integer(attribute="pages"),
"urls": fields.List(
PaginateUrl("api.comment", "commentid", "id"), attribute="items"
),
}
| 31.2 | 72 | 0.65 |
39cc957ec5fbf6dc9322a11520c340004afd7af2 | 1,132 | py | Python | faq/templatetags/faq_tags.py | HerbyDE/jagdreisencheck-webapp | 9af5deda2423b787da88a0c893f3c474d8e4f73f | [
"BSD-3-Clause"
] | null | null | null | faq/templatetags/faq_tags.py | HerbyDE/jagdreisencheck-webapp | 9af5deda2423b787da88a0c893f3c474d8e4f73f | [
"BSD-3-Clause"
] | null | null | null | faq/templatetags/faq_tags.py | HerbyDE/jagdreisencheck-webapp | 9af5deda2423b787da88a0c893f3c474d8e4f73f | [
"BSD-3-Clause"
] | null | null | null | from django import template
from faq.forms import FaqInstanceForm, FaqAnswerForm
from faq.models import FaqInstance, FaqAnswer
register = template.Library()
| 28.3 | 104 | 0.754417 |
39cd092c9896194e7d5884416a86b0b247f8dee4 | 486 | py | Python | markflow/detectors/__init__.py | jmholla/markflow | 1accc4a23f9c06d9ab77d6c180c586da3d9ec69b | [
"Apache-2.0"
] | 14 | 2020-08-14T03:09:53.000Z | 2022-03-22T22:46:50.000Z | markflow/detectors/__init__.py | jmholla/markflow | 1accc4a23f9c06d9ab77d6c180c586da3d9ec69b | [
"Apache-2.0"
] | 6 | 2020-08-19T18:13:24.000Z | 2021-02-11T03:56:34.000Z | markflow/detectors/__init__.py | jmholla/markflow | 1accc4a23f9c06d9ab77d6c180c586da3d9ec69b | [
"Apache-2.0"
] | 3 | 2020-08-13T16:40:13.000Z | 2022-01-18T12:31:37.000Z | # flake8: noqa
"""
MarkFlow MarkDown Section Detection Library
This library provide this functions MarkFlow uses to split a document into it's
individual text types.
"""
from .atx_heading import *
from .blank_line import *
from .block_quote import *
from .fenced_code_block import *
from .indented_code_block import *
from .link_reference_definition import *
from .list import *
from .paragraph import *
from .setext_heading import *
from .table import *
from .thematic_break import *
| 25.578947 | 79 | 0.788066 |
39cd57d3e96930bf2512f61084f0ec5dbd909936 | 2,129 | py | Python | django_project/apps/qfauth/forms.py | gaohj/nzflask_bbs | 36a94c380b78241ed5d1e07edab9618c3e8d477b | [
"Apache-2.0"
] | null | null | null | django_project/apps/qfauth/forms.py | gaohj/nzflask_bbs | 36a94c380b78241ed5d1e07edab9618c3e8d477b | [
"Apache-2.0"
] | 27 | 2020-02-12T07:55:58.000Z | 2022-03-12T00:19:09.000Z | django_project/apps/qfauth/forms.py | gaohj/nzflask_bbs | 36a94c380b78241ed5d1e07edab9618c3e8d477b | [
"Apache-2.0"
] | 2 | 2020-02-18T01:54:55.000Z | 2020-02-21T11:36:28.000Z | from django import forms
from apps.forms import FormMixin
from django.core import validators
from .models import User
from django.core.cache import cache
| 43.44898 | 136 | 0.716768 |
39cf488b67a5b1e7312e55ca067c9bf0bfbe9c6e | 156 | py | Python | receives/pytest.py | felixsch/receives | 0d149e3a24c0377ac60d502736299c9f4348244a | [
"MIT"
] | null | null | null | receives/pytest.py | felixsch/receives | 0d149e3a24c0377ac60d502736299c9f4348244a | [
"MIT"
] | null | null | null | receives/pytest.py | felixsch/receives | 0d149e3a24c0377ac60d502736299c9f4348244a | [
"MIT"
] | null | null | null |
import pytest
from receives.receiver import Receiver
| 14.181818 | 38 | 0.730769 |
39cfddaaca78d75a0a19c8026c9b58cbdca9cec8 | 18,099 | py | Python | contracts/crawler.py | waldyrious/public-contracts | 3107ddc007f3574ce19aaa2223399484bc6b1382 | [
"BSD-3-Clause"
] | 25 | 2015-03-05T00:15:11.000Z | 2021-04-04T18:50:43.000Z | contracts/crawler.py | waldyrious/public-contracts | 3107ddc007f3574ce19aaa2223399484bc6b1382 | [
"BSD-3-Clause"
] | 36 | 2015-03-21T17:04:54.000Z | 2017-07-06T10:35:51.000Z | contracts/crawler.py | waldyrious/public-contracts | 3107ddc007f3574ce19aaa2223399484bc6b1382 | [
"BSD-3-Clause"
] | 7 | 2015-03-24T16:18:02.000Z | 2019-05-29T11:51:01.000Z | import json
import logging
from django.core.exceptions import ValidationError
from django.db import transaction
from django.forms import DateField, CharField
import requests
import requests.exceptions
from . import models
from contracts.crawler_forms import EntityForm, ContractForm, \
TenderForm, clean_place, PriceField
logger = logging.getLogger(__name__)
| 35.627953 | 82 | 0.560749 |
39d2a63c210e03ad35c58e5b3b5e1afaa5b2db56 | 36,251 | py | Python | com/precisely/apis/model/validate_mailing_address_uscanapi_options.py | PreciselyData/PreciselyAPIsSDK-Python | 28ffff0c96d81d3a53a5599c987d54d7b632b508 | [
"Apache-2.0"
] | null | null | null | com/precisely/apis/model/validate_mailing_address_uscanapi_options.py | PreciselyData/PreciselyAPIsSDK-Python | 28ffff0c96d81d3a53a5599c987d54d7b632b508 | [
"Apache-2.0"
] | null | null | null | com/precisely/apis/model/validate_mailing_address_uscanapi_options.py | PreciselyData/PreciselyAPIsSDK-Python | 28ffff0c96d81d3a53a5599c987d54d7b632b508 | [
"Apache-2.0"
] | null | null | null | """
Precisely APIs
Enhance & enrich your data, applications, business processes, and workflows with rich location, information, and identify APIs. # noqa: E501
The version of the OpenAPI document: 11.9.3
Generated by: https://openapi-generator.tech
"""
import re # noqa: F401
import sys # noqa: F401
from com.precisely.apis.model_utils import ( # noqa: F401
ApiTypeError,
ModelComposed,
ModelNormal,
ModelSimple,
cached_property,
change_keys_js_to_python,
convert_js_args_to_python_args,
date,
datetime,
file_type,
none_type,
validate_get_composed_info,
OpenApiModel
)
from com.precisely.apis.exceptions import ApiAttributeError
| 83.914352 | 290 | 0.670354 |
39d42321cd5a87223e9348e07673ab77d3799ca1 | 105 | py | Python | serverless/aws/features/__init__.py | captain-fox/serverless-builder | d79d120578d692dd34dd2f0a3bb75cc8ec719c81 | [
"MIT"
] | 3 | 2022-03-16T14:25:03.000Z | 2022-03-24T15:04:55.000Z | serverless/aws/features/__init__.py | captain-fox/serverless-builder | d79d120578d692dd34dd2f0a3bb75cc8ec719c81 | [
"MIT"
] | 3 | 2022-01-24T20:11:15.000Z | 2022-01-26T19:33:20.000Z | serverless/aws/features/__init__.py | epsyhealth/serverless-builder | 6a1f943b5cabc4c4748234b1623a9ced6464043a | [
"MIT"
] | 1 | 2022-02-15T13:54:29.000Z | 2022-02-15T13:54:29.000Z | from .api_handler import DefaultFourHundredResponse
from .api_keys import ApiKeys
from .xray import XRay
| 26.25 | 51 | 0.857143 |
39d50b087b533ec75540f6aeefa21a97dbda7cfa | 7,392 | py | Python | tests/unit/test_resources.py | butla/PyDAS | 39df5abbe9563b58da7caaa191b89852fb122ab7 | [
"MIT"
] | 13 | 2016-06-29T13:35:05.000Z | 2021-05-25T09:47:31.000Z | tests/unit/test_resources.py | butla/PyDAS | 39df5abbe9563b58da7caaa191b89852fb122ab7 | [
"MIT"
] | 1 | 2016-07-11T23:11:33.000Z | 2016-07-11T23:11:33.000Z | tests/unit/test_resources.py | butla/PyDAS | 39df5abbe9563b58da7caaa191b89852fb122ab7 | [
"MIT"
] | 3 | 2017-10-17T15:54:25.000Z | 2022-03-24T01:11:37.000Z | import copy
import json
import os
from unittest.mock import MagicMock, call
from bravado.client import SwaggerClient
import bravado.exception
from bravado_falcon import FalconHttpClient
import falcon
import pytest
import pytest_falcon.plugin
import responses
import yaml
from data_acquisition.acquisition_request import AcquisitionRequest, RequestNotFoundError
from data_acquisition.consts import (ACQUISITION_PATH, DOWNLOAD_CALLBACK_PATH,
METADATA_PARSER_CALLBACK_PATH, GET_REQUEST_PATH)
from data_acquisition.resources import (get_download_callback_url, get_metadata_callback_url,
AcquisitionResource)
import tests
from tests.consts import (TEST_DOWNLOAD_REQUEST, TEST_DOWNLOAD_CALLBACK, TEST_ACQUISITION_REQ,
TEST_ACQUISITION_REQ_JSON)
FAKE_TIME = 234.25
FAKE_TIMESTAMP = 234
def test_get_download_callback_url():
callback_url = get_download_callback_url('https://some-test-das-url', 'some-test-id')
assert callback_url == 'https://some-test-das-url/v1/das/callback/downloader/some-test-id'
def test_get_metadata_callback_url():
callback_url = get_metadata_callback_url('https://some-test-das-url', 'some-test-id')
assert callback_url == 'https://some-test-das-url/v1/das/callback/metadata/some-test-id'
| 38.103093 | 97 | 0.759199 |
39d5975250cb33441f80fb188d15a624f07f6415 | 4,216 | py | Python | GraphOfDocs.py | NC0DER/GraphOfDocs | 16603de9d8695ae8205117aa7123707d1dcbe0e0 | [
"Apache-2.0"
] | 12 | 2020-01-27T20:26:08.000Z | 2022-03-10T14:45:09.000Z | GraphOfDocs.py | NC0DER/GraphOfDocs | 16603de9d8695ae8205117aa7123707d1dcbe0e0 | [
"Apache-2.0"
] | 1 | 2021-11-17T11:45:55.000Z | 2021-11-17T11:45:55.000Z | GraphOfDocs.py | NC0DER/GraphOfDocs | 16603de9d8695ae8205117aa7123707d1dcbe0e0 | [
"Apache-2.0"
] | 2 | 2020-01-27T13:17:11.000Z | 2020-01-29T09:35:22.000Z | import sys
import platform
from neo4j import ServiceUnavailable
from GraphOfDocs.neo4j_wrapper import Neo4jDatabase
from GraphOfDocs.utils import generate_words, read_dataset, clear_screen
from GraphOfDocs.parse_args import parser
from GraphOfDocs.create import *
if __name__ == '__main__':
# If only one argument is specified,
# Then it's the script name.
# Print help for using the script and exit.
if len(sys.argv) == 1:
parser.print_help()
parser.exit()
# Parse all arguments from terminal.
args = parser.parse_args()
# If create flag is set but no dirpath is specified, print error.
if args.create and args.dirpath is None:
parser.error('Please set the dirpath flag and specify a valid filepath!')
# Else if create flag is specified along with a valid dirpath.
elif args.create:
print(args)
# Run the graphofdocs function with create and initialize set to True.
# The first argument (0th index) after the dirpath flag is the actual directory path.
graphofdocs(True, True, args.dirpath[0], args.window_size[0],
args.extend_window, args.insert_stopwords, args.lemmatize, args.stem)
# Else if reinitialize flag is specified, unset the create flag.
elif args.reinitialize:
print(args)
# Run the graphofdocs function with create set to False and initialize set to True.
# We also set the directory path to None, since its not needed.
graphofdocs(False, True, None, args.window_size[0],
args.extend_window, args.insert_stopwords, args.lemmatize, args.stem)
| 43.916667 | 95 | 0.64777 |
39d61db6e252ece16991b4c554bc384accb4d908 | 27,144 | py | Python | line/f_MessageService.py | winbotscript/LineService | 4c79029648e858e567378485e75276f865c1f73f | [
"Apache-2.0"
] | 1 | 2020-08-20T08:00:23.000Z | 2020-08-20T08:00:23.000Z | line/f_MessageService.py | winbotscript/LineService | 4c79029648e858e567378485e75276f865c1f73f | [
"Apache-2.0"
] | null | null | null | line/f_MessageService.py | winbotscript/LineService | 4c79029648e858e567378485e75276f865c1f73f | [
"Apache-2.0"
] | null | null | null | #
# Autogenerated by Frugal Compiler (3.4.3)
#
# DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING
#
from threading import Lock
from frugal.middleware import Method
from frugal.exceptions import TApplicationExceptionType
from frugal.exceptions import TTransportExceptionType
from frugal.processor import FBaseProcessor
from frugal.processor import FProcessorFunction
from frugal.util.deprecate import deprecated
from frugal.util import make_hashable
from thrift.Thrift import TApplicationException
from thrift.Thrift import TMessageType
from thrift.transport.TTransport import TTransportException
from .ttypes import *
def _write_application_exception(ctx, oprot, method, ex_code=None, message=None, exception=None):
if exception is not None:
x = exception
else:
x = TApplicationException(type=ex_code, message=message)
oprot.write_response_headers(ctx)
oprot.writeMessageBegin(method, TMessageType.EXCEPTION, 0)
x.write(oprot)
oprot.writeMessageEnd()
oprot.get_transport().flush()
return x
| 35.57536 | 171 | 0.597222 |
39d6297dad17364278641be6d1ed6ea276348300 | 886 | py | Python | Medium/279. Perfect Squares/solution (2).py | czs108/LeetCode-Solutions | 889f5b6a573769ad077a6283c058ed925d52c9ec | [
"MIT"
] | 3 | 2020-05-09T12:55:09.000Z | 2022-03-11T18:56:05.000Z | Medium/279. Perfect Squares/solution (2).py | czs108/LeetCode-Solutions | 889f5b6a573769ad077a6283c058ed925d52c9ec | [
"MIT"
] | null | null | null | Medium/279. Perfect Squares/solution (2).py | czs108/LeetCode-Solutions | 889f5b6a573769ad077a6283c058ed925d52c9ec | [
"MIT"
] | 1 | 2022-03-11T18:56:16.000Z | 2022-03-11T18:56:16.000Z | # 279. Perfect Squares
# Runtime: 60 ms, faster than 96.81% of Python3 online submissions for Perfect Squares.
# Memory Usage: 14.7 MB, less than 42.95% of Python3 online submissions for Perfect Squares.
| 30.551724 | 97 | 0.555305 |
39d67d232e49de41fe6fece39a3376037a1fe5cc | 1,650 | py | Python | simulator/card_defs.py | NewLordVile/alphasheep | 2a86cf0009b686edafee8c80aa961d7075a5bd46 | [
"MIT"
] | 8 | 2019-11-25T22:05:58.000Z | 2022-01-19T23:48:39.000Z | simulator/card_defs.py | NewLordVile/alphasheep | 2a86cf0009b686edafee8c80aa961d7075a5bd46 | [
"MIT"
] | 5 | 2019-12-23T12:43:40.000Z | 2020-03-19T19:16:46.000Z | simulator/card_defs.py | NewLordVile/alphasheep | 2a86cf0009b686edafee8c80aa961d7075a5bd46 | [
"MIT"
] | 4 | 2020-03-14T21:25:29.000Z | 2022-01-27T22:59:31.000Z | """
Definitions for Card, Suit, Pip, etc.
WARN: DO NOT CHANGE THE ENUMS IN THIS FILE!
Changing the values might affect the ordering of the state/action space of agents, and will break compatibility with previously
saved model checkpoints.
"""
from enum import IntEnum
pip_scores = {
Pip.sieben: 0,
Pip.acht: 0,
Pip.neun: 0,
Pip.unter: 2,
Pip.ober: 3,
Pip.koenig: 4,
Pip.zehn: 10,
Pip.sau: 11}
def new_deck():
""" Returns an ordered deck. """
return [Card(suit, pip) for suit in Suit for pip in Pip]
| 23.571429 | 129 | 0.633333 |
39d6fc42a60ee57ea74155e98d6216d785fa855c | 2,720 | py | Python | server/perform_action/common.py | darrenfoong/battleships | 2866207b3a55d24fc085beedbd735d489990e487 | [
"MIT"
] | 11 | 2020-01-15T14:25:48.000Z | 2021-11-25T04:21:18.000Z | server/perform_action/common.py | darrenfoong/battleships | 2866207b3a55d24fc085beedbd735d489990e487 | [
"MIT"
] | 8 | 2021-02-04T16:41:57.000Z | 2022-03-29T21:57:15.000Z | esp8266/common.py | pythings/PythingsOS | 276b41a32af7fa0d5395b2bb308e611f784f9711 | [
"Apache-2.0"
] | null | null | null |
MAX_COPIES = 2
RECV_SIZE = 1024
SEND_SIZE = 1024
SERVER_IP = "172.24.1.107"
SERVER_PORT = 10000
# Error Codes
CODE_SUCCESS = 300
CODE_FAILURE = 400
| 28.93617 | 190 | 0.683824 |
39da37adde81c90589b9c7e68358e7bc3b53628e | 1,361 | py | Python | repeat_samples.py | xiz675/OpenNMT-py | eaee466437d6a2f7c06a2401f9a8ef6c7757cabd | [
"MIT"
] | null | null | null | repeat_samples.py | xiz675/OpenNMT-py | eaee466437d6a2f7c06a2401f9a8ef6c7757cabd | [
"MIT"
] | null | null | null | repeat_samples.py | xiz675/OpenNMT-py | eaee466437d6a2f7c06a2401f9a8ef6c7757cabd | [
"MIT"
] | null | null | null |
if __name__ == '__main__':
key = "train"
base_path = "./data/Twitter/"
src_path = base_path + key + "_post.txt"
conv_path = base_path + key + "_conv.txt"
tag_path = base_path + key + "_tag.txt"
srcs = read_file(src_path)
convs = read_file(conv_path)
tags = read_file(tag_path)
new_data = repeat(srcs, convs, tags)
write_to_file(base_path + key + "new_post.txt", new_data[0])
write_to_file(base_path + key + "new_conv.txt", new_data[1])
write_to_file(base_path + key + "new_tag.txt", new_data[2])
| 28.957447 | 64 | 0.603968 |
39daa2204b3c5436de83103da0b269b9aadad179 | 1,540 | py | Python | tests/test_movies.py | dipakgupta12/taste_dive | 37df3f67e6efdf961cca230a4b2c8cfe23a38984 | [
"MIT"
] | null | null | null | tests/test_movies.py | dipakgupta12/taste_dive | 37df3f67e6efdf961cca230a4b2c8cfe23a38984 | [
"MIT"
] | null | null | null | tests/test_movies.py | dipakgupta12/taste_dive | 37df3f67e6efdf961cca230a4b2c8cfe23a38984 | [
"MIT"
] | null | null | null | import mock
| 42.777778 | 114 | 0.701948 |
39dce94f390b2bc845f4a4548517b2bf61e50466 | 5,711 | py | Python | CiscoWebAuthManager.py | darizotas/ciscowebauth | aaac65b5e78fe3246f0d4dedaf44eea4d8d293cb | [
"BSD-3-Clause"
] | 1 | 2018-01-22T04:43:39.000Z | 2018-01-22T04:43:39.000Z | CiscoWebAuthManager.py | darizotas/ciscowebauth | aaac65b5e78fe3246f0d4dedaf44eea4d8d293cb | [
"BSD-3-Clause"
] | null | null | null | CiscoWebAuthManager.py | darizotas/ciscowebauth | aaac65b5e78fe3246f0d4dedaf44eea4d8d293cb | [
"BSD-3-Clause"
] | null | null | null | """Script that establishes a session in a wireless network managed by Cisco Web Authentication.
