hexsha
stringlengths 40
40
| size
int64 5
2.06M
| ext
stringclasses 11
values | lang
stringclasses 1
value | max_stars_repo_path
stringlengths 3
251
| max_stars_repo_name
stringlengths 4
130
| max_stars_repo_head_hexsha
stringlengths 40
78
| max_stars_repo_licenses
sequencelengths 1
10
| max_stars_count
int64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 3
251
| max_issues_repo_name
stringlengths 4
130
| max_issues_repo_head_hexsha
stringlengths 40
78
| max_issues_repo_licenses
sequencelengths 1
10
| max_issues_count
int64 1
116k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 3
251
| max_forks_repo_name
stringlengths 4
130
| max_forks_repo_head_hexsha
stringlengths 40
78
| max_forks_repo_licenses
sequencelengths 1
10
| max_forks_count
int64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 1
1.05M
| avg_line_length
float64 1
1.02M
| max_line_length
int64 3
1.04M
| alphanum_fraction
float64 0
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8414f299e33cb1d7f5931b3a7e8db59199dffc99 | 4,165 | py | Python | MstarHe2R/components/models.py | IzayoiRin/MstarHe2R | 938d83acdfa5ec4464cf9113fef104a6e80ad662 | [
"MIT"
] | null | null | null | MstarHe2R/components/models.py | IzayoiRin/MstarHe2R | 938d83acdfa5ec4464cf9113fef104a6e80ad662 | [
"MIT"
] | 2 | 2021-06-08T21:19:41.000Z | 2021-09-08T01:54:27.000Z | MstarHe2R/components/models.py | IzayoiRin/MstarHe2R | 938d83acdfa5ec4464cf9113fef104a6e80ad662 | [
"MIT"
] | null | null | null | import os
import numpy as np
import pandas as pd
import torch as th
from mstarhe.core.nn.models import PrettyFeedForward
from MstarHe2R.components.dataloader import Mstar2RDataLoader
__IMG_SIZE__ = 128 * 128
def _example():
Net = MSTARNet
Net.device = None
from components.graphs.graph2 import TestL4MSTARANNetGraph
G = [TestL4MSTARANNetGraph]
for g, params in G:
Net.model_graph_class = g
Net.alpha = params["aph"]
Net.step = params["stp"]
net = Net(3, reg=None, dropout=False)
print(net.graph.__class__.__name__)
# print(net.get_data_loader(False))
# print(len(net.test_samples_))
net.train(params['n'], 'PQ', checkpoint=params['cp'])
if __name__ == '__main__':
_example()
| 32.038462 | 100 | 0.614646 |
8418475e8b117a7899349c6df5fd5aeff3d447b2 | 996 | py | Python | 4 - observer pattern/api/event_system.py | lucascionis/betterpython | ab8db8c016ff0bccc443443740a26bccb70402f3 | [
"MIT"
] | null | null | null | 4 - observer pattern/api/event_system.py | lucascionis/betterpython | ab8db8c016ff0bccc443443740a26bccb70402f3 | [
"MIT"
] | null | null | null | 4 - observer pattern/api/event_system.py | lucascionis/betterpython | ab8db8c016ff0bccc443443740a26bccb70402f3 | [
"MIT"
] | null | null | null | from abc import ABC, abstractmethod
'''Comments
In the original solution only functions were used to
implement the event system (observer pattern).
In this implementation I wanted to write classes (to be as
nearest as possible to the pattern (?)).
It is surely better to use python first-citizen functions to create
the event handles (basically this is what I done, I created handle
classes to write different implementations of update method).
'''
| 25.538462 | 68 | 0.696787 |
84188f6567eb4fd0ad0c89e940fd5e2fe14303c7 | 3,056 | py | Python | predict_yolo3_disconnect.py | RentadroneCL/model-definition | 9dab1f1a808a1efc54d64144745277396c145ff7 | [
"MIT"
] | 2 | 2020-01-22T19:54:16.000Z | 2020-02-07T12:20:17.000Z | predict_yolo3_disconnect.py | RentadroneCL/model-definition | 9dab1f1a808a1efc54d64144745277396c145ff7 | [
"MIT"
] | 4 | 2020-06-03T00:27:22.000Z | 2020-07-15T17:15:23.000Z | predict_yolo3_disconnect.py | RentadroneCL/model-definition | 9dab1f1a808a1efc54d64144745277396c145ff7 | [
"MIT"
] | 1 | 2020-01-21T22:38:22.000Z | 2020-01-21T22:38:22.000Z | #! /usr/bin/env python
import time
import os
import argparse
import json
import cv2
import sys
sys.path += [os.path.abspath('keras-yolo3-master')]
from utils.utils import get_yolo_boxes, makedirs
from utils.bbox import draw_boxes
from tensorflow.keras.models import load_model
from tqdm import tqdm
import numpy as np
from panel_disconnect import disconnect
if __name__ == '__main__':
argparser = argparse.ArgumentParser(description='Predict with a trained yolo model')
argparser.add_argument('-c', '--conf', help='path to configuration file')
argparser.add_argument('-i', '--input', help='path to an image, a directory of images, a video, or webcam')
argparser.add_argument('-o', '--output', default='output/', help='path to output directory')
args = argparser.parse_args()
_main_(args)
| 32.168421 | 113 | 0.629581 |
8419172381c9e4256607a0db506cd791eeb0f296 | 11,655 | py | Python | tenning/layers/resnet_block.py | guilherme9820/Tenning | c0fe7695ef3dd791ea1083f39d6b312266fb0512 | [
"MIT"
] | null | null | null | tenning/layers/resnet_block.py | guilherme9820/Tenning | c0fe7695ef3dd791ea1083f39d6b312266fb0512 | [
"MIT"