This script requests for re-establishing a session in a wireless network managed by Cisco Web
Authentication.
Copyright 2013 Dario B. darizotas at gmail dot com
This software is licensed under a new BSD License.
Unported License. http://opensource.org/licenses/BSD-3-Clause
"""
from wlanapi.wlanapiwrapper import *
from wlanapi.wlanconninfo import *
from webauth.CiscoWebAuth import *
import sys
import argparse
import ssl
# Main
def login(args):
"""Wrapper function to use through argparse to login to the wireless network"""
manager = CiscoWebAuthManager()
if manager.isConnected(args.ssid):
if not manager.login(args.host, args.user, args.pwd):
sys.exit(1)
else:
print "Not associated to %s. There is nothing to do." % args.ssid
def logout(args):
"""Wrapper function to use through argparse to logout to the wireless network"""
manager = CiscoWebAuthManager()
if manager.isConnected(args.ssid):
if not manager.logout(args.host):
sys.exit(1)
else:
print "Not associated to %s. There is nothing to do." % args.ssid
# Top-level argument parser
parser = argparse.ArgumentParser(description='Establishes a session in a wireless network managed ' \
'by Cisco Web Authentication.')
# SSID wireless network param
parser.add_argument('ssid', help='SSID name of the wireless network')
parser.add_argument('host', help='Cisco Web Authentication hostname or IP')
subparser = parser.add_subparsers(title='sub-commands', help='Available sub-commands')
# Login sub-command
parserCmdLogin = subparser.add_parser('login', help='Login request')
parserCmdLogin.add_argument('-u', '--user', required=True, help='User name')
parserCmdLogin.add_argument('-p', '--pwd', required=True, help='Password')
parserCmdLogin.set_defaults(func=login)
# Logout sub-command
parserCmdLogout = subparser.add_parser('logout', help='Logout request')
parserCmdLogout.set_defaults(func=logout)
args = parser.parse_args()
args.func(args)
sys.exit(0) | 34.823171 | 102 | 0.615654 |
39dee2f2383aa49564e67055109a18b1b7a24546 | 192 | py | Python | qr_code/urls.py | mapreri/django-qr-code | 4792dcc19f04b0915dc715ba83ae22372aa78ce9 | [
"BSD-3-Clause"
] | null | null | null | qr_code/urls.py | mapreri/django-qr-code | 4792dcc19f04b0915dc715ba83ae22372aa78ce9 | [
"BSD-3-Clause"
] | null | null | null | qr_code/urls.py | mapreri/django-qr-code | 4792dcc19f04b0915dc715ba83ae22372aa78ce9 | [
"BSD-3-Clause"
] | null | null | null | from django.urls import path
from qr_code import views
app_name = 'qr_code'
urlpatterns = [
path('images/serve-qr-code-image/', views.serve_qr_code_image, name='serve_qr_code_image')
]
| 19.2 | 94 | 0.755208 |
39df74f7e7ea40de0f014c2a1bd6b468baf99ae0 | 974 | py | Python | matching.py | siweiwang24/marriage | d0f041ef380562885177418944791491949d024e | [
"MIT"
] | null | null | null | matching.py | siweiwang24/marriage | d0f041ef380562885177418944791491949d024e | [
"MIT"
] | null | null | null | matching.py | siweiwang24/marriage | d0f041ef380562885177418944791491949d024e | [
"MIT"
] | null | null | null | """
Stable Marriage Problem solution using Gale-Shapley.
Copyright 2020. Siwei Wang.
"""
# pylint: disable=no-value-for-parameter
from typing import Optional
from click import command, option, Path
from read_validate import get_smp
from marriage import compute_smp
from write import print_results
if __name__ == '__main__':
main()
| 32.466667 | 69 | 0.724846 |
39e0cfb770931442146ef89aab0fb46b52dd6602 | 7,908 | py | Python | chimeric_blacklist.py | regnveig/juicer1.6_compact | 21cd24f4c711640584965704f4fa72e5a25b76e3 | [
"MIT"
] | null | null | null | chimeric_blacklist.py | regnveig/juicer1.6_compact | 21cd24f4c711640584965704f4fa72e5a25b76e3 | [
"MIT"
] | null | null | null | chimeric_blacklist.py | regnveig/juicer1.6_compact | 21cd24f4c711640584965704f4fa72e5a25b76e3 | [
"MIT"
] | null | null | null | import pysam
import json
import bisect
import subprocess
Main(InputFileSAM = "/Data/NGS_Data/20211228_NGS_MinjaF_Pool/Results/Human_HiC/K1/splits/8_S73_L003.fastq.gz.filtered.sam", OutputFileTXT = "test_mergednodups.txt.gz", InterPairsTXT = "test_interpairs.txt.gz", MappingQualityFailedSAM = "/dev/null", ChimericAmbiguousFileSAM = "/dev/null", UnmappedSAM = "/dev/null", StatsTXT = "test.stats.txt", RestrictionSiteFile = None, MinMAPQ = 30)
| 55.300699 | 386 | 0.661861 |
39e1251d560049f22f859dac5fed8e5ec4b4ca80 | 95 | py | Python | solutions/carrots.py | dx-dt/Kattis | 62856999ae2ac43dab81f87beeac5bf8979528f5 | [
"Unlicense"
] | null | null | null | solutions/carrots.py | dx-dt/Kattis | 62856999ae2ac43dab81f87beeac5bf8979528f5 | [
"Unlicense"
] | null | null | null | solutions/carrots.py | dx-dt/Kattis | 62856999ae2ac43dab81f87beeac5bf8979528f5 | [
"Unlicense"
] | null | null | null | # https://open.kattis.com/problems/carrots
import sys
print sys.stdin.read().split()[1]
| 15.833333 | 43 | 0.684211 |
39e14dad20bbe0a515df5d2bbdc11d428ec81e56 | 1,799 | py | Python | yacht/data/transforms.py | IusztinPaul/yacht | c68ab7c66bde860bb91534c29e97772ba328adb5 | [
"Apache-2.0"
] | 5 | 2021-09-03T10:16:50.000Z | 2022-02-28T07:32:43.000Z | yacht/data/transforms.py | IusztinPaul/yacht | c68ab7c66bde860bb91534c29e97772ba328adb5 | [
"Apache-2.0"
] | null | null | null | yacht/data/transforms.py | IusztinPaul/yacht | c68ab7c66bde860bb91534c29e97772ba328adb5 | [
"Apache-2.0"
] | 1 | 2022-03-05T16:06:46.000Z | 2022-03-05T16:06:46.000Z | from abc import ABC, abstractmethod
from typing import Any, List, Optional
import pandas as pd
from yacht.config import Config
#######################################################################################################################
transforms_registry = {
'RelativeClosePriceScaling': RelativeClosePriceScaling,
'AverageValueDiff': AverageValueDiff
}
| 27.676923 | 119 | 0.625347 |
39e198255bc72ec3d147506eb38e23671a7f0cb4 | 4,088 | py | Python | bot.py | gilgamezh/registration_desk | 98303a6f96be78e0c1898a523db761f6d19866fc | [
"MIT"
] | null | null | null | bot.py | gilgamezh/registration_desk | 98303a6f96be78e0c1898a523db761f6d19866fc | [
"MIT"
] | null | null | null | bot.py | gilgamezh/registration_desk | 98303a6f96be78e0c1898a523db761f6d19866fc | [
"MIT"
] | null | null | null | import csv
import logging
import os
import discord
from discord.ext import commands, tasks
from discord.utils import get
# logging config
logging.basicConfig(
filename=".log/reg.log",
format="%(asctime)s - %(message)s",
level=logging.INFO,
datefmt="%d-%b-%y %H:%M:%S",
)
# set up channel ids and enviroment variables
reg_channel_id = int(os.environ["REG_CHANNEL_ID"])
try:
log_channel_id = int(os.environ["LOG_CHANNEL_ID"])
except:
log_channel_id = None
try:
only_respond_reg = int(os.environ["ONLY_RESPOND_REG"])
except:
only_respond_reg = False
# TODO: seperate customization in conf file
event_name = "EuroPython"
instruction = f"Welcome to {event_name}! Please use `!register <Full Name>, <Ticket Number>` to register.\nE.g. `!register James Brown, 99999`\nNOTE: please ONLY register for YOURSELF."
bot = commands.Bot(
command_prefix="!",
description=f"Registration Desk for {event_name}",
help_command=None,
)
bot.run(os.environ["REG_BOT_SECRET"])
| 34.066667 | 315 | 0.613748 |
39e1a049e695d46df354014950cf2221cf9cdc1c | 1,551 | py | Python | src/gameServer.py | LesGameDevToolsMagique/GameEditor | 06bed29845ded5cca35e57a3dd457dc72c2a2e8e | [
"MIT"
] | null | null | null | src/gameServer.py | LesGameDevToolsMagique/GameEditor | 06bed29845ded5cca35e57a3dd457dc72c2a2e8e | [
"MIT"
] | null | null | null | src/gameServer.py | LesGameDevToolsMagique/GameEditor | 06bed29845ded5cca35e57a3dd457dc72c2a2e8e | [
"MIT"
] | null | null | null | #!/usr/bin/env python
# skeleton from http://kmkeen.com/socketserver/2009-04-03-13-45-57-003.html
import socketserver, subprocess, sys
from threading import Thread
from pprint import pprint
import json
my_unix_command = ['bc']
HOST = 'localhost'
PORT = 12321
with open('storage.json') as data_file:
JSONdata = json.load(data_file)['commands']
def __init__(self, server_address, RequestHandlerClass):
socketserver.TCPServer.__init__(self, server_address, RequestHandlerClass)
if __name__ == "__main__":
server = SimpleServer((HOST, PORT), SingleTCPHandler)
try:
server.serve_forever()
except KeyboardInterrupt:
sys.exit(0)
| 31.02 | 78 | 0.648614 |
39e3fc7a595793dc10754a5adbe8f528668e75d2 | 360 | py | Python | src/keycloakclient/aio/openid_connect.py | phoebebright/python-keycloak-client | 8590fbcdbda8edbe993a01bbff06d9d9be679c5e | [
"MIT"
] | null | null | null | src/keycloakclient/aio/openid_connect.py | phoebebright/python-keycloak-client | 8590fbcdbda8edbe993a01bbff06d9d9be679c5e | [
"MIT"
] | null | null | null | src/keycloakclient/aio/openid_connect.py | phoebebright/python-keycloak-client | 8590fbcdbda8edbe993a01bbff06d9d9be679c5e | [
"MIT"
] | null | null | null | from keycloakclient.aio.mixins import WellKnownMixin
from keycloakclient.openid_connect import (
KeycloakOpenidConnect as SyncKeycloakOpenidConnect,
PATH_WELL_KNOWN,
)
__all__ = (
'KeycloakOpenidConnect',
)
| 24 | 71 | 0.8 |
39e4afc96a10bdb1d7dfe165b5b83d57bfbc7c47 | 9,987 | py | Python | multi_script_editor/jedi/evaluate/precedence.py | paulwinex/pw_multiScriptEditor | e447e99f87cb07e238baf693b7e124e50efdbc51 | [
"MIT"
] | 142 | 2015-03-21T12:56:21.000Z | 2022-02-08T04:42:46.000Z | jedi/evaluate/precedence.py | blueyed/jedi | a01e4c6b375795bb8c8ee0d4e86d4c535456f5b4 | [
"MIT"
] | 18 | 2015-05-06T21:14:14.000Z | 2015-08-29T18:24:43.000Z | jedi/evaluate/precedence.py | blueyed/jedi | a01e4c6b375795bb8c8ee0d4e86d4c535456f5b4 | [
"MIT"
] | 51 | 2016-05-07T14:27:42.000Z | 2022-02-10T05:55:11.000Z | """
Handles operator precedence.
"""
from jedi._compatibility import unicode
from jedi.parser import representation as pr
from jedi import debug
from jedi.common import PushBackIterator
from jedi.evaluate.compiled import CompiledObject, create, builtin
from jedi.evaluate import analysis
def create_precedence(expression_list):
iterator = PushBackIterator(iter(expression_list))
return _check_operator(iterator)
def _syntax_error(element, msg='SyntaxError in precedence'):
debug.warning('%s: %s, %s' % (msg, element, element.start_pos))
def _get_number(iterator, priority=PythonGrammar.LOWEST_PRIORITY):
el = next(iterator)
if isinstance(el, pr.Operator):
if el in PythonGrammar.FACTOR:
right = _get_number(iterator, PythonGrammar.FACTOR_PRIORITY)
elif el in PythonGrammar.NOT_TEST \
and priority >= PythonGrammar.NOT_TEST_PRIORITY:
right = _get_number(iterator, PythonGrammar.NOT_TEST_PRIORITY)
elif el in PythonGrammar.SLICE \
and priority >= PythonGrammar.SLICE_PRIORITY:
iterator.push_back(el)
return None
else:
_syntax_error(el)
return _get_number(iterator, priority)
return Precedence(None, el, right)
elif isinstance(el, pr.tokenize.Token):
return _get_number(iterator, priority)
else:
return el
| 33.513423 | 88 | 0.601382 |
39e817d468144ef60c9cbbd969d60eec454c7689 | 1,967 | py | Python | search.py | manimaul/mxmcc | 923458b759c8daa74dd969e968bc72b17fdffe02 | [
"BSD-2-Clause",
"BSD-3-Clause"
] | 1 | 2016-08-24T21:30:45.000Z | 2016-08-24T21:30:45.000Z | search.py | manimaul/mxmcc | 923458b759c8daa74dd969e968bc72b17fdffe02 | [
"BSD-2-Clause",
"BSD-3-Clause"
] | 5 | 2021-03-18T23:25:15.000Z | 2022-03-11T23:44:20.000Z | search.py | manimaul/mxmcc | 923458b759c8daa74dd969e968bc72b17fdffe02 | [
"BSD-2-Clause",
"BSD-3-Clause"
] | null | null | null | #!/usr/bin/env python
__author__ = 'Will Kamp'
__copyright__ = 'Copyright 2013, Matrix Mariner Inc.'
__license__ = 'BSD'
__email__ = 'will@mxmariner.com'
__status__ = 'Development' # 'Prototype', 'Development', or 'Production'
import os
# def __walker(self, args, p_dir, p_file):
# map_extensions, include_only = args
# if include_only is not None:
# include_only = set(include_only)
# for f in p_file:
# if f.upper().endswith(map_extensions) and (include_only is None or f in include_only) and not f.startswith(
# "."):
# self.file_paths.append(os.path.join(p_dir, f))
if __name__ == '__main__':
print("foo")
| 34.508772 | 120 | 0.56482 |
39ebe1a3f9b6deca1adc431db80e1a994f12644b | 5,041 | py | Python | fsh_validator/cli.py | glichtner/fsh-validator | c3b16546221c8d43c24bcee426ec7882938305bd | [
"BSD-3-Clause"
] | null | null | null | fsh_validator/cli.py | glichtner/fsh-validator | c3b16546221c8d43c24bcee426ec7882938305bd | [
"BSD-3-Clause"
] | 1 | 2022-03-01T16:06:09.000Z | 2022-03-01T16:06:09.000Z | fsh_validator/cli.py | glichtner/fsh-validator | c3b16546221c8d43c24bcee426ec7882938305bd | [
"BSD-3-Clause"
] | null | null | null | """Command line interface for fsh-validator."""
import os
import sys
import argparse
from pathlib import Path
import yaml
from .fsh_validator import (
print_box,
run_sushi,
validate_all_fsh,
validate_fsh,
download_validator,
bcolors,
VALIDATOR_BASENAME,
store_log,
assert_sushi_installed,
get_fsh_base_path,
get_fhir_version_from_sushi_config,
)
from .fshpath import FshPath
def get_config(base_path: Path):
"""
Get the config file from the base path.
:param base_path: The base path to the .fsh-validator.yml File.
:return: Configuration
"""
config_file = base_path / ".fsh-validator.yml"
if not config_file.exists():
return dict()
return yaml.safe_load(open(config_file))
def main():
"""
fsh-validator command line interface main.
:return: None
"""
parser = argparse.ArgumentParser(
description="Validate a fsh file",
formatter_class=argparse.RawTextHelpFormatter,
)
arg_fname = parser.add_argument(
"filename", help="fsh file names (basename only - no path)", nargs="*"
)
parser.add_argument(
"--all",
dest="all",
action="store_true",
help="if set, all detected profiles will be validated",
required=False,
default=False,
)
parser.add_argument(
"--subdir",
dest="subdir",
type=str,
help="Specifies the subdirectory (relative to input/fsh/) in which to search for profiles if --all is set",
required=False,
default="",
)
parser.add_argument(
"--validator-path",
dest="path_validator",
type=str,
help="path to validator",
required=False,
default=None,
)
parser.add_argument(
"--verbose",
dest="verbose",
action="store_true",
help="Be verbose",
required=False,
default=False,
)
parser.add_argument(
"--no-sushi",
dest="no_sushi",
action="store_true",
help="Do not run sushi before validating",
required=False,
default=False,
)
parser.add_argument(
"--log-path",
dest="log_path",
type=str,
help="log file path - if supplied, log files will be written",
required=False,
default=None,
)
args = parser.parse_args()
if not args.all and len(args.filename) == 0:
raise argparse.ArgumentError(
arg_fname, "filename must be set if --all is not specified"
)
elif args.all and len(args.filename) == 0:
# Use current working dir as input path
filenames = [FshPath(os.getcwd())]
else:
filenames = [FshPath(filename) for filename in args.filename]
base_paths = set(filename.fsh_base_path() for filename in filenames)
if len(base_paths) > 1:
raise ValueError(
"Found multiple base paths for fsh project, expecting exactly one"
)
base_path = base_paths.pop()
validator_path = (
args.path_validator if args.path_validator is not None else base_path
)
fname_validator = Path(validator_path) / VALIDATOR_BASENAME
if not fname_validator.exists():
print_box("Downloading java validator")
download_validator(fname_validator.resolve())
if not args.no_sushi:
print_box("Running SUSHI")
run_sushi(base_path)
fhir_version = get_fhir_version_from_sushi_config(base_path)
config = get_config(base_path)
if "exclude_code_systems" in config:
exclude_code_systems = set(config["exclude_code_systems"])
else:
exclude_code_systems = set()
if "exclude_resource_type" in config:
exclude_resource_types = set(config["exclude_resource_type"])
else:
exclude_resource_types = set()
if args.all:
print_box("Validating all FSH files")
results = validate_all_fsh(
base_path,
args.subdir,
str(fname_validator),
exclude_code_systems=exclude_code_systems,
exclude_resource_types=exclude_resource_types,
fhir_version=fhir_version,
verbose=args.verbose,
)
else:
print_box("Validating FSH files")
results = validate_fsh(
filenames,
str(fname_validator),
fhir_version=fhir_version,
exclude_code_systems=exclude_code_systems,
exclude_resource_types=exclude_resource_types,
verbose=args.verbose,
)
if args.log_path is not None:
log_path = Path(args.log_path)
if not log_path.exists():
log_path.mkdir()
store_log(results, log_path)
if any([r.failed() for r in results]):
print_box("Errors during profile validation", col=bcolors.FAIL)
sys.exit(1)
else:
print_box("All profiles successfully validated", col=bcolors.OKGREEN)
sys.exit(0)
if __name__ == "__main__":
main()
| 26.671958 | 115 | 0.623686 |
39ec9a70f64ddc65a70eb731b8421b2083d1e79f | 410 | py | Python | src/aerocloud/packages.py | Aerometrex/aerocloud-python-client | 0bd15432bb0f81fc5e9ca03c48b9b15c8e8ed438 | [
"MIT"
] | null | null | null | src/aerocloud/packages.py | Aerometrex/aerocloud-python-client | 0bd15432bb0f81fc5e9ca03c48b9b15c8e8ed438 | [
"MIT"
] | null | null | null | src/aerocloud/packages.py | Aerometrex/aerocloud-python-client | 0bd15432bb0f81fc5e9ca03c48b9b15c8e8ed438 | [
"MIT"
] | null | null | null | import os
from enum import Enum
def getPackageDirectory(package: AppPackage, version: str = None):
"Gets the directory where the specified package is installed."
varName = f'AZ_BATCH_APP_PACKAGE_{package.value}'
if version != None:
varName = f'{varName}#{version}'
return os.environ[varName]
| 21.578947 | 66 | 0.702439 |
39ef2ca7f17378b96bb6865f18c59fdf8633759c | 680 | py | Python | src/nodeforge/StartEngine.py | nsk89/nodeforge | 51e798092cfaf52112cfdc96af359633741da799 | [
"BSD-3-Clause"
] | null | null | null | src/nodeforge/StartEngine.py | nsk89/nodeforge | 51e798092cfaf52112cfdc96af359633741da799 | [
"BSD-3-Clause"
] | 1 | 2018-10-21T05:30:32.000Z | 2018-10-31T05:53:18.000Z | src/nodeforge/StartEngine.py | nsk89/nodeforge | 51e798092cfaf52112cfdc96af359633741da799 | [
"BSD-3-Clause"
] | 2 | 2018-10-31T05:56:34.000Z | 2018-10-31T05:57:36.000Z | """
This file should be imported at the bottom of configure.py
TODO:
All of this may be moved into a single function in the future
so people can choose a reactor in configure.py
"""
from twisted.internet import reactor
from twisted.internet.task import LoopingCall
from threading import currentThread, Thread
# Check to see if main thread is alive
mainthread = currentThread()
# Every second, make sure that the interface thread is alive.
LoopingCall(checkExit).start(1)
# start the network loop in a new thread
Thread(target=lambda : reactor.run(installSignalHandlers=0)).start() | 29.565217 | 68 | 0.744118 |
39ef5804d073f8e1a8698f5b8f98bbb0a09926ef | 7,170 | py | Python | src/asit.py | 6H057WH1P3/Asit | 4dce80e3c4c05c4f56563110c59bae55e61aeaae | [
"MIT"
] | null | null | null | src/asit.py | 6H057WH1P3/Asit | 4dce80e3c4c05c4f56563110c59bae55e61aeaae | [
"MIT"
] | 3 | 2015-09-16T17:54:13.000Z | 2015-09-18T06:54:33.000Z | src/asit.py | 6H057WH1P3/Asit | 4dce80e3c4c05c4f56563110c59bae55e61aeaae | [
"MIT"
] | null | null | null |
import random
import time
import requests
| 39.61326 | 155 | 0.565969 |
39f17c6cf9e734ea907636289c61a9999dc0de12 | 251 | py | Python | src/core/views.py | Ao99/django-boilerplate | 7fa8078b67655698a4070ce58c10d2226fe1d59b | [
"MIT"
] | null | null | null | src/core/views.py | Ao99/django-boilerplate | 7fa8078b67655698a4070ce58c10d2226fe1d59b | [
"MIT"
] | null | null | null | src/core/views.py | Ao99/django-boilerplate | 7fa8078b67655698a4070ce58c10d2226fe1d59b | [
"MIT"
] | null | null | null | from django.shortcuts import render
from django.views import View
# Create your views here. | 31.375 | 54 | 0.717131 |
39f26329f53e08a2340c221abdf702988c619417 | 12,075 | py | Python | hashvis.py | boredzo/hashvis | 74a017c7fa9b6d48e43172ffd15fc19ccfb060e1 | [
"BSD-3-Clause"
] | 15 | 2015-12-02T14:26:52.000Z | 2018-01-21T15:18:59.000Z | hashvis.py | boredzo/hashvis | 74a017c7fa9b6d48e43172ffd15fc19ccfb060e1 | [
"BSD-3-Clause"
] | 10 | 2015-12-04T06:00:42.000Z | 2016-07-09T21:40:53.000Z | hashvis.py | boredzo/hashvis | 74a017c7fa9b6d48e43172ffd15fc19ccfb060e1 | [
"BSD-3-Clause"
] | null | null | null | #!/usr/bin/python
# -*- coding: utf-8 -*-
"""hashvis by Peter Hosey
Reads from standard input or files, and prints what it reads, along with colorized versions of any hashes or signatures found in each line.
The goal here is visual comparability. You should be able to tell whether two hashes are the same at a glance, rather than having to closely compare digits (or, more probably, not bother and just assume the hashes match!).
The more obvious of the two methods used is shaping the output: Each hash will be represented as a rectangle of an aspect ratio determined by the hash. You may thus end up with one that's tall and one that's wide, or one that's square (if the hash length is a square number) and one that isn't.
If two hashes are the same shape (or if you passed --oneline), another difference is that each byte is represented by a different pair of foreground and background colors. You should thus be able to compare the color-patterns rather than having to look at individual digits.
"""
# #mark - Imports and utilities
import sys
import os
import re
import base64
import binascii
import cmath as math
range = xrange
# #mark - Parsing
MD5_exp = re.compile(r'^MD5 \(.*\) = ([0-9a-fA-F]+)')
fingerprint_exp = re.compile(r'^(?:R|ECD)SA key fingerprint is (?:(?:MD5:)?(?P<hex>[:0-9a-fA-F]+)|SHA256:(?P<base64>[+/0-9a-zA-Z]+))\.')
commit_exp = re.compile(r'^commit ([0-9a-fA-F]+)')
more_base64_padding_than_anybody_should_ever_need = '=' * 64
def extract_hash_from_line(input_line):
"Returns a tuple of the extracted hash as hex, and whether it was originally hex (vs, say, base64). The hash may be None if none was found in the input."
if input_line[:1] == 'M':
match = MD5_exp.match(input_line)
if match:
return match.group(1), True
else:
return '', False
elif input_line[:1] in 'RE':
match = fingerprint_exp.match(input_line)
if match:
hex = match.group('hex')
if hex:
return hex, True
b64str = match.group('base64')
if b64str:
# Pacify the base64 module, which wants *some* padding (at least sometimes) but doesn't care how much.
b64str += more_base64_padding_than_anybody_should_ever_need
# Re-encode to hex for processing downstream. Arguably a refactoring opportunity
return binascii.b2a_hex(base64.b64decode(b64str)), False
return '', False
elif input_line[:7] == 'commit ':
match = commit_exp.match(input_line)
if match:
return match.group(1), True
if input_line:
try:
hash, not_the_hash = input_line.split(None, 1)
except ValueError:
# Insufficient fields. This line doesn't contain any whitespace. Use the entire line.
hash = input_line
hash = hash.strip().replace('-', '')
try:
int(hash, 16)
except ValueError:
# Not a hex number.
return None, False
else:
return hash, True
# #mark - Representation
def fgcolor(idx, deep_color=False):
if deep_color:
return '\x1b[38;5;{0}m'.format(idx)
idx = ((idx >> 4) & 0xf)
# 90 is bright foreground; 30 is dull foreground.
if idx < 0x8:
base = 30
else:
base = 90
idx = idx - 0x8
return '\x1b[{0}m'.format(base + idx)
def bgcolor(idx, deep_color=False):
if deep_color:
idx = ((idx & 0xf) << 4) | ((idx & 0xf0) >> 4)
# This add 128 and mod 256 is important, because it ensures double-digits such as 00 remain different colors.
return '\x1b[48;5;{0}m'.format((idx + 128) % 256)
else:
idx = (idx & 0xf)
# 100 is bright background; 40 is dull background.
if idx < 0x8:
base = 40
else:
base = 100
idx = idx - 0x8
return '\x1b[{0}m'.format(base + idx)
BOLD = '\x1b[1m'
RESET = '\x1b[0m'
if __name__ == '__main__':
# #mark - Self-tests
run_tests = False
if run_tests:
# A square number. Should contain a diagonal pair (in this case, (16,16)).
factors_of_256 = set(factors(256))
assert factors_of_256 == set([(256, 1), (16, 16), (8, 32), (2, 128), (64, 4), (1, 256), (32, 8), (128, 2), (4, 64)])
# A rectangular number: not square, but still composite. No diagonal pair here.
factors_of_12 = set(factors(12))
assert factors_of_12 == set([(2, 6), (12, 1), (1, 12), (6, 2), (4, 3), (3, 4)])
assert (1, 256) in factors_of_256
assert (256, 1) in factors_of_256
assert (1, 256) not in except_one(factors_of_256)
assert (256, 1) not in except_one(factors_of_256)
# A prime number. Should have exactly one pair of factors.
factors_of_5 = set(factors(5))
assert factors_of_5 == set([(1, 5), (5, 1)])
assert list(parse_hex('ab15e')) == [0xab, 0x15, 0x0e]
assert list(parse_hex(':::ab:15:e')) == [0xab, 0x15, 0x0e]
assert extract_hash_from_line('RSA key fingerprint is b8:79:03:7d:00:44:98:6e:67:a0:59:1a:01:21:36:38.\n') == ('b8:79:03:7d:00:44:98:6e:67:a0:59:1a:01:21:36:38', True)
assert extract_hash_from_line('RSA key fingerprint is b8:79:03:7d:00:44:98:6e:67:a0:59:1a:01:21:36:38.') == ('b8:79:03:7d:00:44:98:6e:67:a0:59:1a:01:21:36:38', True)
#Alternate output example from https://en.wikibooks.org/wiki/OpenSSH/Cookbook/Authentication_Keys :
assert extract_hash_from_line('RSA key fingerprint is MD5:10:4a:ec:d2:f1:38:f7:ea:0a:a0:0f:17:57:ea:a6:16.') == ('10:4a:ec:d2:f1:38:f7:ea:0a:a0:0f:17:57:ea:a6:16', True)
# Also from https://en.wikibooks.org/wiki/OpenSSH/Cookbook/Authentication_Keys :
assert extract_hash_from_line('ECDSA key fingerprint is SHA256:LPFiMYrrCYQVsVUPzjOHv+ZjyxCHlVYJMBVFerVCP7k.\n') == ('2cf162318aeb098415b1550fce3387bfe663cb10879556093015457ab5423fb9', False), extract_hash_from_line('ECDSA key fingerprint is SHA256:LPFiMYrrCYQVsVUPzjOHv+ZjyxCHlVYJMBVFerVCP7k.\n')
assert extract_hash_from_line('ECDSA key fingerprint is SHA256:LPFiMYrrCYQVsVUPzjOHv+ZjyxCHlVYJMBVFerVCP7k.') == ('2cf162318aeb098415b1550fce3387bfe663cb10879556093015457ab5423fb9', False), extract_hash_from_line('ECDSA key fingerprint is SHA256:LPFiMYrrCYQVsVUPzjOHv+ZjyxCHlVYJMBVFerVCP7k.')
# Mix and match RSA and ECDSA with MD5 and SHA256:
assert extract_hash_from_line('ECDSA key fingerprint is MD5:10:4a:ec:d2:f1:38:f7:ea:0a:a0:0f:17:57:ea:a6:16.') == ('10:4a:ec:d2:f1:38:f7:ea:0a:a0:0f:17:57:ea:a6:16', True)
assert extract_hash_from_line('RSA key fingerprint is SHA256:LPFiMYrrCYQVsVUPzjOHv+ZjyxCHlVYJMBVFerVCP7k.\n') == ('2cf162318aeb098415b1550fce3387bfe663cb10879556093015457ab5423fb9', False), extract_hash_from_line('RSA key fingerprint is SHA256:LPFiMYrrCYQVsVUPzjOHv+ZjyxCHlVYJMBVFerVCP7k.\n')
#UUID
assert extract_hash_from_line('E6CD379E-12CD-4E00-A83A-B06E74CF03B8') == ('E6CD379E12CD4E00A83AB06E74CF03B8', True), extract_hash_from_line('E6CD379E-12CD-4E00-A83A-B06E74CF03B8')
assert extract_hash_from_line('e6cd379e-12cd-4e00-a83a-b06e74cf03b8') == ('e6cd379e12cd4e00a83ab06e74cf03b8', True), extract_hash_from_line('e6cd379e-12cd-4e00-a83a-b06e74cf03b8')
assert extract_hash_from_line('MD5 (hashvis.py) = e21c7b846f76826d52a0ade79ef9cb49\n') == ('e21c7b846f76826d52a0ade79ef9cb49', True)
assert extract_hash_from_line('MD5 (hashvis.py) = e21c7b846f76826d52a0ade79ef9cb49') == ('e21c7b846f76826d52a0ade79ef9cb49', True)
assert extract_hash_from_line('8b948e9c85fdf68f872017d7064e839c hashvis.py\n') == ('8b948e9c85fdf68f872017d7064e839c', True)
assert extract_hash_from_line('8b948e9c85fdf68f872017d7064e839c hashvis.py') == ('8b948e9c85fdf68f872017d7064e839c', True)
assert extract_hash_from_line('2c9997ce32cb35823b2772912e221b350717fcb2d782c667b8f808be44ae77ba1a7b94b4111e386c64a2e87d15c64a2fc2177cd826b9a0fba6b348b4352ed924 hashvis.py\n') == ('2c9997ce32cb35823b2772912e221b350717fcb2d782c667b8f808be44ae77ba1a7b94b4111e386c64a2e87d15c64a2fc2177cd826b9a0fba6b348b4352ed924', True)
assert extract_hash_from_line('2c9997ce32cb35823b2772912e221b350717fcb2d782c667b8f808be44ae77ba1a7b94b4111e386c64a2e87d15c64a2fc2177cd826b9a0fba6b348b4352ed924 hashvis.py') == ('2c9997ce32cb35823b2772912e221b350717fcb2d782c667b8f808be44ae77ba1a7b94b4111e386c64a2e87d15c64a2fc2177cd826b9a0fba6b348b4352ed924', True)
assert extract_hash_from_line('#!/usr/bin/python\n')[0] is None
# Protip: Use vis -co to generate these.
(line,) = hash_to_pic('78', represent_as_hex=True, deep_color=False)
assert line == '\033[1m\033[37m\033[100m78\033[0m', repr(line)
(line,) = hash_to_pic('7f', represent_as_hex=True, deep_color=False)
assert line == '\033[1m\033[37m\033[107m7f\033[0m', repr(line)
assert list(hash_to_pic('aebece', deep_color=False)) != list(hash_to_pic('deeefe', deep_color=False)), (list(hash_to_pic('aebece', deep_color=False)), list(hash_to_pic('deeefe', deep_color=False)))
assert list(hash_to_pic('eaebec', deep_color=False)) != list(hash_to_pic('edeeef', deep_color=False)), (list(hash_to_pic('eaebec', deep_color=False)), list(hash_to_pic('edeeef', deep_color=False)))
sys.exit(0)
# #mark - Main
use_256color = os.getenv('TERM') == 'xterm-256color'
import argparse
parser = argparse.ArgumentParser(description="Visualize hexadecimal input (hashes, UUIDs, etc.) as an arrangement of color blocks.")
parser.add_argument('--one-line', '--oneline', action='store_true', help="Unconditionally produce a rectangle 1 character tall. The default is to choose a pair of width and height based upon one of the bytes of the input.")
parser.add_argument('--color-test', '--colortest', action='store_true', help="Print the 16-color, 256-color foreground, and 256-color background color palettes, then exit.")
options, args = parser.parse_known_args()
if options.color_test:
for x in range(16):
print fgcolor(x, deep_color=False),
print bgcolor(x, deep_color=False),
else:
print
for x in range(256):
sys.stdout.write(fgcolor(x, deep_color=True) + bgcolor(x, deep_color=True) + '%02x' % (x,))
else:
print RESET
import sys
sys.exit(0)
import fileinput
for input_line in fileinput.input(args):
print input_line.rstrip('\n')
hash, is_hex = extract_hash_from_line(input_line)
if hash:
for output_line in hash_to_pic(hash, only_ever_one_line=options.one_line, represent_as_hex=is_hex, deep_color=use_256color):
print output_line
| 46.087786 | 319 | 0.729441 |
39f2718894e3565b21d9ad13de2638c2e9273b26 | 270 | py | Python | euler_7_nth_prime.py | igorakkerman/euler-challenge | 1fdedce439520fc31a2e5fb66abe23b6f99f04db | [
"MIT"
] | null | null | null | euler_7_nth_prime.py | igorakkerman/euler-challenge | 1fdedce439520fc31a2e5fb66abe23b6f99f04db | [
"MIT"
] | null | null | null | euler_7_nth_prime.py | igorakkerman/euler-challenge | 1fdedce439520fc31a2e5fb66abe23b6f99f04db | [
"MIT"
] | null | null | null | # https://projecteuler.net/problem=7
import math
print(sum(sieve(2000000)))
| 20.769231 | 57 | 0.533333 |
39f3a173967eb82662e3417309654bea4d1eda7a | 3,066 | py | Python | docker/ubuntu/16-04/ub_limonero/migrations/versions/32053847c4db_add_new_types.py | eubr-atmosphere/jenkins | a9065584d810238c6fa101d92d12c131d1d317cb | [
"Apache-2.0"
] | null | null | null | docker/ubuntu/16-04/ub_limonero/migrations/versions/32053847c4db_add_new_types.py | eubr-atmosphere/jenkins | a9065584d810238c6fa101d92d12c131d1d317cb | [
"Apache-2.0"
] | null | null | null | docker/ubuntu/16-04/ub_limonero/migrations/versions/32053847c4db_add_new_types.py | eubr-atmosphere/jenkins | a9065584d810238c6fa101d92d12c131d1d317cb | [
"Apache-2.0"
] | null | null | null | """Add new types
Revision ID: 32053847c4db
Revises: 05a62958a9cc
Create Date: 2019-06-11 10:36:14.456629
"""
from alembic import context
from sqlalchemy.orm import sessionmaker
# revision identifiers, used by Alembic.
revision = '32053847c4db'
down_revision = '05a62958a9cc'
branch_labels = None
depends_on = None
all_commands = [
(""" ALTER TABLE data_source CHANGE `format` `format` ENUM(
'CSV','CUSTOM','GEO_JSON','HAR_IMAGE_FOLDER','HDF5','DATA_FOLDER',
'IMAGE_FOLDER', 'JDBC','JSON','NETCDF4','PARQUET','PICKLE','SHAPEFILE',
'TAR_IMAGE_FOLDER','TEXT', 'VIDEO_FOLDER',
'UNKNOWN','XML_FILE') CHARSET utf8 COLLATE utf8_unicode_ci NOT NULL;""",
""" ALTER TABLE data_source CHANGE `format` `format` ENUM(
'CSV','CUSTOM','GEO_JSON','HDF5','JDBC','JSON',
'NETCDF4','PARQUET','PICKLE','SHAPEFILE','TEXT',
'UNKNOWN','XML_FILE') CHARSET utf8 COLLATE utf8_unicode_ci NOT NULL;"""
),
("""
ALTER TABLE `storage` CHANGE `type` `type` ENUM(
'HDFS','OPHIDIA','ELASTIC_SEARCH','MONGODB','POSTGIS','HBASE',
'CASSANDRA','JDBC','LOCAL') CHARSET utf8 COLLATE
utf8_unicode_ci NOT NULL;""",
"""
ALTER TABLE `storage` CHANGE `type` `type` ENUM(
'HDFS','OPHIDIA','ELASTIC_SEARCH','MONGODB','POSTGIS','HBASE',
'CASSANDRA','JDBC') CHARSET utf8 COLLATE
utf8_unicode_ci NOT NULL;""",
),
(
"""ALTER TABLE `model` CHANGE `type` `type` ENUM(
'KERAS','SPARK_ML_REGRESSION','SPARK_MLLIB_CLASSIFICATION',
'SPARK_ML_CLASSIFICATION','UNSPECIFIED')
CHARSET utf8 COLLATE utf8_unicode_ci NOT NULL; """,
"""ALTER TABLE `model` CHANGE `type` `type` ENUM(
'KERAS','SPARK_ML_REGRESSION','SPARK_MLLIB_CLASSIFICATION',
'SPARK_ML_CLASSIFICATION','UNSPECIFIED')
CHARSET utf8 COLLATE utf8_unicode_ci NOT NULL; """
)
]
| 32.967742 | 80 | 0.599152 |
39f4f90e9b80ade83346acbec06fcedbaeda8cb3 | 88 | py | Python | advanced_tools/__init__.py | kvdogan/advanced_tools | 7e93232374980d83fda8051496a190188c11fe0d | [
"MIT"
] | null | null | null | advanced_tools/__init__.py | kvdogan/advanced_tools | 7e93232374980d83fda8051496a190188c11fe0d | [
"MIT"
] | null | null | null | advanced_tools/__init__.py | kvdogan/advanced_tools | 7e93232374980d83fda8051496a190188c11fe0d | [
"MIT"
] | null | null | null | from advanced_tools.IO_path_utils import *
from advanced_tools.algorithm_utils import *
| 29.333333 | 44 | 0.863636 |
39f5a45cf3414a12f90b8d040d893593304736d0 | 2,836 | py | Python | sets-master/sets-master/sets/utility.py | FedericoMolinaChavez/tesis-research | d77cc621d452c9ecf48d9ac80349b41aeb842412 | [
"MIT"
] | null | null | null | sets-master/sets-master/sets/utility.py | FedericoMolinaChavez/tesis-research | d77cc621d452c9ecf48d9ac80349b41aeb842412 | [
"MIT"
] | 4 | 2021-03-09T20:33:57.000Z | 2022-02-18T12:56:32.000Z | sets-master/sets-master/sets/utility.py | FedericoMolinaChavez/tesis-research | d77cc621d452c9ecf48d9ac80349b41aeb842412 | [
"MIT"
] | null | null | null | import os
import pickle
import functools
import errno
import shutil
from urllib.request import urlopen
#import definitions
def disk_cache(basename, directory, method=False):
"""
Function decorator for caching pickleable return values on disk. Uses a
hash computed from the function arguments for invalidation. If 'method',
skip the first argument, usually being self or cls. The cache filepath is
'directory/basename-hash.pickle'.
"""
directory = os.path.expanduser(directory)
ensure_directory(directory)
return wrapper
def download(url, directory, filename=None):
"""
Download a file and return its filename on the local file system. If the
file is already there, it will not be downloaded again. The filename is
derived from the url if not provided. Return the filepath.
"""
if not filename:
_, filename = os.path.split(url)
directory = os.path.expanduser(directory)
ensure_directory(directory)
filepath = os.path.join(directory, filename)
if os.path.isfile(filepath):
return filepath
print('Download', filepath)
with urlopen(url) as response, open(filepath, 'wb') as file_:
shutil.copyfileobj(response, file_)
return filepath
def ensure_directory(directory):
"""
Create the directories along the provided directory path that do not exist.
"""
directory = os.path.expanduser(directory)
try:
os.makedirs(directory)
except OSError as e:
if e.errno != errno.EEXIST:
raise e
| 35.012346 | 80 | 0.619182 |
f2cdba45917fad7ff9ab33f608fa9dbb603aec4b | 1,984 | py | Python | src/test_fps.py | pjenpoomjai/tfpose-herokuNEW | 7d1085a3fcb02c0f6d16ed7f2cf1ad8daff103ea | [
"Apache-2.0"
] | null | null | null | src/test_fps.py | pjenpoomjai/tfpose-herokuNEW | 7d1085a3fcb02c0f6d16ed7f2cf1ad8daff103ea | [
"Apache-2.0"
] | null | null | null | src/test_fps.py | pjenpoomjai/tfpose-herokuNEW | 7d1085a3fcb02c0f6d16ed7f2cf1ad8daff103ea | [
"Apache-2.0"
] | null | null | null | import cv2
import time
import numpy as np
import imutils
camera= 0
cam = cv2.VideoCapture(camera)
fgbg = cv2.createBackgroundSubtractorMOG2(history=1000,varThreshold=0,detectShadows=False)
width=600
height=480
fps_time = 0
while True:
ret_val,image = cam.read()
image = cv2.resize(image,(width,height))
image = cv2.GaussianBlur(image, (5, 5), 0)
fgmask = fgbg.apply(image)
# image = fgbg.apply(image,learningRate=0.001)
# image = imutils.resize(image, width=500)
# gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cnts = cv2.findContours(fgmask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
# loop over the contours
x_left = -1
y_left = -1
x_right = -1
y_right = -1
for c in cnts:
# if the contour is too small, ignore it
# if cv2.contourArea(c) > 500:
# continue
# compute the bounding box for the contour, draw it on the frame,
# and update the text
(x, y, w, h) = cv2.boundingRect(c)
if x_left ==-1 :
x_left = x
y_left = y
if x < x_left:
x_left = x
if y < y_left:
y_left = y
if x+w > x_right:
x_right = x+w
if y+h > y_right:
y_right = y+h
# cv2.rectangle(image, (x, y), (x+w, y+h), (255, 0, 0), 2)
if (x_left==0 and y_left==0 and x_right==width and y_right==height)==False:
cv2.rectangle(image, (x_left, y_left), (x_right, y_right), (0, 255, 0), 2)
# cv2.putText(image,
# "FPS: %f [press 'q'to quit]" % (1.0 / (time.time() - fps_time)),
# (10, 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
# (0, 255, 0), 2)
cv2.imshow('tf-pose-estimation result',fgmask)
cv2.imshow('tf-pose-estimation result2',image)
fps_time = time.time()
if cv2.waitKey(1)==ord('q'):
cam.release()
cv2.destroyAllWindows()
break
| 28.342857 | 90 | 0.579133 |
f2ce254695f631034aa335be9147cb99e06d1cfc | 999 | py | Python | Python/367.ValidPerfectSquare.py | nizD/LeetCode-Solutions | 7f4ca37bab795e0d6f9bfd9148a8fe3b62aa5349 | [
"MIT"
] | 263 | 2020-10-05T18:47:29.000Z | 2022-03-31T19:44:46.000Z | Python/367.ValidPerfectSquare.py | nizD/LeetCode-Solutions | 7f4ca37bab795e0d6f9bfd9148a8fe3b62aa5349 | [
"MIT"
] | 1,264 | 2020-10-05T18:13:05.000Z | 2022-03-31T23:16:35.000Z | Python/367.ValidPerfectSquare.py | nizD/LeetCode-Solutions | 7f4ca37bab795e0d6f9bfd9148a8fe3b62aa5349 | [
"MIT"
] | 760 | 2020-10-05T18:22:51.000Z | 2022-03-29T06:06:20.000Z | #Given a positive integer num, write a function which returns True if num is a perfect square else False.
| 47.571429 | 140 | 0.617618 |
f2d302744caca38acace037f6391b1ffee2c8630 | 1,432 | py | Python | src/minescrubber/controller.py | alok1974/minescrubber | 0c18d960b385a4a59ac0cf38bc69271a23c667e7 | [
"MIT"
] | 1 | 2020-08-11T23:08:34.000Z | 2020-08-11T23:08:34.000Z | src/minescrubber/controller.py | alok1974/minescrubber | 0c18d960b385a4a59ac0cf38bc69271a23c667e7 | [
"MIT"
] | null | null | null | src/minescrubber/controller.py | alok1974/minescrubber | 0c18d960b385a4a59ac0cf38bc69271a23c667e7 | [
"MIT"
] | null | null | null | from minescrubber_core import abstract
from . import mainwindow
def run():
controller = Controller()
controller.run(ui_class=UI)
| 22.730159 | 68 | 0.670391 |
f2d339d173f754cc9a0dd3025640fbb292c58b5b | 36 | py | Python | CADRE/power_dymos/__init__.py | johnjasa/CADRE | a4ffd61582b8474953fc309aa540838a14f29dcf | [
"Apache-2.0"
] | null | null | null | CADRE/power_dymos/__init__.py | johnjasa/CADRE | a4ffd61582b8474953fc309aa540838a14f29dcf | [
"Apache-2.0"
] | null | null | null | CADRE/power_dymos/__init__.py | johnjasa/CADRE | a4ffd61582b8474953fc309aa540838a14f29dcf | [
"Apache-2.0"
] | null | null | null | from .power_group import PowerGroup
| 18 | 35 | 0.861111 |
f2d47c8b76e7230c4405127adcd43ba0cfb587fd | 2,386 | py | Python | client/elementtype.py | Schille/weimar-graphstore | 76b47f98fba419ec6290628b56a202c60d8f2d46 | [
"MIT"
] | 2 | 2016-08-27T04:51:01.000Z | 2020-09-05T01:34:41.000Z | client/elementtype.py | Schille/weimar-graphstore | 76b47f98fba419ec6290628b56a202c60d8f2d46 | [
"MIT"
] | null | null | null | client/elementtype.py | Schille/weimar-graphstore | 76b47f98fba419ec6290628b56a202c60d8f2d46 | [
"MIT"
] | null | null | null | """
.. module:: elementtype.py
:platform: Linux
.. moduleauthor:: Michael Schilonka <michael@schilonka.de>
"""
import logging
| 24.854167 | 82 | 0.60855 |
f2d4d9817772d3d480a3be486cdd4fa4ac3b04f2 | 672 | py | Python | src/OTLMOW/OTLModel/Classes/Infiltratievoorziening.py | davidvlaminck/OTLClassPython | 71330afeb37c3ea6d9981f521ff8f4a3f8b946fc | [
"MIT"
] | 2 | 2022-02-01T08:58:11.000Z | 2022-02-08T13:35:17.000Z | src/OTLMOW/OTLModel/Classes/Infiltratievoorziening.py | davidvlaminck/OTLMOW | 71330afeb37c3ea6d9981f521ff8f4a3f8b946fc | [
"MIT"
] | null | null | null | src/OTLMOW/OTLModel/Classes/Infiltratievoorziening.py | davidvlaminck/OTLMOW | 71330afeb37c3ea6d9981f521ff8f4a3f8b946fc | [
"MIT"
] | null | null | null | # coding=utf-8
from OTLMOW.OTLModel.Classes.Put import Put
from OTLMOW.OTLModel.Classes.PutRelatie import PutRelatie
from OTLMOW.GeometrieArtefact.VlakGeometrie import VlakGeometrie
# Generated with OTLClassCreator. To modify: extend, do not edit
| 37.333333 | 93 | 0.763393 |
f2d563db44644c1403a6f057432f77eaa66bdff6 | 1,517 | py | Python | Chapter04/chapter4.py | Kushalshingote/Hands-On-Generative-Adversarial-Networks-with-Keras | fccada4810ba1fe8b79c5a74420a590c95623b52 | [
"MIT"
] | 76 | 2019-05-27T23:38:53.000Z | 2021-12-19T00:31:13.000Z | Chapter04/chapter4.py | Kushalshingote/Hands-On-Generative-Adversarial-Networks-with-Keras | fccada4810ba1fe8b79c5a74420a590c95623b52 | [
"MIT"
] | 9 | 2019-05-29T21:01:32.000Z | 2020-07-30T12:00:02.000Z | Chapter04/chapter4.py | Kushalshingote/Hands-On-Generative-Adversarial-Networks-with-Keras | fccada4810ba1fe8b79c5a74420a590c95623b52 | [
"MIT"
] | 35 | 2019-05-12T04:20:54.000Z | 2022-03-03T19:46:06.000Z | # get the training data D, sample the Generator with random z to produce r
N = X_train
z = np.random.uniform(-1, 1, (1, z_dim))
r = G.predict_on_batch(z)
# define our distance measure S to be L1
S = lambda n, r: np.sum(np.abs(n - r))
# compute the distances between the reference and the samples in N using the measure D
distances = [D(n, r) for n in N]
# find the indices of the most similar samples and select them from N
nearest_neighbors_index = np.argpartition(distances, k)
nearest_neighbors_images = N[nearest_neighbors_index]
# generate fake images from the discriminator
n_fake_images = 5000
z = np.random.uniform(-1, 1, (n_fake_images, z_dim))
x = G.predict_on_batch(z)
# marginal probability of y
q_y = np.mean(p_y_given_x, axis=0)
inception_scores = p_y_given_x * (np.log(p_y_given_x) - np.log(q_y)
inception_score = np.exp(np.mean(inception_scores))
return inception_score
def get_mean_and_covariance(data):
mean = np.mean(data, axis=0)
covariance = np.cov(data, rowvar=False) # rowvar?
return mean, covariance
def compute_frechet_inception_distance(mean_r, mean_f, cov_r, cov_f):
l2_mean = np.sum((mean_r - mean_f)**2)
cov_mean, _ = np.trace(scipy.linalg.sqrtm(np.dot(cov_r, cov_f)))
return l2_mu + np.trace(cov_r) + np.trace(cov_f) - 2 * np.trace(cov_mean)
| 35.27907 | 87 | 0.712591 |
f2d5d419d88204df9613b1050b9f75f4f36ef80c | 20,923 | py | Python | naspi/naspi.py | fgiroult321/simple-nas-pi | 6d1a13523f1f20ebe26f780c758a3ff15be899ff | [
"MIT"
] | null | null | null | naspi/naspi.py | fgiroult321/simple-nas-pi | 6d1a13523f1f20ebe26f780c758a3ff15be899ff | [
"MIT"
] | null | null | null | naspi/naspi.py | fgiroult321/simple-nas-pi | 6d1a13523f1f20ebe26f780c758a3ff15be899ff | [
"MIT"
] | null | null | null | import os
import boto3
# import subprocess
from subprocess import Popen, PIPE
from time import sleep
import json
import ast
from datetime import datetime, time, timedelta, date
import logging
import logging.handlers
import sys, getopt
import glob
import shutil
logger = logging.getLogger()
logger.setLevel(logging.INFO)
####
#### function defs
####
if __name__=='__main__':
main()
# main(sys.argv[1:]) | 38.461397 | 164 | 0.633322 |
f2d7e6c6a86e1314f1b2716ac6227b1dc354be91 | 14,328 | py | Python | fawkes/differentiator_lowkey.py | biergaiqiao/Oriole-Thwarting-Privacy-against-Trustworthy-Deep-Learning-Models | ffadb82b666e8c1561a036a10d9922db8a3266cc | [
"MIT"
] | 1 | 2021-05-18T01:14:44.000Z | 2021-05-18T01:14:44.000Z | fawkes/differentiator_lowkey.py | biergaiqiao/Oriole-Thwarting-Privacy-against-Trustworthy-Deep-Learning-Models | ffadb82b666e8c1561a036a10d9922db8a3266cc | [
"MIT"
] | null | null | null | fawkes/differentiator_lowkey.py | biergaiqiao/Oriole-Thwarting-Privacy-against-Trustworthy-Deep-Learning-Models | ffadb82b666e8c1561a036a10d9922db8a3266cc | [
"MIT"
] | 1 | 2021-05-18T01:14:47.000Z | 2021-05-18T01:14:47.000Z | #!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Date : 2020-10-21
# @Author : Emily Wenger (ewenger@uchicago.edu)
import time
import numpy as np
import tensorflow as tf
import tensorflow_addons as tfa
from keras.utils import Progbar
| 44.775 | 135 | 0.620254 |
f2d93f0a50f1963382d3895bbaf47dcf3e2de6e0 | 1,124 | py | Python | routes/class_incoming.py | fingerecho/proms-4.0 | 6c3a1fd62c9394761664e100fc1dde50fd79dc11 | [
"CC-BY-4.0"
] | 2 | 2019-11-23T03:56:28.000Z | 2019-12-03T15:48:34.000Z | routes/class_incoming.py | fingerecho/proms-4.0 | 6c3a1fd62c9394761664e100fc1dde50fd79dc11 | [
"CC-BY-4.0"
] | null | null | null | routes/class_incoming.py | fingerecho/proms-4.0 | 6c3a1fd62c9394761664e100fc1dde50fd79dc11 | [
"CC-BY-4.0"
] | 3 | 2019-04-12T18:09:35.000Z | 2020-03-14T14:38:45.000Z | from abc import ABCMeta, abstractmethod
import database
from . import w_l
| 29.578947 | 120 | 0.615658 |
f2da20f8cd9ede45ff2e1e9791b316945d38036c | 418 | py | Python | openwater/utils/decorator.py | jeradM/openwater | 740b7e76622a1ee909b970d9e5c612a840466cec | [
"MIT"
] | null | null | null | openwater/utils/decorator.py | jeradM/openwater | 740b7e76622a1ee909b970d9e5c612a840466cec | [
"MIT"
] | null | null | null | openwater/utils/decorator.py | jeradM/openwater | 740b7e76622a1ee909b970d9e5c612a840466cec | [
"MIT"
] | null | null | null | from typing import Callable
| 20.9 | 58 | 0.717703 |
f2db2b20dcde6fe54280e2d0105ffc23c0015da0 | 404 | py | Python | setup.py | TDGerve/ramCOH | 328f27891906e7207344fb3c5a685648a0924dd2 | [
"MIT"
] | 2 | 2022-03-08T12:30:55.000Z | 2022-03-29T19:46:59.000Z | setup.py | TDGerve/ramCOH | 328f27891906e7207344fb3c5a685648a0924dd2 | [
"MIT"
] | null | null | null | setup.py | TDGerve/ramCOH | 328f27891906e7207344fb3c5a685648a0924dd2 | [
"MIT"
] | null | null | null | import setuptools
setuptools.setup(
name= 'ramCOH',
version= '0.1',
description= '...',
author= 'Thomas van Gerve',
packages= setuptools.find_packages(
exclude= ['examples']
),
# package_dir= {'' : 'petroPy'},
package_data= {'ramCOH': ['static/*']},
install_requires= [
'pandas',
'matplotlib',
'numpy',
'scipy',
'csaps'
]
) | 17.565217 | 44 | 0.534653 |
f2dd43c40f9fe338eecf074d6dac1c0de992c516 | 798 | py | Python | chess.py | jrj92280/python-eve-backend | c0566cdef5e5c75e2b75e59bde804e0d4ce407e3 | [
"MIT"
] | null | null | null | chess.py | jrj92280/python-eve-backend | c0566cdef5e5c75e2b75e59bde804e0d4ce407e3 | [
"MIT"
] | null | null | null | chess.py | jrj92280/python-eve-backend | c0566cdef5e5c75e2b75e59bde804e0d4ce407e3 | [
"MIT"
] | null | null | null | from chess_game._board import make_board
from chess_game.chess_game import ChessGame
from chess_game.play_game import get_user_input, game_event_loop
if __name__ == "__main__":
game_board = make_board()
# pawn = Pawn('x', 'y', None, None, None)
# pawn.move()
print('Chess')
print(' : Rules')
print(' : input - piece''s position x,y, second x,y = destination')
print(" : x = row number 1 though 8")
print(" : y = column number 1 though 8")
player1_name = get_user_input(' : Enter player one name', is_move=False)
player2_name = get_user_input(' : Enter player two name', is_move=False)
print('------------------------------------------------')
chess_game = ChessGame(game_board, player1_name, player2_name)
game_event_loop(chess_game)
| 33.25 | 76 | 0.639098 |
f2dda34548b86bf17367a72a0ef32f5325649770 | 576 | py | Python | python/binary_tree/104.maximum-depth-of-binary-tree.py | Nobodylesszb/LeetCode | 0e902f6bff4834a93ce64cf9c57fd64297e63523 | [
"MIT"
] | null | null | null | python/binary_tree/104.maximum-depth-of-binary-tree.py | Nobodylesszb/LeetCode | 0e902f6bff4834a93ce64cf9c57fd64297e63523 | [
"MIT"
] | null | null | null | python/binary_tree/104.maximum-depth-of-binary-tree.py | Nobodylesszb/LeetCode | 0e902f6bff4834a93ce64cf9c57fd64297e63523 | [
"MIT"
] | null | null | null | """
Given a binary tree, find its maximum depth.
The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
Note: A leaf is a node with no children.
Example:
Given binary tree [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
return its depth = 3.
"""
import Math
| 20.571429 | 114 | 0.625 |
f2de6356f341ba86e79ed1873bc9d766068dfedf | 1,589 | py | Python | strstr/3-2.py | stonemary/lintcode_solutions | f41fd0e56fb88ab54d0ab624977bff1623a6d33a | [
"Apache-2.0"
] | null | null | null | strstr/3-2.py | stonemary/lintcode_solutions | f41fd0e56fb88ab54d0ab624977bff1623a6d33a | [
"Apache-2.0"
] | null | null | null | strstr/3-2.py | stonemary/lintcode_solutions | f41fd0e56fb88ab54d0ab624977bff1623a6d33a | [
"Apache-2.0"
] | null | null | null | # time 15 mins
# used time 15 mins
# time 15 mins
# used time 15 mins
# this is actually a correct solution
# the code i submitted a day ago, which passed lintcode, is actually wrong after i looked KMP up
# the previous version does not take care of the situations where the target contains repeatitive elements
| 34.543478 | 118 | 0.570799 |
f2e1fc7cc5cf4031b844d0facd03421c1cb64cd2 | 15,633 | py | Python | ProyectoFinal.py | T0N1R/Recommendation-System-python-neo4J | 09dd1bbefa7e436a1aeedf9ccc9160719ec3a353 | [
"MIT"
] | null | null | null | ProyectoFinal.py | T0N1R/Recommendation-System-python-neo4J | 09dd1bbefa7e436a1aeedf9ccc9160719ec3a353 | [
"MIT"
] | null | null | null | ProyectoFinal.py | T0N1R/Recommendation-System-python-neo4J | 09dd1bbefa7e436a1aeedf9ccc9160719ec3a353 | [
"MIT"
] | null | null | null | # -*- coding: cp1252 -*-
# -*- coding: utf-8 -*-
"""
Algoritmos y Estructuras de Datos
Proyecto Final
Antonio Reyes #17273
Esteban Cabrera #17781
Miguel #17102
"""
import random
import xlrd
file_location = "C:/Users/Antonio/Desktop/Recommendation-System-python-neo4J-master/Database.xlsx"
workbook = xlrd.open_workbook(file_location)
sheet = workbook.sheet_by_index(0)
from neo4jrestclient.client import GraphDatabase
db = GraphDatabase("http://localhost:7474",username="neo4j", password="1111")
dataB = db.labels.create("Database")
gen = db.labels.create("Genero")
#se crea un diccionario (como vimos en hashmaps)
database = {}
#donde se guardan los generos de las series que ya se vieron
historial = []
#en el for se puede poner sheet.nrows para imprimir todo
#se utiliza el cdigo mostrado en este link para mostrar los generos que se repiten ms veces
#https://stackoverflow.com/questions/3594514/how-to-find-most-common-elements-of-a-list
#mtodo para mostrar todas las series y peliculas de un genero
#******************************************************************************************************
#*******************************************************************************************************
menu()
opcion = input("Option: ")
print ("**********************************")
print ("**********************************")
while(opcion != 9):
if(opcion == 0):
add_Excel()
print ("**********************************")
print ("**********************************")
print ("Values added to Database")
menu()
opcion = input("Option: ")
elif(opcion == 1):
add_database()
print ("**********************************")
print ("**********************************")
menu()
opcion = input("Option: ")
elif(opcion == 2):
watch()
print ("**********************************")
print ("**********************************")
menu()
opcion = input("Option: ")
elif(opcion == 3):
show_genre()
print ("**********************************")
print ("**********************************")
menu()
opcion = input("Option: ")
else:
print("This option is not valid")
print ("**********************************")
print ("**********************************")
menu()
opcion = input("Option: ")
print ("Thanks for using the program")
| 30.414397 | 147 | 0.515832 |
f2e37e6fb52ee6d2e740ecb159b5517384b2a2c4 | 324 | py | Python | www/async_flask/__init__.py | StarAhri/flask | facd476065c945f3467d4bfd7bc4ca910cc27d74 | [
"BSD-3-Clause"
] | null | null | null | www/async_flask/__init__.py | StarAhri/flask | facd476065c945f3467d4bfd7bc4ca910cc27d74 | [
"BSD-3-Clause"
] | null | null | null | www/async_flask/__init__.py | StarAhri/flask | facd476065c945f3467d4bfd7bc4ca910cc27d74 | [
"BSD-3-Clause"
] | null | null | null |
from flask import Flask
import time
from _thread import get_ident
app=Flask(__name__)
if __name__=="__main__":
app.run(port=6003) | 17.052632 | 42 | 0.675926 |
f2e440f4b6da4c3dc8c1545aee15d9066fc4d3f5 | 724 | py | Python | codility-python/util/test_strings.py | mforoni/codility | be5005e96612dd7bb33b88bb76a590d28084b032 | [
"MIT"
] | null | null | null | codility-python/util/test_strings.py | mforoni/codility | be5005e96612dd7bb33b88bb76a590d28084b032 | [
"MIT"
] | null | null | null | codility-python/util/test_strings.py | mforoni/codility | be5005e96612dd7bb33b88bb76a590d28084b032 | [
"MIT"
] | null | null | null | import unittest
import util.strings as strings
if __name__ == '__main__':
unittest.main()
| 31.478261 | 97 | 0.686464 |
f2e49a7f41a62f84a3de746b66ce03eb20e0b955 | 1,395 | py | Python | ipython/data/parseSource/input.py | cainja/RMG-Py | f9ad0f4244e476a28768c8a4a37410ad55bcd556 | [
"MIT"
] | 1 | 2020-01-14T09:12:22.000Z | 2020-01-14T09:12:22.000Z | ipython/data/parseSource/input.py | speth/RMG-Py | 1d2c2b684580396e984459d9347628a5ceb80e2e | [
"MIT"
] | 72 | 2016-06-06T18:18:49.000Z | 2019-11-17T03:21:10.000Z | ipython/data/parseSource/input.py | speth/RMG-Py | 1d2c2b684580396e984459d9347628a5ceb80e2e | [
"MIT"
] | 3 | 2017-09-22T15:47:37.000Z | 2021-12-30T23:51:47.000Z | # Data sources
database(
thermoLibraries = ['primaryThermoLibrary'],
reactionLibraries = [('C3', False)],
seedMechanisms = ['GRI-Mech3.0'],
kineticsDepositories = ['training'],
kineticsFamilies = 'default',
kineticsEstimator = 'rate rules',
)
# List of species
species(
label='ethane',
reactive=True,
structure=SMILES("CC"),
)
species(
label='N2',
reactive=False,
structure=adjacencyList("""
1 N u0 p1 c0 {2,T}
2 N u0 p1 c0 {1,T}
"""),
)
# Reaction systems
simpleReactor(
temperature=(1350,'K'),
pressure=(1.0,'bar'),
initialMoleFractions={
"ethane": 0.1,
"N2": 0.9
},
terminationConversion={
'ethane': 0.9,
},
terminationTime=(1e6,'s'),
)
simulator(
atol=1e-16,
rtol=1e-8,
)
model(
toleranceKeepInEdge=0.0,
toleranceMoveToCore=0.1,
toleranceInterruptSimulation=0.1,
maximumEdgeSpecies=100000,
)
options(
units='si',
saveRestartPeriod=None,
generateOutputHTML=True,
generatePlots=False,
saveEdgeSpecies=True,
saveSimulationProfiles=True,
verboseComments=True,
)
pressureDependence(
method='modified strong collision',
maximumGrainSize=(0.5,'kcal/mol'),
minimumNumberOfGrains=250,
temperatures=(300,2200,'K',2),
pressures=(0.01,100,'bar',3),
interpolation=('Chebyshev', 6, 4),
maximumAtoms=15,
)
| 19.375 | 47 | 0.632258 |
f2e593a65e27e8bb4c6dbcd20c5d00538ad0aa1c | 438 | py | Python | simbench/__init__.py | BaraaUniKassel/simbench | eca679bbef2b7c61d4a42dd9d9716ad969ff6f77 | [
"BSD-3-Clause"
] | null | null | null | simbench/__init__.py | BaraaUniKassel/simbench | eca679bbef2b7c61d4a42dd9d9716ad969ff6f77 | [
"BSD-3-Clause"
] | null | null | null | simbench/__init__.py | BaraaUniKassel/simbench | eca679bbef2b7c61d4a42dd9d9716ad969ff6f77 | [
"BSD-3-Clause"
] | null | null | null | # Copyright (c) 2019-2021 by University of Kassel, Tu Dortmund, RWTH Aachen University and Fraunhofer
# Institute for Energy Economics and Energy System Technology (IEE) Kassel and individual
# contributors (see AUTHORS file for details). All rights reserved.
__version__ = "1.3.0"
__author__ = "smeinecke"
import os
sb_dir = os.path.dirname(os.path.realpath(__file__))
from simbench.converter import *
from simbench.networks import *
| 33.692308 | 101 | 0.783105 |
f2e72fd64f8c76f1c9fc74fe2d074f594b42d146 | 215 | py | Python | src/output_module.py | abhishekpandeyIT/Virtual_Intelligent_Personal_Agent | 786261fbcf1468bcbaee9f6d17aea3f3cc06f81e | [
"Apache-2.0"
] | null | null | null | src/output_module.py | abhishekpandeyIT/Virtual_Intelligent_Personal_Agent | 786261fbcf1468bcbaee9f6d17aea3f3cc06f81e | [
"Apache-2.0"
] | null | null | null | src/output_module.py | abhishekpandeyIT/Virtual_Intelligent_Personal_Agent | 786261fbcf1468bcbaee9f6d17aea3f3cc06f81e | [
"Apache-2.0"
] | null | null | null | import assistantResume
from speak_module import speak
from database import speak_is_on | 23.888889 | 44 | 0.702326 |
f2ed016efef1c89871a2e33d8718c95390697abc | 3,545 | py | Python | vk_bot/needrework/relation.py | triangle1984/vk-bot | 39dea7bf8043e791ef079ea1ac6616f95d5b5312 | [
"BSD-3-Clause"
] | 3 | 2019-11-05T12:32:04.000Z | 2019-11-15T14:29:46.000Z | vk_bot/needrework/relation.py | anar66/vk-bot | 39dea7bf8043e791ef079ea1ac6616f95d5b5312 | [
"BSD-3-Clause"
] | 1 | 2019-12-11T20:26:31.000Z | 2019-12-11T20:26:31.000Z | vk_bot/needrework/relation.py | triangle1984/vk-bot | 39dea7bf8043e791ef079ea1ac6616f95d5b5312 | [
"BSD-3-Clause"
] | 5 | 2019-11-20T14:20:30.000Z | 2022-02-05T10:37:01.000Z | import vk_api
from vk_api.utils import get_random_id
from vk_bot.core.sql.vksql import * | 48.561644 | 172 | 0.598025 |
f2ed7a6bb514c982bc41d3c33e724e9e6365650e | 1,746 | py | Python | wallpaperdownloader/main.py | k-vinogradov/wallpaper-downloader | 568c6a1e3a2307f710bf6fe313b39da2d620213a | [
"MIT"
] | null | null | null | wallpaperdownloader/main.py | k-vinogradov/wallpaper-downloader | 568c6a1e3a2307f710bf6fe313b39da2d620213a | [
"MIT"
] | null | null | null | wallpaperdownloader/main.py | k-vinogradov/wallpaper-downloader | 568c6a1e3a2307f710bf6fe313b39da2d620213a | [
"MIT"
] | null | null | null | """Wallpaper Downloader Main Module."""
import argparse
import asyncio
import logging
import sys
from datetime import datetime
from wallpaperdownloader.downloader import download, LOGGER_NAME
def abort(*args):
"""Print message to the stderr and exit the program."""
print(*args, file=sys.stderr)
sys.exit(1)
def check_args(args):
"""Check if arguments are valid."""
month, year = (args.month, args.year)
if month < 1 or month > 12:
abort("Invalid month number %d", month)
date_string = f"{year:04}{month:02}"
if date_string < "201205":
abort("There are no wallpapers older than May 2012")
if date_string > datetime.now().strftime("%Y%M"):
abort("Too early... come a bit later")
def configure_logger(level):
"""Configure console log output."""
logger = logging.getLogger(LOGGER_NAME)
handler = logging.StreamHandler()
logger.setLevel(level)
handler.setLevel(level)
logger.addHandler(handler)
def main():
"""Run WD main routine."""
parser = argparse.ArgumentParser(
description="Download wallpapers from www.smashingmagazine.com"
)
parser.add_argument("month", type=int, help="Month number")
parser.add_argument("year", type=int, help="Year")
parser.add_argument("resolution", type=str, help="Image resolution")
parser.add_argument(
"-v", "--verbose", action="store_true", help="Enable verbose output"
)
args = parser.parse_args()
check_args(args)
configure_logger(logging.DEBUG if args.verbose else logging.INFO)
year, month, res = (args.year, args.month, args.resolution)
asyncio.get_event_loop().run_until_complete(download(year, month, res))
if __name__ == "__main__":
main()
| 29.59322 | 76 | 0.683849 |
f2ee02add396584dc919e32b6bdd9a63f34df039 | 4,512 | py | Python | Lib/site-packages/hackedit/app/common.py | fochoao/cpython | 3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9 | [
"bzip2-1.0.6",
"0BSD"
] | null | null | null | Lib/site-packages/hackedit/app/common.py | fochoao/cpython | 3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9 | [
"bzip2-1.0.6",
"0BSD"
] | 20 | 2021-05-03T18:02:23.000Z | 2022-03-12T12:01:04.000Z | Lib/site-packages/hackedit/app/common.py | fochoao/cpython | 3dc84b260e5bced65ebc2c45c40c8fa65f9b5aa9 | [
"bzip2-1.0.6",
"0BSD"
] | null | null | null | """
Functions shared across the main window, the welcome window and the system
tray.
"""
import os
import qcrash.api as qcrash
from PyQt5 import QtWidgets
from hackedit.app import templates, settings
from hackedit.app.dialogs.dlg_about import DlgAbout
from hackedit.app.dialogs.dlg_template_answers import DlgTemplateVars
from hackedit.app.dialogs.preferences import DlgPreferences
from hackedit.app.wizards.new import WizardNew
def show_about(window):
"""
Shows the about dialog on the parent window
:param window: parent window.
"""
DlgAbout.show_about(window)
def check_for_update(*args, **kwargs):
"""
Checks for update.
:param window: parent window
:param show_up_to_date_msg: True to show a message box when the
app is up to date.
"""
# todo: improve this: make an update wizard that update both hackedit
# and its packages (to ensure compatiblity)
# if pip_tools.check_for_update('hackedit', __version__):
# answer = QtWidgets.QMessageBox.question(
# window, 'Check for update',
# 'A new version of HackEdit is available...\n'
# 'Would you like to install it now?')
# if answer == QtWidgets.QMessageBox.Yes:
# try:
# status = pip_tools.graphical_install_package(
# 'hackedit', autoclose_dlg=True)
# except RuntimeError as e:
# QtWidgets.qApp.processEvents()
# QtWidgets.QMessageBox.warning(
# window, 'Update failed',
# 'Failed to update hackedit: %r' % e)
# else:
# QtWidgets.qApp.processEvents()
# if status:
# QtWidgets.QMessageBox.information(
# window, 'Check for update',
# 'Update completed with sucess, the application '
# 'will now restart...')
# window.app.restart()
# else:
# QtWidgets.QMessageBox.warning(
# window, 'Update failed',
# 'Failed to update hackedit')
# else:
# _logger().debug('HackEdit up to date')
# if show_up_to_date_msg:
# QtWidgets.QMessageBox.information(
# window, 'Check for update', 'HackEdit is up to date.')
pass
| 32 | 77 | 0.623005 |
f2ee858e562eab312d062843fa52105cd18f06ef | 4,778 | py | Python | pygame_menu/locals.py | apuly/pygame-menu | 77bf8f2c8913de5a24674ee0d0d2c7c9b816a58b | [
"MIT"
] | 419 | 2017-05-01T20:00:08.000Z | 2022-03-29T13:49:16.000Z | pygame_menu/locals.py | apuly/pygame-menu | 77bf8f2c8913de5a24674ee0d0d2c7c9b816a58b | [
"MIT"
] | 363 | 2017-11-05T17:42:48.000Z | 2022-03-27T21:13:33.000Z | pygame_menu/locals.py | apuly/pygame-menu | 77bf8f2c8913de5a24674ee0d0d2c7c9b816a58b | [
"MIT"
] | 167 | 2017-05-02T20:42:24.000Z | 2022-03-24T16:17:38.000Z | """
pygame-menu
https://github.com/ppizarror/pygame-menu
LOCALS
Local constants.
License:
-------------------------------------------------------------------------------
The MIT License (MIT)
Copyright 2017-2021 Pablo Pizarro R. @ppizarror
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-------------------------------------------------------------------------------
"""
__all__ = [
# Alignment
'ALIGN_CENTER',
'ALIGN_LEFT',
'ALIGN_RIGHT',
# Data types
'INPUT_FLOAT',
'INPUT_INT',
'INPUT_TEXT',
# Positioning
'POSITION_CENTER',
'POSITION_EAST',
'POSITION_NORTH',
'POSITION_NORTHEAST',
'POSITION_SOUTHWEST',
'POSITION_SOUTH',
'POSITION_SOUTHEAST',
'POSITION_NORTHWEST',
'POSITION_WEST',
# Orientation
'ORIENTATION_HORIZONTAL',
'ORIENTATION_VERTICAL',
# Scrollarea
'SCROLLAREA_POSITION_BOTH_HORIZONTAL',
'SCROLLAREA_POSITION_BOTH_VERTICAL',
'SCROLLAREA_POSITION_FULL',
# Cursors
'CURSOR_ARROW',
'CURSOR_CROSSHAIR',
'CURSOR_HAND',
'CURSOR_IBEAM',
'CURSOR_NO',
'CURSOR_SIZEALL',
'CURSOR_SIZENESW',
'CURSOR_SIZENS',
'CURSOR_SIZENWSE',
'CURSOR_SIZEWE',
'CURSOR_WAIT',
'CURSOR_WAITARROW',
# Event compatibility
'FINGERDOWN',
'FINGERMOTION',
'FINGERUP'
]
import pygame as __pygame
# Alignment
ALIGN_CENTER = 'align-center'
ALIGN_LEFT = 'align-left'
ALIGN_RIGHT = 'align-right'
# Input data type
INPUT_FLOAT = 'input-float'
INPUT_INT = 'input-int'
INPUT_TEXT = 'input-text'
# Position
POSITION_CENTER = 'position-center'
POSITION_EAST = 'position-east'
POSITION_NORTH = 'position-north'
POSITION_NORTHEAST = 'position-northeast'
POSITION_NORTHWEST = 'position-northwest'
POSITION_SOUTH = 'position-south'
POSITION_SOUTHEAST = 'position-southeast'
POSITION_SOUTHWEST = 'position-southwest'
POSITION_WEST = 'position-west'
# Menu ScrollArea position
SCROLLAREA_POSITION_BOTH_HORIZONTAL = 'scrollarea-position-both-horizontal'
SCROLLAREA_POSITION_BOTH_VERTICAL = 'scrollarea_position-both-vertical'
SCROLLAREA_POSITION_FULL = 'scrollarea-position-full'
# Orientation
ORIENTATION_HORIZONTAL = 'orientation-horizontal'
ORIENTATION_VERTICAL = 'orientation-vertical'
# Cursors
CURSOR_ARROW = None if not hasattr(__pygame, 'SYSTEM_CURSOR_ARROW') else __pygame.SYSTEM_CURSOR_ARROW
CURSOR_CROSSHAIR = None if not hasattr(__pygame, 'SYSTEM_CURSOR_CROSSHAIR') else __pygame.SYSTEM_CURSOR_CROSSHAIR
CURSOR_HAND = None if not hasattr(__pygame, 'SYSTEM_CURSOR_HAND') else __pygame.SYSTEM_CURSOR_HAND
CURSOR_IBEAM = None if not hasattr(__pygame, 'SYSTEM_CURSOR_IBEAM') else __pygame.SYSTEM_CURSOR_IBEAM
CURSOR_NO = None if not hasattr(__pygame, 'SYSTEM_CURSOR_NO') else __pygame.SYSTEM_CURSOR_NO
CURSOR_SIZEALL = None if not hasattr(__pygame, 'SYSTEM_CURSOR_SIZEALL') else __pygame.SYSTEM_CURSOR_SIZEALL
CURSOR_SIZENESW = None if not hasattr(__pygame, 'SYSTEM_CURSOR_SIZENESW') else __pygame.SYSTEM_CURSOR_SIZENESW
CURSOR_SIZENS = None if not hasattr(__pygame, 'SYSTEM_CURSOR_SIZENS') else __pygame.SYSTEM_CURSOR_SIZENS
CURSOR_SIZENWSE = None if not hasattr(__pygame, 'SYSTEM_CURSOR_SIZENWSE') else __pygame.SYSTEM_CURSOR_SIZENWSE
CURSOR_SIZEWE = None if not hasattr(__pygame, 'SYSTEM_CURSOR_SIZEWE') else __pygame.SYSTEM_CURSOR_SIZEWE
CURSOR_WAIT = None if not hasattr(__pygame, 'SYSTEM_CURSOR_WAIT') else __pygame.SYSTEM_CURSOR_WAIT
CURSOR_WAITARROW = None if not hasattr(__pygame, 'SYSTEM_CURSOR_WAITARROW') else __pygame.SYSTEM_CURSOR_WAITARROW
# Events compatibility with lower pygame versions
FINGERDOWN = -1 if not hasattr(__pygame, 'FINGERDOWN') else __pygame.FINGERDOWN
FINGERMOTION = -1 if not hasattr(__pygame, 'FINGERMOTION') else __pygame.FINGERMOTION
FINGERUP = -1 if not hasattr(__pygame, 'FINGERUP') else __pygame.FINGERUP
| 35.392593 | 113 | 0.75429 |
f2efb530b1ef641d5c0b78f798aa8a3ec91dbadc | 3,184 | py | Python | functions/constants.py | Katolus/functions | c4aff37231432ce6ef4ed6b37c8b5baaede5975a | [
"MIT"
] | 4 | 2022-03-08T08:46:44.000Z | 2022-03-19T07:52:11.000Z | functions/constants.py | Katolus/functions | c4aff37231432ce6ef4ed6b37c8b5baaede5975a | [
"MIT"
] | 114 | 2021-10-30T05:48:54.000Z | 2022-03-06T10:57:00.000Z | functions/constants.py | Katolus/functions | c4aff37231432ce6ef4ed6b37c8b5baaede5975a | [
"MIT"
] | null | null | null | import os
import sys
from enum import Enum
from enum import unique
from typing import List
# Set system constants based on the current platform
if sys.platform.startswith("win32"):
DEFAULT_SYSTEM_CONFIG_PATH = os.path.join(os.environ["APPDATA"], "config")
elif sys.platform.startswith("linux"):
DEFAULT_SYSTEM_CONFIG_PATH = os.path.join(os.environ["HOME"], ".config")
elif sys.platform.startswith("darwin"):
DEFAULT_SYSTEM_CONFIG_PATH = os.path.join(
os.environ["HOME"], "Library", "Application Support"
)
else:
DEFAULT_SYSTEM_CONFIG_PATH = os.path.join(os.environ["HOME"], "config")
# System configuration
PACKAGE_BASE_CONFIG_FOLDER = "ventress-functions"
PACKAGE_CONFIG_DIR_PATH = os.path.join(
DEFAULT_SYSTEM_CONFIG_PATH, PACKAGE_BASE_CONFIG_FOLDER
)
DEFAULT_LOG_FILENAME = "functions.log"
DEFAULT_LOG_FILEPATH = os.path.join(PACKAGE_CONFIG_DIR_PATH, DEFAULT_LOG_FILENAME)
# Project constants
PROJECT_VENDOR = "ventress"
PROJECT_MARK = "ventress-functions"
| 25.269841 | 83 | 0.666143 |
f2f174769c76e5752b21c530463b089bffb53275 | 1,076 | py | Python | mkmk/extend.py | tundra/mkmk | 4ca7a3e337dcc3345fb01ea205ae05c397f396b0 | [
"Apache-2.0"
] | null | null | null | mkmk/extend.py | tundra/mkmk | 4ca7a3e337dcc3345fb01ea205ae05c397f396b0 | [
"Apache-2.0"
] | null | null | null | mkmk/extend.py | tundra/mkmk | 4ca7a3e337dcc3345fb01ea205ae05c397f396b0 | [
"Apache-2.0"
] | null | null | null | #- Copyright 2014 GOTO 10.
#- Licensed under the Apache License, Version 2.0 (see LICENSE).
## Utilities used for creating build extensions.
from abc import ABCMeta, abstractmethod
# Abstract superclass of the tool sets loaded implicitly into each context.
# There can be many of these, one for each context.
# Controller for this kind of extension. There is only one of these for each
# kind of extension.
| 25.619048 | 76 | 0.737918 |
f2f29f0872d8843eb8b228cb03ec5eb0946af9b8 | 32,864 | py | Python | tracklib/model/model.py | xueyuelei/tracklib | d33912baf1bebd1605d5e9c8dfc31484c96628cc | [
"MIT"
] | 5 | 2020-03-04T11:36:19.000Z | 2020-06-21T16:49:45.000Z | tracklib/model/model.py | xueyuelei/tracklib | d33912baf1bebd1605d5e9c8dfc31484c96628cc | [
"MIT"
] | null | null | null | tracklib/model/model.py | xueyuelei/tracklib | d33912baf1bebd1605d5e9c8dfc31484c96628cc | [
"MIT"
] | null | null | null | # -*- coding: utf-8 -*-
'''
REFERENCES:
[1] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, "Estimation with Applications to Tracking and Navigation," New York: John Wiley and Sons, Inc, 2001.
[2] R. A. Singer, "Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets," in IEEE Transactions on Aerospace and Electronic Systems, vol. AES-6, no. 4, pp. 473-483, July 1970.
[3] X. Rong Li and V. P. Jilkov, "Survey of maneuvering target tracking. Part I. Dynamic models," in IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1333-1364, Oct. 2003.
[4] W. Koch, "Tracking and Sensor Data Fusion: Methodological Framework and Selected Applications," Heidelberg, Germany: Springer, 2014.
[5] Mo Longbin, Song Xiaoquan, Zhou Yiyu, Sun Zhong Kang and Y. Bar-Shalom, "Unbiased converted measurements for tracking," in IEEE Transactions on Aerospace and Electronic Systems, vol. 34, no. 3, pp. 1023-1027, July 1998
'''
from __future__ import division, absolute_import, print_function
__all__ = [
'F_poly', 'F_singer', 'F_van_keuk', 'Q_poly_dc', 'Q_poly_dd', 'Q_singer',
'Q_van_keuk', 'H_pos_only', 'R_pos_only', 'F_cv', 'f_cv', 'f_cv_jac',
'Q_cv_dc', 'Q_cv_dd', 'H_cv', 'h_cv', 'h_cv_jac', 'R_cv', 'F_ca', 'f_ca',
'f_ca_jac', 'Q_ca_dc', 'Q_ca_dd', 'H_ca', 'h_ca', 'h_ca_jac', 'R_ca',
'F_ct', 'f_ct', 'f_ct_jac', 'Q_ct', 'h_ct', 'h_ct_jac', 'R_ct',
'convert_meas', 'model_switch', 'trajectory_cv', 'trajectory_ca',
'trajectory_ct', 'trajectory_generator', 'trajectory_with_pd',
'trajectory_to_meas'
]
import numbers
import numpy as np
import scipy.linalg as lg
import scipy.stats as st
import scipy.special as sl
from tracklib.utils import sph2cart, pol2cart
def F_poly(order, axis, T):
'''
This polynomial transition matrix is used with discretized continuous-time
models as well as direct discrete-time models. see section 6.2 and 6.3 in [1].
Parameters
----------
order : int
The order of the filter. If order=2, then it is constant velocity,
3 means constant acceleration, 4 means constant jerk, etc.
axis : int
Motion directions in Cartesian coordinate. If axis=1, it means x-axis,
2 means x-axis and y-axis, etc.
T : float
The time-duration of the propagation interval.
Returns
-------
F : ndarray
The state transition matrix under a linear dynamic model of the given order
and axis.
'''
assert (order >= 1)
assert (axis >= 1)
F_base = np.zeros((order, order))
tmp = np.arange(order)
F_base[0, :] = T**tmp / sl.factorial(tmp)
for row in range(1, order):
F_base[row, row:] = F_base[0, :order - row]
F = np.kron(np.eye(axis), F_base)
return F
def F_singer(axis, T, tau=20):
'''
Get the singer model transition matrix, see section 8.2 in [1].
Parameters
----------
axis : int
Motion directions in Cartesian coordinate. If axis=1, it means x-axis,
2 means x-axis and y-axis, etc.
T : float
The time-duration of the propagation interval.
tau : float
The time constant of the target acceleration autocorrelation, that is, the
decorrelation time is approximately 2*tau. A reasonable range of tau for
Singer's model is between 5 and 20 seconds. Typical values of tau for aircraft
are 20s for slow turn and 5s for an evasive maneuver. If this parameter
is omitted, the default value of 20 is used.The time constant is assumed
the same for all dimensions of motion, so this parameter is scalar.
Returns
-------
F : ndarray
The state transition matrix under a Gauss-Markov dynamic model of the given
axis.
'''
assert (axis >= 1)
alpha = 1 / tau
F_base = np.zeros((3, 3))
aT = alpha * T
eaT = np.exp(-aT)
F_base[0, 0] = 1
F_base[0, 1] = T
F_base[0, 2] = (aT - 1 + eaT) * tau**2
F_base[1, 1] = 1
F_base[1, 2] = (1 - eaT) * tau
F_base[2, 2] = eaT
F = np.kron(np.eye(axis), F_base)
return F
def F_van_keuk(axis, T, tau=20):
'''
Get the state transition matrix for the van Keuk dynamic model. This is a
direct discrete-time model such that the acceleration advances in each
dimension over time as a[k+1]=exp(-T/tau)a[k]+std*sqrt(1-exp(-2*T/tau))*v[k],
see section 2.2.1 in [4]
Parameters
----------
axis : int
Motion directions in Cartesian coordinate. If axis=1, it means x-axis,
2 means x-axis and y-axis, etc.
T : float
The time-duration of the propagation interval.
tau : float
The time constant of the target acceleration autocorrelation, that is, the
decorrelation time is approximately 2*tau. A reasonable range of tau for
Singer's model is between 5 and 20 seconds. Typical values of tau for aircraft
are 20s for slow turn and 5s for an evasive maneuver. If this parameter
is omitted, the default value of 20 is used.The time constant is assumed
the same for all dimensions of motion, so this parameter is scalar.
Returns
-------
F : ndarray
The state transition matrix under a Gauss-Markov dynamic model of the given
axis.
'''
assert (axis >= 1)
F_base = F_poly(3, 1, T)
F_base[-1, -1] = np.exp(-T / tau)
F = np.kron(np.eye(axis), F_base)
return F
def Q_poly_dc(order, axis, T, std):
'''
Process noise covariance matrix used with discretized continuous-time models.
see section 6.2 in [1].
Parameters
----------
order : int
The order of the filter. If order=2, then it is constant velocity,
3 means constant acceleration, 4 means constant jerk, etc.
axis : int
Motion directions in Cartesian coordinate. If axis=1, it means x-axis,
2 means x-axis and y-axis, etc.
T : float
The time-duration of the propagation interval.
std : number, list
The standard deviation (square root of intensity) of continuous-time porcess noise
Returns
-------
Q : ndarray
Process noise convariance
'''
assert (order >= 1)
assert (axis >= 1)
if isinstance(std, numbers.Number):
std = [std] * axis
sel = np.arange(order - 1, -1, -1)
col, row = np.meshgrid(sel, sel)
Q_base = T**(col + row + 1) / (sl.factorial(col) * sl.factorial(row) * (col + row + 1))
Q = np.kron(np.diag(std)**2, Q_base)
return Q
def Q_poly_dd(order, axis, T, std, ht=0):
'''
Process noise covariance matrix used with direct discrete-time models.
see section 6.3 in [1].
Parameters
----------
order : int
The order of the filter. If order=2, then it is constant velocity,
3 means constant acceleration, 4 means constant jerk, etc.
axis : int
Motion directions in Cartesian coordinate. If axis=1, it means x-axis,
2 means x-axis and y-axis, etc.
T : float
The time-duration of the propagation interval.
std : number, list
The standard deviation of discrete-time porcess noise
ht : int
ht means that the order of the noise is `ht` greater than the highest order
of the state, e.g., if the highest order of state is acceleration, then ht=0
means that the noise is of the same order as the highest order of state, that
is, the noise is acceleration and the model is DWPA, see section 6.3.3 in [1].
If the highest order is velocity, the ht=1 means the noise is acceleration and
the model is DWNA, see section 6.3.2 in [1].
Returns
-------
Q : ndarray
Process noise convariance
Notes
-----
For the model to which the alpha filter applies, we have order=0, ht=2.
Likewise, for the alpha-beta filter, order=1, ht=1 and for the alpha-
beta-gamma filter, order=2, ht=0
'''
assert (order >= 1)
assert (axis >= 1)
if isinstance(std, numbers.Number):
std = [std] * axis
sel = np.arange(ht + order - 1, ht - 1, -1)
L = T**sel / sl.factorial(sel)
Q_base = np.outer(L, L)
Q = np.kron(np.diag(std)**2, Q_base)
return Q
def Q_singer(axis, T, std, tau=20):
'''
Process noise covariance matrix used with Singer models. see section 8.2 in [1]
Parameters
----------
axis : int
Motion directions in Cartesian coordinate. If axis=1, it means x-axis,
2 means x-axis and y-axis, etc.
T : float
The time-duration of the propagation interval.
std : number, list
std is the instantaneous standard deviation of the acceleration knowm as
Ornstein-Uhlenbeck process, which can be obtained by assuming it to be
1. Equal to a maxmum acceleration a_M with probability p_M and -a_M with the same
probability
2. Equal to zero with probability p_0
3. Uniformly distributed in [-a_M, a_M] with the remaining probability mass
All parameters mentioned above are chosen by the designer. So the expected std^2
is (a_M^2 / 3)*(1 + 4*p_M - p_0)
tau : float
The time constant of the target acceleration autocorrelation, that is, the
decorrelation time is approximately 2*tau. A reasonable range of tau for
Singer's model is between 5 and 20 seconds. Typical values of tau for aircraft
are 20s for slow turn and 5s for an evasive maneuver. If this parameter
is omitted, the default value of 20 is used.The time constant is assumed
the same for all dimensions of motion, so this parameter is scalar.
Returns
-------
Q : ndarray
Process noise convariance
'''
assert (axis >= 1)
if isinstance(std, numbers.Number):
std = [std] * axis
alpha = 1 / tau
aT = alpha * T
eaT = np.exp(-aT)
e2aT = np.exp(-2 * aT)
q11 = tau**4 * (1 - e2aT + 2 * aT + 2 * aT**3 / 3 - 2 * aT**2 - 4 * aT * eaT)
q12 = tau**3 * (e2aT + 1 - 2 * eaT + 2 * aT * eaT - 2 * aT + aT**2)
q13 = tau**2 * (1 - e2aT - 2 * aT * eaT)
q22 = tau**2 * (4 * eaT - 3 - e2aT + 2 * aT)
q23 = tau * (e2aT + 1 - 2 * eaT)
q33 = 1 - e2aT
Q_base = np.array([[q11, q12, q13],
[q12, q22, q23],
[q13, q23, q33]], dtype=float)
Q = np.kron(np.diag(std)**2, Q_base)
return Q
def Q_van_keuk(axis, T, std, tau=20):
'''
Process noise covariance matrix for a Van Keuk dynamic model, see section 2.2.1 in [4]
Parameters
----------
axis : int
Motion directions in Cartesian coordinate. If axis=1, it means x-axis,
2 means x-axis and y-axis, etc.
T : float
The time-duration of the propagation interval.
std : number, list
std is the instantaneous standard deviation of the acceleration knowm as
Ornstein-Uhlenbeck process, which can be obtained by assuming it to be
1. Equal to a maxmum acceleration a_M with probability p_M and -a_M with the same
probability
2. Equal to zero with probability p_0
3. Uniformly distributed in [-a_M, a_M] with the remaining probability mass
All parameters mentioned above are chosen by the designer. So the expected std^2
is (a_M^2 / 3)*(1 + 4*p_M - p_0)
tau : float
The time constant of the target acceleration autocorrelation, that is, the
decorrelation time is approximately 2*tau. A reasonable range of tau for
Singer's model is between 5 and 20 seconds. Typical values of tau for aircraft
are 20s for slow turn and 5s for an evasive maneuver. If this parameter
is omitted, the default value of 20 is used. The time constant is assumed
the same for all dimensions of motion, so this parameter is scalar.
Returns
-------
Q : ndarray
Process noise convariance
'''
assert (axis >= 1)
if isinstance(std, numbers.Number):
std = [std] * axis
Q_base = np.diag([0., 0., 1.])
Q_base = (1 - np.exp(-2 * T / tau)) * Q_base
Q = np.kron(np.diag(std)**2, Q_base)
return Q
def H_pos_only(order, axis):
'''
Position-only measurement matrix is used with discretized continuous-time models
as well as direct discrete-time models. see section 6.5 in [1].
Parameters
----------
order : int
The order of the filter. If order=2, then it is constant velocity,
3 means constant acceleration, 4 means constant jerk, etc.
axis : int
Motion directions in Cartesian coordinate. If axis=1, it means x-axis,
2 means x-axis and y-axis, etc.
Returns
-------
H : ndarray
the measurement or obervation matrix
'''
assert (order >= 1)
assert (axis >= 1)
H = np.eye(order * axis)
H = H[::order]
return H
def R_pos_only(axis, std):
'''
Position-only measurement noise covariance matrix and the noise of each
axis is assumed to be uncorrelated.
Parameters
----------
axis : int
Motion directions in Cartesian coordinate. If axis=1, it means x-axis,
2 means x-axis and y-axis, etc.
Returns
-------
R : ndarray
the measurement noise covariance matrix
'''
assert (axis >= 1)
if isinstance(std, numbers.Number):
std = [std] * axis
R = np.diag(std)**2
return R
def trajectory_generator(record):
'''
record = {
'interval': [1, 1],
'start':
[
[0, 0, 0],
[0, 5, 0]
],
'pattern':
[
[
{'model': 'cv', 'length': 100, 'velocity': [250, 250, 0]},
{'model': 'ct', 'length': 25, 'turnrate': 30}
],
[
{'model': 'cv', 'length': 100, 'velocity': [250, 250, 0]},
{'model': 'ct', 'length': 30, 'turnrate': 30, 'velocity': 30}
]
],
'noise':
[
10 * np.eye(3), 10 * np.eye(3)
],
'pd':
[
0.9, 0.9
],
'entries': 2
}
'''
dim, order, axis = 9, 3, 3
ca_sel = range(dim)
acc_sel = range(2, dim, order)
cv_sel = np.setdiff1d(ca_sel, acc_sel)
ct_sel = np.setdiff1d(ca_sel, acc_sel)
insert_sel = [2, 4, 6]
interval = record['interval']
start = record['start']
pattern = record['pattern']
noise = record['noise']
entries = record['entries']
trajs_state = []
for i in range(entries):
head = np.kron(start[i], [1., 0., 0.])
state = np.kron(start[i], [1., 0., 0.]).reshape(1, -1)
for pat in pattern[i]:
if pat['model'] == 'cv':
ret, head_cv = trajectory_cv(head[cv_sel], interval[i], pat['length'], pat['velocity'])
ret = np.insert(ret, insert_sel, 0, axis=1)
head = ret[-1, ca_sel]
state[-1, acc_sel] = 0 # set the acceleration of previous state to zero
state[-1, cv_sel] = head_cv # change the velocity of previous state
state = np.vstack((state, ret))
elif pat['model'] == 'ca':
ret, head_ca = trajectory_ca(head, interval[i], pat['length'], pat['acceleration'])
head = ret[-1, ca_sel]
state[-1, ca_sel] = head_ca # change the acceleartion of previous state
state = np.vstack((state, ret))
elif pat['model'] == 'ct':
if 'velocity' in pat:
ret, head_ct = trajectory_ct(head[ct_sel], interval[i], pat['length'], pat['turnrate'], pat['velocity'])
else:
ret, head_ct = trajectory_ct(head[ct_sel], interval[i], pat['length'], pat['turnrate'])
ret = np.insert(ret, insert_sel, 0, axis=1)
head = ret[-1, ca_sel]
state[-1, acc_sel] = 0
state[-1, ct_sel] = head_ct
state = np.vstack((state, ret))
else:
raise ValueError('invalid model')
trajs_state.append(state)
# add noise
trajs_meas = []
for i in range(entries):
H = H_ca(axis)
traj_len = trajs_state[i].shape[0]
noi = st.multivariate_normal.rvs(cov=noise[i], size=traj_len)
trajs_meas.append(np.dot(trajs_state[i], H.T) + noi)
return trajs_state, trajs_meas
| 32.538614 | 222 | 0.549781 |
f2f2ed4004131258cff5093c7d766ecf35ed6781 | 848 | py | Python | orders/migrations/0005_auto_20210619_0848.py | garrett-rh/Slice-of-a-Pizza | 0e30e3a27b0e65e77cd52db1ef7db0470dea7a3f | [
"MIT"
] | 2 | 2020-05-15T10:20:13.000Z | 2021-04-03T12:38:37.000Z | orders/migrations/0005_auto_20210619_0848.py | garrett-rh/Slice-of-a-Pizza | 0e30e3a27b0e65e77cd52db1ef7db0470dea7a3f | [
"MIT"
] | 2 | 2020-05-15T10:39:42.000Z | 2021-11-26T03:01:19.000Z | orders/migrations/0005_auto_20210619_0848.py | garrett-rh/Slice-of-a-Pizza | 0e30e3a27b0e65e77cd52db1ef7db0470dea7a3f | [
"MIT"
] | 1 | 2021-11-12T12:10:57.000Z | 2021-11-12T12:10:57.000Z | # Generated by Django 3.2.4 on 2021-06-19 08:48
from django.db import migrations, models
| 29.241379 | 99 | 0.604953 |
f2f3e2812670f2833f39a5b2980f1ac2b7819f19 | 1,229 | py | Python | benchbuild/engine.py | sturmianseq/benchbuild | e3cc1a24e877261e90baf781aa67a9d6f6528dac | [
"MIT"
] | 11 | 2017-10-05T08:59:35.000Z | 2021-05-29T01:43:07.000Z | benchbuild/engine.py | sturmianseq/benchbuild | e3cc1a24e877261e90baf781aa67a9d6f6528dac | [
"MIT"
] | 326 | 2016-07-12T08:11:43.000Z | 2022-03-28T07:10:11.000Z | benchbuild/engine.py | sturmianseq/benchbuild | e3cc1a24e877261e90baf781aa67a9d6f6528dac | [
"MIT"
] | 13 | 2016-06-17T12:13:35.000Z | 2022-01-04T16:09:12.000Z | """
Orchestrate experiment execution.
"""
import typing as tp
import attr
from benchbuild.experiment import Experiment
from benchbuild.project import Project
from benchbuild.utils import actions, tasks
ExperimentCls = tp.Type[Experiment]
Experiments = tp.List[ExperimentCls]
ProjectCls = tp.Type[Project]
Projects = tp.List[ProjectCls]
ExperimentProject = tp.Tuple[ExperimentCls, ProjectCls]
Actions = tp.Sequence[actions.Step]
StepResults = tp.List[actions.StepResult]
| 25.604167 | 77 | 0.68511 |
f2f4e04a8614d8edbaff0777a5f1c47f01d09f5f | 6,751 | py | Python | misc_code/fcn_loss_layer.py | kbardool/mrcnn3 | f4cbb1e34de97ab08558b56fb7362647436edbd7 | [
"MIT"
] | 7 | 2018-08-07T13:56:32.000Z | 2021-04-06T11:07:20.000Z | misc_code/fcn_loss_layer.py | kbardool/Contextual-Inference-V2 | f4cbb1e34de97ab08558b56fb7362647436edbd7 | [
"MIT"
] | null | null | null | misc_code/fcn_loss_layer.py | kbardool/Contextual-Inference-V2 | f4cbb1e34de97ab08558b56fb7362647436edbd7 | [
"MIT"
] | 1 | 2019-02-01T06:52:18.000Z | 2019-02-01T06:52:18.000Z | """
Mask R-CNN
Dataset functions and classes.
Copyright (c) 2017 Matterport, Inc.
Licensed under the MIT License (see LICENSE for details)
Written by Waleed Abdulla
"""
import numpy as np
import tensorflow as tf
import keras.backend as KB
import keras.layers as KL
import keras.initializers as KI
import keras.engine as KE
import mrcnn.utils as utils
from mrcnn.loss import smooth_l1_loss
import pprint
pp = pprint.PrettyPrinter(indent=2, width=100)
##-----------------------------------------------------------------------
## FCN loss
##-----------------------------------------------------------------------
def fcn_loss_graph(target_masks, pred_masks):
# def fcn_loss_graph(input):
# target_masks, pred_masks = input
"""Mask binary cross-entropy loss for the masks head.
target_masks: [batch, height, width, num_classes].
pred_masks: [batch, height, width, num_classes] float32 tensor
"""
# Reshape for simplicity. Merge first two dimensions into one.
print('\n fcn_loss_graph ' )
print(' target_masks shape :', target_masks.get_shape())
print(' pred_masks shape :', pred_masks.get_shape())
mask_shape = tf.shape(target_masks)
print(' mask_shape shape :', mask_shape.shape)
target_masks = KB.reshape(target_masks, (-1, mask_shape[1], mask_shape[2]))
print(' target_masks shape :', target_masks.shape)
pred_shape = tf.shape(pred_masks)
print(' pred_shape shape :', pred_shape.shape)
pred_masks = KB.reshape(pred_masks, (-1, pred_shape[1], pred_shape[2]))
print(' pred_masks shape :', pred_masks.get_shape())
# Compute binary cross entropy. If no positive ROIs, then return 0.
# shape: [batch, roi, num_classes]
# Smooth-L1 Loss
loss = KB.switch(tf.size(target_masks) > 0,
smooth_l1_loss(y_true=target_masks, y_pred=pred_masks),
tf.constant(0.0))
loss = KB.mean(loss)
loss = KB.reshape(loss, [1, 1])
print(' loss type is :', type(loss))
return loss
##-----------------------------------------------------------------------
## FCN loss for L2 Normalized graph
##-----------------------------------------------------------------------
def fcn_norm_loss_graph(target_masks, pred_masks):
'''
Mask binary cross-entropy loss for the masks head.
target_masks: [batch, height, width, num_classes].
pred_masks: [batch, height, width, num_classes] float32 tensor
'''
print(type(target_masks))
pp.pprint(dir(target_masks))
# Reshape for simplicity. Merge first two dimensions into one.
print('\n fcn_norm_loss_graph ' )
print(' target_masks shape :', target_masks.shape)
print(' pred_masks shape :', pred_masks.shape)
print('\n L2 normalization ------------------------------------------------------')
output_shape=KB.int_shape(pred_masks)
print(' output shape is :' , output_shape, ' ', pred_masks.get_shape(), pred_masks.shape, tf.shape(pred_masks))
output_flatten = KB.reshape(pred_masks, (pred_masks.shape[0], -1, pred_masks.shape[-1]) )
output_norm1 = KB.l2_normalize(output_flatten, axis = 1)
output_norm = KB.reshape(output_norm1, KB.shape(pred_masks) )
print(' output_flatten : ', KB.int_shape(output_flatten) , ' Keras tensor ', KB.is_keras_tensor(output_flatten) )
print(' output_norm1 : ', KB.int_shape(output_norm1) , ' Keras tensor ', KB.is_keras_tensor(output_norm1) )
print(' output_norm final : ', KB.int_shape(output_norm) , ' Keras tensor ', KB.is_keras_tensor(output_norm) )
pred_masks1 = output_norm
print('\n L2 normalization ------------------------------------------------------')
gauss_flatten = KB.reshape(target_masks, (target_masks.shape[0], -1, target_masks.shape[-1]) )
gauss_norm1 = KB.l2_normalize(gauss_flatten, axis = 1)
gauss_norm = KB.reshape(gauss_norm1, KB.shape(target_masks))
print(' guass_flatten : ', KB.int_shape(gauss_flatten), 'Keras tensor ', KB.is_keras_tensor(gauss_flatten) )
print(' gauss_norm shape : ', KB.int_shape(gauss_norm1) , 'Keras tensor ', KB.is_keras_tensor(gauss_norm1) )
print(' gauss_norm final shape: ', KB.int_shape(gauss_norm) , 'Keras tensor ', KB.is_keras_tensor(gauss_norm) )
print(' complete')
target_masks1 = gauss_norm
mask_shape = tf.shape(target_masks1)
print(' mask_shape shape :', mask_shape.shape)
target_masks1 = KB.reshape(target_masks1, (-1, mask_shape[1], mask_shape[2]))
print(' target_masks shape :', target_masks1.shape)
pred_shape = tf.shape(pred_masks1)
print(' pred_shape shape :', pred_shape.shape)
pred_masks1 = KB.reshape(pred_masks1, (-1, pred_shape[1], pred_shape[2]))
print(' pred_masks shape :', pred_masks1.get_shape())
# Compute binary cross entropy. If no positive ROIs, then return 0.
# shape: [batch, roi, num_classes]
# Smooth-L1 Loss
loss = KB.switch(tf.size(target_masks1) > 0,
smooth_l1_loss(y_true=target_masks1, y_pred=pred_masks1),
tf.constant(0.0))
loss = KB.mean(loss)
loss = KB.reshape(loss, [1, 1])
print(' loss type is :', type(loss))
return loss
| 40.915152 | 123 | 0.578877 |
f2f6b4c27e7561e29dbb147f768e0c58a7d09bb7 | 2,150 | py | Python | mysticbit/plots.py | Connossor/mystic-bit | f57f471d3d154560d23bc9eff17fd5b8f284684c | [
"MIT"
] | 6 | 2018-11-23T20:13:53.000Z | 2019-02-25T15:54:55.000Z | mysticbit/plots.py | Connossor/mystic-bit | f57f471d3d154560d23bc9eff17fd5b8f284684c | [
"MIT"
] | null | null | null | mysticbit/plots.py | Connossor/mystic-bit | f57f471d3d154560d23bc9eff17fd5b8f284684c | [
"MIT"
] | 11 | 2018-11-23T20:55:44.000Z | 2021-12-20T17:25:24.000Z | import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
def plot_well_map(df_logs, fig_size=(10, 10)):
""" Simple map of locations of nearby wells """
f, ax = plt.subplots(figsize=fig_size)
df = df_logs.drop_duplicates(subset=['HACKANAME', 'X', 'Y'])
plt.scatter(df['X'], df['Y'])
plt.axis('scaled')
for label, x, y in zip(df['HACKANAME'], df['X'], df['Y']):
plt.annotate(label,
xy=(x, y),
xytext=(-10, 10),
textcoords='offset points')
return f, ax
def make_log_plot(df_logs, well_name, cols=['GR', 'DT', 'CALI'], ztop=None, zbot=None, fig_size=(8, 12)):
""" Single well log plot, both GR and Resistivity """
logs = df_logs[df_logs['HACKANAME'] == well_name]
logs = logs.sort_values(by='TVDSS')
if not ztop:
ztop = logs.TVDSS.min()
if not zbot:
zbot = logs.TVDSS.max()
f, ax = plt.subplots(nrows=1, ncols=len(cols), figsize=fig_size)
for i in range(len(ax)):
log_name = cols[i]
ax[i].scatter(logs[log_name], logs['TVDSS'], marker='+')
ax[i].set_xlabel(log_name)
ax[i].set_ylim(ztop, zbot)
ax[i].invert_yaxis()
ax[i].grid()
ax[i].locator_params(axis='x', nbins=3)
if i > 0:
ax[i].set_yticklabels([])
# ax[0].set_xlabel("GR")
# ax[0].set_xlim(0, 150)
# ax[1].set_xlabel("RESD")
# ax[1].set_xscale('log')
# ax[1].set_xlim(0.2, 2000)
# ax[1].set_yticklabels([])
f.suptitle('Well: {}'.format(well_name), fontsize=14, y=0.94)
return f, ax
def add_predictions(ax, predictions):
""" Add predicted bands onto plt axes"""
# Scatter plot
ax.scatter(predictions['value'], predictions['TVDSS'], marker='+')
# Shaded bands
tvds = predictions[predictions.model_name == 'high']['TVDSS']
x_hi = predictions[predictions.model_name == 'high']['value']
x_lo = predictions[predictions.model_name == 'low']['value']
ax.fill(np.concatenate([x_lo, x_hi[::-1]]),
np.concatenate([tvds, tvds[::-1]]),
alpha=0.5) | 28.289474 | 105 | 0.58093 |
f2f8aa778931cc06d7071bcf8a708498a3154677 | 5,244 | py | Python | cc_plugin_eustace/eustace_global_attrs.py | eustace-data/cc-plugin-eustace | 4b44d287433b632ea6f859cd72d5dd4b8c361cee | [
"BSD-2-Clause"
] | null | null | null | cc_plugin_eustace/eustace_global_attrs.py | eustace-data/cc-plugin-eustace | 4b44d287433b632ea6f859cd72d5dd4b8c361cee | [
"BSD-2-Clause"
] | null | null | null | cc_plugin_eustace/eustace_global_attrs.py | eustace-data/cc-plugin-eustace | 4b44d287433b632ea6f859cd72d5dd4b8c361cee | [
"BSD-2-Clause"
] | null | null | null | #!/usr/bin/env python
"""
cc_plugin_eustace.eustace_global_attrs
Compliance Test Suite: Check core global attributes in EUSTACE files
"""
import os
from netCDF4 import Dataset
# Import base objects from compliance checker
from compliance_checker.base import Result, BaseNCCheck, GenericFile
# Restrict which vocabs will load (for efficiency)
os.environ["ESSV_VOCABS_ACTIVE"] = "eustace-team"
# Import checklib
import checklib.register.nc_file_checks_register as check_package
| 46.821429 | 153 | 0.474256 |
f2fc68a089e1541439b963f873f1136d0c533af5 | 705 | py | Python | final_project/machinetranslation/tests/tests.py | NicoFRizzo/xzceb-flask_eng_fr | 71c8a4c970e7a179f496ff0960d5fae2bba0ffc1 | [
"Apache-2.0"
] | null | null | null | final_project/machinetranslation/tests/tests.py | NicoFRizzo/xzceb-flask_eng_fr | 71c8a4c970e7a179f496ff0960d5fae2bba0ffc1 | [
"Apache-2.0"
] | null | null | null | final_project/machinetranslation/tests/tests.py | NicoFRizzo/xzceb-flask_eng_fr | 71c8a4c970e7a179f496ff0960d5fae2bba0ffc1 | [
"Apache-2.0"
] | null | null | null | import unittest
import translator
if __name__ == "__main__":
unittest.main() | 32.045455 | 66 | 0.695035 |
f2fc8f6f95ceeb8cf32d3eeed59de008b87d73f7 | 556 | py | Python | src/appi/oop/classes/class_attributes.py | Kaju-Bubanja/APPI | 011afc872a0055ff56001547be6da73017042ad5 | [
"MIT"
] | null | null | null | src/appi/oop/classes/class_attributes.py | Kaju-Bubanja/APPI | 011afc872a0055ff56001547be6da73017042ad5 | [
"MIT"
] | null | null | null | src/appi/oop/classes/class_attributes.py | Kaju-Bubanja/APPI | 011afc872a0055ff56001547be6da73017042ad5 | [
"MIT"
] | null | null | null |
s1 = Student("Harry", 12)
# access instance variables
print('Student:', s1.name, s1.age)
# access class variable
print('School name:', Student.school_name)
# Modify instance variables
s1.name = 'Jessa'
s1.age = 14
print('Student:', s1.name, s1.age)
# Modify class variables
Student.school_name = 'XYZ School'
print('School name:', Student.school_name)
| 20.592593 | 42 | 0.676259 |
f2fea27459e59001e49be2e7ed0478672dee266a | 264 | py | Python | clamor/rest/endpoints/__init__.py | TomSputz/Clamor | 13222b90532938e6ebdbe8aea0430512e7d22817 | [
"MIT"
] | 15 | 2019-07-05T20:26:18.000Z | 2020-09-18T12:44:16.000Z | clamor/rest/endpoints/__init__.py | TomSputz/Clamor | 13222b90532938e6ebdbe8aea0430512e7d22817 | [
"MIT"
] | 7 | 2019-07-07T19:55:07.000Z | 2019-08-20T22:07:31.000Z | clamor/rest/endpoints/__init__.py | TomSputz/Clamor | 13222b90532938e6ebdbe8aea0430512e7d22817 | [
"MIT"
] | 6 | 2019-07-07T20:39:29.000Z | 2020-11-06T10:12:20.000Z | # -*- coding: utf-8 -*-
from . import base
from .audit_log import *
from .channel import *
from .emoji import *
from .gateway import *
from .guild import *
from .invite import *
from .oauth import *
from .user import *
from .voice import *
from .webhook import *
| 18.857143 | 24 | 0.69697 |
f2feb8df0aea648f82fd8f4f86ab95ad219d052f | 1,878 | py | Python | hamster2pdf.py | vleg1991/hamster2pdf | 1dda22a39b65a0f24b76d278f3d708ac51d3c262 | [
"MIT"
] | null | null | null | hamster2pdf.py | vleg1991/hamster2pdf | 1dda22a39b65a0f24b76d278f3d708ac51d3c262 | [
"MIT"
] | null | null | null | hamster2pdf.py | vleg1991/hamster2pdf | 1dda22a39b65a0f24b76d278f3d708ac51d3c262 | [
"MIT"
] | null | null | null | #!/usr/bin/python
# -*- coding: utf-8 -*-
import os
import datetime
import hamster.client
import reports
import argparse
import pdfkit
import gettext
gettext.install('brainz', '../datas/translations/')
# custom settings:
reportTitle = "My Activities Report"
activityFilter = "unfiled"
# find dates:
today = datetime.date.today()
first = today.replace(day=1)
previousLast = first - datetime.timedelta(days=1)
previousFirst = previousLast.replace(day=1)
# assign arguments:
parser = argparse.ArgumentParser(description="export the hamster database to pdf")
parser.add_argument("--thismonth", action="store_true", help="export this month's records")
parser.add_argument("--lastmonth", action="store_true", help="export last month's records")
parser.add_argument("-s", dest="startDate", default=today, help="start date (default: today)", type=valid_date)
parser.add_argument("-e", dest="endDate", default=today, help="end date (default: today)", type=valid_date)
parser.add_argument("-o", dest="reportFile", default="report.pdf", help="output file (default: report.pdf)")
# parse arguments:
args = parser.parse_args()
if args.thismonth:
args.startDate = first
args.endDate = today
if args.lastmonth:
args.startDate = previousFirst
args.endDate = previousLast
# prepare filenames:
htmlFilename = os.path.splitext(args.reportFile)[0]+".html"
pdfFilename = os.path.splitext(args.reportFile)[0]+".pdf"
storage = hamster.client.Storage()
facts = storage.get_facts(args.startDate, args.endDate)
# generate report
reports.simple(facts, args.startDate, args.endDate, htmlFilename)
# convert .html to .pdf file:
pdfkit.from_file(htmlFilename, pdfFilename)
| 27.617647 | 111 | 0.736954 |
f2ff24739f7d32b20b931df9776f794aac82539a | 589 | py | Python | SingleTon.py | SuperLeis/meituan | 71d521826bc50cb8e7bee5617f84e2c26dce1394 | [
"MIT"
] | 1 | 2020-05-02T14:30:18.000Z | 2020-05-02T14:30:18.000Z | SingleTon.py | SuperLeis/meituan | 71d521826bc50cb8e7bee5617f84e2c26dce1394 | [
"MIT"
] | null | null | null | SingleTon.py | SuperLeis/meituan | 71d521826bc50cb8e7bee5617f84e2c26dce1394 | [
"MIT"
] | null | null | null | from functools import wraps
# created by PL
# git hello world
if __name__ == '__main__':
s = SingleTon(1)
t = SingleTon(2)
print (s is t)
print (s.a, t.a)
print (s.val, t.val)
print ('test')
print ("git test") | 19.633333 | 50 | 0.550085 |
840025939ea1c2adbcc0cc3524f18c7230eb6fad | 374 | py | Python | exercicios-python/ex031.py | anavesilva/python-introduction | d85fb9381e348262584fd2942e4818ee822adbe5 | [
"MIT"
] | null | null | null | exercicios-python/ex031.py | anavesilva/python-introduction | d85fb9381e348262584fd2942e4818ee822adbe5 | [
"MIT"
] | null | null | null | exercicios-python/ex031.py | anavesilva/python-introduction | d85fb9381e348262584fd2942e4818ee822adbe5 | [
"MIT"
] | null | null | null | # Custo da viagem
distancia = float(input('Qual a distncia da sua viagem? '))
valor1 = distancia * 0.5
valor2 = distancia * 0.45
print('Voc est prestes a comear uma viagem de {}Km/h.'.format(distancia))
if distancia <= 200:
print('O preo de sua passagem ser de R${:.2f}.'.format(valor1))
else:
print('O preo de sua passagem ser de R${:.2f}.'.format(valor2))
| 37.4 | 76 | 0.687166 |
8401761cbdcacb5f4d5eb5531d513247beb5261b | 10,254 | py | Python | datatest/differences.py | ajhynes7/datatest | 78742e98de992807286655f5685a2dc33a7b452e | [
"Apache-2.0"
] | 277 | 2016-05-12T13:22:49.000Z | 2022-03-11T00:18:32.000Z | datatest/differences.py | ajhynes7/datatest | 78742e98de992807286655f5685a2dc33a7b452e | [
"Apache-2.0"
] | 57 | 2016-05-18T01:03:32.000Z | 2022-02-17T13:48:43.000Z | datatest/differences.py | ajhynes7/datatest | 78742e98de992807286655f5685a2dc33a7b452e | [
"Apache-2.0"
] | 16 | 2016-05-22T11:35:19.000Z | 2021-12-01T19:41:42.000Z | """Difference classes."""
__all__ = [
'BaseDifference',
'Missing',
'Extra',
'Invalid',
'Deviation',
]
from cmath import isnan
from datetime import timedelta
from ._compatibility.builtins import *
from ._compatibility import abc
from ._compatibility.contextlib import suppress
from ._utils import _make_token
from ._utils import pretty_timedelta_repr
NOVALUE = _make_token(
'NoValueType',
'<no value>',
'Token to mark when a value does not exist.',
truthy=False,
)
NANTOKEN = _make_token(
'NanTokenType',
'<nan token>',
'Token for comparing differences that contain not-a-number values.',
)
def _nan_to_token(value):
"""Return NANTOKEN if *value* is NaN else return value unchanged."""
if isinstance(value, tuple):
return tuple(func(x) for x in value)
return func(value)
def _safe_isnan(x):
"""Wrapper for isnan() so it won't fail on non-numeric values."""
try:
return isnan(x)
except TypeError:
return False
def _slice_datetime_repr_prefix(obj_repr):
"""Takes a default "datetime", "date", or "timedelta" repr and
returns it with the module prefix sliced-off::
>>> _slice_datetime_repr_prefix('datetime.date(2020, 12, 25)')
'date(2020, 12, 25)'
"""
# The following implementation (using "startswith" and "[9:]")
# may look clumsy but it can run up to 10 times faster than a
# more concise "re.compile()" and "regex.sub()" approach. In
# some situations, this function can get called many, many
# times. DON'T GET CLEVER--KEEP THIS FUNCTION FAST.
if obj_repr.startswith('datetime.datetime(') \
or obj_repr.startswith('datetime.date(') \
or obj_repr.startswith('datetime.timedelta('):
return obj_repr[9:]
return obj_repr
class Deviation(BaseDifference):
"""Created when a quantative value deviates from its expected value.
In the following example, the dictionary item ``'C': 33`` does
not satisfy the required item ``'C': 30``::
data = {'A': 10, 'B': 20, 'C': 33}
requirement = {'A': 10, 'B': 20, 'C': 30}
datatest.validate(data, requirement)
Running this example raises the following error:
.. code-block:: none
:emphasize-lines: 2
ValidationError: does not satisfy mapping requirement (1 difference): {
'C': Deviation(+3, 30),
}
"""
__slots__ = ('_deviation', '_expected')
def __repr__(self):
cls_name = self.__class__.__name__
deviation = self._deviation
if _safe_isnan(deviation):
deviation_repr = "float('nan')"
elif isinstance(deviation, timedelta):
deviation_repr = pretty_timedelta_repr(deviation)
else:
try:
deviation_repr = '{0:+}'.format(deviation) # Apply +/- sign
except (TypeError, ValueError):
deviation_repr = repr(deviation)
expected = self._expected
if _safe_isnan(expected):
expected_repr = "float('nan')"
else:
expected_repr = repr(expected)
if expected_repr.startswith('datetime.'):
expected_repr = _slice_datetime_repr_prefix(expected_repr)
return '{0}({1}, {2})'.format(cls_name, deviation_repr, expected_repr)
def _make_difference(actual, expected, show_expected=True):
"""Returns an appropriate difference for *actual* and *expected*
values that are known to be unequal.
Setting *show_expected* to False, signals that the *expected*
argument should be omitted when creating an Invalid difference
(this is useful for reducing duplication when validating data
against a single function or object).
"""
if actual is NOVALUE:
return Missing(expected)
if expected is NOVALUE:
return Extra(actual)
if isinstance(expected, bool) or isinstance(actual, bool):
if show_expected:
return Invalid(actual, expected)
return Invalid(actual)
try:
deviation = actual - expected
return Deviation(deviation, expected)
except (TypeError, ValueError):
if show_expected:
return Invalid(actual, expected)
return Invalid(actual)
| 29.048159 | 91 | 0.610396 |
8401c1577e1e3475bf83b16d801193d6422761d2 | 2,735 | py | Python | dashboard/urls.py | playfulMIT/kimchi | 66802cc333770932a8c8b1a44ea5d235d916a8f1 | [
"MIT"
] | null | null | null | dashboard/urls.py | playfulMIT/kimchi | 66802cc333770932a8c8b1a44ea5d235d916a8f1 | [
"MIT"
] | 16 | 2019-12-10T19:40:27.000Z | 2022-02-10T11:51:06.000Z | dashboard/urls.py | playfulMIT/kimchi | 66802cc333770932a8c8b1a44ea5d235d916a8f1 | [
"MIT"
] | null | null | null | from django.conf.urls import include, url, re_path
from rest_framework import routers
from . import views
urlpatterns = [
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/versiontime", views.get_last_processed_time),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/players", views.get_player_list),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/sessions", views.get_player_to_session_map),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/puzzles", views.get_puzzles),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/puzzlekeys", views.get_puzzle_keys),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/snapshotsperpuzzle", views.get_snapshot_metrics),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/attempted", views.get_attempted_puzzles),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/completed", views.get_completed_puzzles),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/timeperpuzzle", views.get_time_per_puzzle),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/funnelperpuzzle", views.get_funnel_per_puzzle),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/shapesperpuzzle", views.get_shapes_per_puzzle),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/modesperpuzzle", views.get_modes_per_puzzle),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/levelsofactivity", views.get_levels_of_activity),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/sequencebetweenpuzzles", views.get_sequence_between_puzzles),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/mloutliers", views.get_machine_learning_outliers),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/persistence", views.get_persistence_by_attempt_data),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/puzzlepersistence", views.get_persistence_by_puzzle_data),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/insights", views.get_insights),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/difficulty", views.get_puzzle_difficulty_mapping),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/misconceptions", views.get_misconceptions_data),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/competency", views.get_competency_data),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/report/(?P<start>[0-9]+)/(?P<end>[0-9]+)", views.get_report_summary),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/report", views.get_report_summary),
re_path(r"^api/dashboard/(?P<slug>[a-zA-Z0-9-_]+)/(?P<player>[a-zA-Z0-9-_.]+)/(?P<level>[a-zA-Z0-9-_.]+)/replayurls", views.get_replay_urls),
re_path(r"^(?P<slug>[a-zA-Z0-9-_]+)/dashboard/", views.dashboard),
re_path(r"^(?P<slug>[a-zA-Z0-9-_]+)/thesisdashboard/", views.thesis_dashboard)
]
| 80.441176 | 145 | 0.697623 |
8403354322f3d276144123191c8e910a521e71d2 | 1,945 | py | Python | VQ2D/vq2d/baselines/predictor.py | emulhall/episodic-memory | 27bafec6e09c108f0efe5ac899eabde9d1ac40cc | [
"MIT"
] | 27 | 2021-10-16T02:39:17.000Z | 2022-03-31T11:16:11.000Z | VQ2D/vq2d/baselines/predictor.py | emulhall/episodic-memory | 27bafec6e09c108f0efe5ac899eabde9d1ac40cc | [
"MIT"
] | 5 | 2022-03-23T04:53:36.000Z | 2022-03-29T23:39:07.000Z | VQ2D/vq2d/baselines/predictor.py | emulhall/episodic-memory | 27bafec6e09c108f0efe5ac899eabde9d1ac40cc | [
"MIT"
] | 13 | 2021-11-25T19:17:29.000Z | 2022-03-25T14:01:47.000Z | from typing import Any, Dict, List, Sequence
import numpy as np
import torch
from detectron2.engine import DefaultPredictor
| 38.9 | 93 | 0.519794 |
84050b8c0b169a6bad0d62fb6d1d81572077e370 | 109 | py | Python | user_agent2/__init__.py | dytttf/user_agent2 | 311bfc5c820ed8233207f57f27bfd7b789040d9d | [
"MIT"
] | null | null | null | user_agent2/__init__.py | dytttf/user_agent2 | 311bfc5c820ed8233207f57f27bfd7b789040d9d | [
"MIT"
] | 1 | 2022-02-08T11:58:15.000Z | 2022-02-08T16:59:37.000Z | user_agent2/__init__.py | dytttf/user_agent2 | 311bfc5c820ed8233207f57f27bfd7b789040d9d | [
"MIT"
] | 3 | 2021-11-21T22:47:43.000Z | 2022-02-15T00:45:40.000Z | from user_agent2.base import (
generate_user_agent,
generate_navigator,
generate_navigator_js,
)
| 18.166667 | 30 | 0.761468 |
840519afb7f020a56b84911fb8113394b9946381 | 7,626 | py | Python | mutagene/benchmark/multiple_benchmark.py | neksa/pymutagene | 1122d64a5ab843a4960124933f78f3c2e388a792 | [
"CC0-1.0"
] | 3 | 2020-05-18T07:00:46.000Z | 2022-02-20T02:55:48.000Z | mutagene/benchmark/multiple_benchmark.py | neksa/pymutagene | 1122d64a5ab843a4960124933f78f3c2e388a792 | [
"CC0-1.0"
] | 31 | 2020-03-13T16:28:34.000Z | 2021-02-27T22:12:15.000Z | mutagene/benchmark/multiple_benchmark.py | neksa/pymutagene | 1122d64a5ab843a4960124933f78f3c2e388a792 | [
"CC0-1.0"
] | 3 | 2020-03-24T20:01:44.000Z | 2020-11-26T17:30:39.000Z | import glob
import random
import uuid
import numpy as np
from multiprocessing import Pool
from sklearn.metrics import (
recall_score, precision_score, accuracy_score, f1_score, mean_squared_error)
from mutagene.io.profile import read_profile_file, write_profile, read_signatures
from mutagene.signatures.identify import NegLogLik
from mutagene.benchmark.deconstructsigs import deconstruct_sigs_custom
from mutagene.benchmark.generate_benchmark import *
# from mutagene.identify import decompose_mutational_profile_counts
| 35.142857 | 141 | 0.560976 |
8406877949c3d33a1b17a8c7fd596cba40c180cf | 3,542 | py | Python | Restaurant_Finder_App/restaurant_finder_app/restaurant_finder_app/restaurant/migrations/0001_initial.py | midhun3112/restaurant_locator | 6ab5e906f26476352176059a8952c2c3f5b127bf | [
"Apache-2.0"
] | null | null | null | Restaurant_Finder_App/restaurant_finder_app/restaurant_finder_app/restaurant/migrations/0001_initial.py | midhun3112/restaurant_locator | 6ab5e906f26476352176059a8952c2c3f5b127bf | [
"Apache-2.0"
] | null | null | null | Restaurant_Finder_App/restaurant_finder_app/restaurant_finder_app/restaurant/migrations/0001_initial.py | midhun3112/restaurant_locator | 6ab5e906f26476352176059a8952c2c3f5b127bf | [
"Apache-2.0"
] | null | null | null | # -*- coding: utf-8 -*-
# Generated by Django 1.10.5 on 2017-02-01 13:47
from __future__ import unicode_literals
from django.db import migrations, models
import django.db.models.deletion
| 38.5 | 168 | 0.559006 |
8407722043fe4e1043792c735a7c99de2eae2b6e | 1,807 | py | Python | ckl/run.py | damianbrunold/checkerlang-py | 97abe5eda5f692ef61acf906a5f596c65688b582 | [
"MIT"
] | null | null | null | ckl/run.py | damianbrunold/checkerlang-py | 97abe5eda5f692ef61acf906a5f596c65688b582 | [
"MIT"
] | null | null | null | ckl/run.py | damianbrunold/checkerlang-py | 97abe5eda5f692ef61acf906a5f596c65688b582 | [
"MIT"
] | null | null | null | import argparse
import os
import sys
from ckl.values import (
ValueList,
ValueString,
NULL
)
from ckl.errors import (
CklSyntaxError,
CklRuntimeError
)
from ckl.interpreter import Interpreter
if __name__ == "__main__":
main()
| 28.234375 | 72 | 0.633094 |
840a373b87a5269d4b1deb705abae42b6703a996 | 21,190 | py | Python | Justice-Engine-source/security_monkey/alerters/custom/JusticeEngine.py | sendgrid/JusticeEngine | 9b39618c836bfcb120db5fb75557cc45c0105e9f | [
"MIT"
] | 1 | 2019-03-27T18:52:54.000Z | 2019-03-27T18:52:54.000Z | Justice-Engine-source/security_monkey/alerters/custom/JusticeEngine.py | sendgrid/JusticeEngine | 9b39618c836bfcb120db5fb75557cc45c0105e9f | [
"MIT"
] | 4 | 2018-08-17T19:10:05.000Z | 2018-11-16T16:46:04.000Z | Justice-Engine-source/security_monkey/alerters/custom/JusticeEngine.py | sendgrid/JusticeEngine | 9b39618c836bfcb120db5fb75557cc45c0105e9f | [
"MIT"
] | 2 | 2018-10-24T19:19:52.000Z | 2018-11-16T16:38:23.000Z | import datetime
import fnmatch
import hashlib
import json
import time
import arrow
import os
from botocore.exceptions import ClientError
from boto.s3.key import Key
from security_monkey.alerters import custom_alerter
from security_monkey.common.sts_connect import connect
from security_monkey import app, db
from security_monkey.datastore import Account
from security_monkey.task_scheduler.alert_scheduler import schedule_krampus_alerts
| 39.313544 | 131 | 0.612081 |
840ab1d9437aeb791d935b51fa2d0357a65758ff | 623 | py | Python | bot/markups/inline_keyboards.py | Im-zeus/Stickers | f2484a1ecc9a3e4a2029eaadbde4ae1b0fe74536 | [
"MIT"
] | 44 | 2018-10-30T14:47:14.000Z | 2022-03-26T15:17:52.000Z | bot/markups/inline_keyboards.py | Im-zeus/Stickers | f2484a1ecc9a3e4a2029eaadbde4ae1b0fe74536 | [
"MIT"
] | 37 | 2018-11-09T11:51:15.000Z | 2021-12-27T15:08:48.000Z | bot/markups/inline_keyboards.py | Im-zeus/Stickers | f2484a1ecc9a3e4a2029eaadbde4ae1b0fe74536 | [
"MIT"
] | 38 | 2019-03-27T21:12:23.000Z | 2022-01-08T07:57:39.000Z | # noinspection PyPackageRequirements
from telegram import InlineKeyboardMarkup, InlineKeyboardButton
| 29.666667 | 71 | 0.658106 |
840d053d29d25ef335ed6bf8148849bf05df3d8b | 596 | py | Python | guitar-package/guitar/guitar/fetcher/__init__.py | django-stars/guitar | 9bddfd2d7b555c97dd9470b458a5f43bd805b026 | [
"MIT"
] | null | null | null | guitar-package/guitar/guitar/fetcher/__init__.py | django-stars/guitar | 9bddfd2d7b555c97dd9470b458a5f43bd805b026 | [
"MIT"
] | null | null | null | guitar-package/guitar/guitar/fetcher/__init__.py | django-stars/guitar | 9bddfd2d7b555c97dd9470b458a5f43bd805b026 | [
"MIT"
] | null | null | null | import urllib2
import json
FAKE_PACKAGES = (
'south',
'django-debug-toolbar',
'django-extensions',
'django-social-auth',
)
fetcher = GuitarWebAPI('http://localhost:8000/api/v1/')
| 20.551724 | 55 | 0.587248 |
840d5087c07149f28ccd99ef85cfdb7e07ab4198 | 1,005 | py | Python | src/deterministicpasswordgenerator/compile.py | jelford/deterministic-password-generator | ad839a2e0d82e1742227a686c248d2ad03ef2fc1 | [
"MIT"
] | 1 | 2016-08-22T22:48:50.000Z | 2016-08-22T22:48:50.000Z | src/deterministicpasswordgenerator/compile.py | jelford/deterministic-password-generator | ad839a2e0d82e1742227a686c248d2ad03ef2fc1 | [
"MIT"
] | null | null | null | src/deterministicpasswordgenerator/compile.py | jelford/deterministic-password-generator | ad839a2e0d82e1742227a686c248d2ad03ef2fc1 | [
"MIT"
] | null | null | null | import zipfile
from getpass import getpass
import os
import stat
import tempfile
from os import path
from .crypto import encrypt
| 34.655172 | 120 | 0.769154 |
840ed8b2d962e67e5075227c8b5fb7a2d2b1513b | 553 | py | Python | python/dp/min_cost_climbing_stairs.py | googege/algo-learn | 054d05e8037005c5810906d837de889108dad107 | [
"MIT"
] | 153 | 2020-09-24T12:46:51.000Z | 2022-03-31T21:30:44.000Z | python/dp/min_cost_climbing_stairs.py | googege/algo-learn | 054d05e8037005c5810906d837de889108dad107 | [
"MIT"
] | null | null | null | python/dp/min_cost_climbing_stairs.py | googege/algo-learn | 054d05e8037005c5810906d837de889108dad107 | [
"MIT"
] | 35 | 2020-12-22T11:07:06.000Z | 2022-03-09T03:25:08.000Z | from typing import List
#
| 26.333333 | 62 | 0.529837 |
840f7e43205d6e7a06e7d699111b144ac79f0338 | 10,289 | py | Python | pages/graph.py | lmason98/PyGraph | 22d734cfd97333578c91ba4e331716df0aec668e | [
"MIT"
] | null | null | null | pages/graph.py | lmason98/PyGraph | 22d734cfd97333578c91ba4e331716df0aec668e | [
"MIT"
] | null | null | null | pages/graph.py | lmason98/PyGraph | 22d734cfd97333578c91ba4e331716df0aec668e | [
"MIT"
] | null | null | null | """
File: pages/page.py
Author: Luke Mason
Description: Main part of the application, the actual graph page.
"""
# Application imports
from message import log, error, success
from settings import APP_NAME, COLOR, FONT, FONT_SIZE, SCREEN_WIDTH, SCREEN_HEIGHT, WIDTH, HEIGHT, PAD, _QUIT
from sprites.vertex import Vertex
from sprites.edge import Edge
from pages.page import Page
from graph import Graph as G
# Pygame imports
from pygame import draw, sprite, event, mouse, display, init, key, MOUSEBUTTONUP, MOUSEBUTTONDOWN, MOUSEMOTION, QUIT, \
KEYDOWN, K_BACKSPACE, K_DELETE, KMOD_SHIFT
# Python imports
from math import atan2, degrees, cos, sin
| 28.035422 | 119 | 0.666051 |
8412473069d247b24941bba95ee50eaf3af4a33f | 521 | py | Python | tests/forked/test_update.py | rarity-adventure/rarity-names | e940b8bea296823faf003ecb9ab8735820ff54d1 | [
"MIT"
] | null | null | null | tests/forked/test_update.py | rarity-adventure/rarity-names | e940b8bea296823faf003ecb9ab8735820ff54d1 | [
"MIT"
] | null | null | null | tests/forked/test_update.py | rarity-adventure/rarity-names | e940b8bea296823faf003ecb9ab8735820ff54d1 | [
"MIT"
] | 2 | 2021-09-22T01:34:17.000Z | 2022-02-09T06:04:51.000Z | import brownie
| 32.5625 | 69 | 0.662188 |
8413787081f15c4a41a8417aa64436712a8f0d85 | 603 | py | Python | pakcrack/__init__.py | Alpha-Demon404/RE-14 | b5b46a9f0eee218f2a642b615c77135c33c6f4ad | [
"MIT"
] | 39 | 2020-02-26T09:44:36.000Z | 2022-03-23T00:18:25.000Z | pakcrack/__init__.py | B4BY-DG/reverse-enginnering | b5b46a9f0eee218f2a642b615c77135c33c6f4ad | [
"MIT"
] | 15 | 2020-05-14T10:07:26.000Z | 2022-01-06T02:55:32.000Z | pakcrack/__init__.py | B4BY-DG/reverse-enginnering | b5b46a9f0eee218f2a642b615c77135c33c6f4ad | [
"MIT"
] | 41 | 2020-03-16T22:36:38.000Z | 2022-03-17T14:47:19.000Z | # Filenames : <tahm1d>
# Python bytecode : 2.7
# Time decompiled : Thu Sep 10 23:29:38 2020
# Selector <module> in line 4 file <tahm1d>
# Timestamp in code: 2020-09-02 17:33:14
import os, sys, time
from os import system
from time import sleep
if __name__ == '__main__':
menu()
| 21.535714 | 101 | 0.623549 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.