] | null | null | null | tenning/layers/resnet_block.py | guilherme9820/Tenning | c0fe7695ef3dd791ea1083f39d6b312266fb0512 | [
"MIT"
] | null | null | null | import tensorflow.keras.constraints as constraints
from tensorflow.keras.layers import GlobalAveragePooling2D
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import Conv2DTranspose
from tensorflow.keras.layers import LeakyReLU
from tensorflow.keras.layers import ReLU
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import Lambda
from tensorflow.keras.layers import Layer
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Add
from tensorflow_addons.layers import InstanceNormalization
from tensorflow_addons.layers import GroupNormalization
from tenning.generic_utils import get_object_config
from tenning.activations import Swish
import tensorflow as tf
| 51.8 | 163 | 0.620764 |
841b950a79e8d2aae01b030de733c8d1017b6718 | 3,649 | py | Python | libs/token.py | yareally/twitter-clone-python | 1323c3fa4bf66f479a3092c09fb165a323eb1c85 | [
"MIT"
] | 1 | 2020-05-22T22:13:48.000Z | 2020-05-22T22:13:48.000Z | libs/token.py | yareally/twitter-clone-python | 1323c3fa4bf66f479a3092c09fb165a323eb1c85 | [
"MIT"
] | null | null | null | libs/token.py | yareally/twitter-clone-python | 1323c3fa4bf66f479a3092c09fb165a323eb1c85 | [
"MIT"
] | null | null | null | # coding=utf-8
from operator import xor
import os
import scrypt
import time
from libs.rediswrapper import UserHelper
try:
xrange
except NameError:
xrange = range
| 28.960317 | 102 | 0.609482 |
841dd327848fd2568a5c74230c7b659174fee507 | 2,961 | py | Python | saefportal/datastores/util.py | harry-consulting/SAEF1 | 055d6e492ba76f90e3248b9da2985fdfe0c6b430 | [
"BSD-2-Clause"
] | null | null | null | saefportal/datastores/util.py | harry-consulting/SAEF1 | 055d6e492ba76f90e3248b9da2985fdfe0c6b430 | [
"BSD-2-Clause"
] | null | null | null | saefportal/datastores/util.py | harry-consulting/SAEF1 | 055d6e492ba76f90e3248b9da2985fdfe0c6b430 | [
"BSD-2-Clause"
] | 1 | 2020-12-16T15:02:52.000Z | 2020-12-16T15:02:52.000Z | import json
from collections import defaultdict
import fastavro
import pandas as pd
from django.contrib import messages
from django.http import HttpResponseRedirect
from django.urls import reverse
from datasets.models import Connection
from users.models import User
def get_supported_file_types():
"""Return a list of the viable file type extensions."""
return ["csv", "avro", "parquet", "xlsx", "xls", "xlsm", "xlsb"]
def initialize_connection(datastore, connection_name, connection_owner_id, connection_type, request):
"""Create a connection and save the datastore on the connection object for later use."""
owner = User.objects.get(id=connection_owner_id)
connection = Connection.objects.create(name=connection_name, owner=owner, type=connection_type)
connection.datastore = datastore
connection.save()
messages.success(request, "Connection was created.")
return HttpResponseRedirect(reverse("datasets:index"))
def get_query(dataset, query):
"""Go through the potentially None valued given dataset and query and extract the query."""
if query:
return query
elif dataset.query:
return dataset.query
else:
return f"SELECT * FROM {dataset.table}"
def structure_tables_views(table, views):
"""Return a structured dictionary containing the given tables and views."""
table_dict = defaultdict(list)
[table_dict[schema].append({"value": f"{schema}.{table}", "display": table}) for (schema, table) in table]
view_dict = defaultdict(list)
[view_dict[schema].append({"value": f"{schema}.{view}", "display": view}) for (schema, view) in views]
return {"Tables": dict(table_dict), "Views": dict(view_dict)}
def convert_to_dataframe(file_type, data):
"""Convert the given bytes data into a dataframe based on the given file type."""
if file_type == "csv":
df = pd.read_csv(data, sep=None)
elif file_type == "avro":
df = pd.DataFrame.from_records(fastavro.reader(data))
elif file_type == "parquet":
df = pd.read_parquet(data)
else:
df = pd.read_excel(data)
return df
def get_viable_blob_datasets(blobs, name_attr):
"""
Used to get the viable datasets for blob datastores. Used for Google Cloud Storage, Azure Blob Storage,
Azure Data Lake and Amazon S3 datastores.
"""
viable_blobs = []
for blob in blobs:
if getattr(blob, name_attr).split(".")[-1].lower() in get_supported_file_types():
viable_blobs.append(blob)
viable_datasets = defaultdict(list)
for blob in viable_blobs:
split_path = getattr(blob, name_attr).split("/")
parent_folder = split_path[-2] if len(split_path) >= 2 else "root"
value = json.dumps({"id": getattr(blob, name_attr), "name": split_path[-1].split(".")[0]})
viable_datasets[parent_folder].append({"value": value, "display": split_path[-1]})
return {"Files": dict(viable_datasets)}
| 34.835294 | 110 | 0.695373 |
841fba8a3c7dd4e8b6e7d2a9101dcfe6a12ffb43 | 637 | py | Python | count_div.py | odellus/year_of_code | bfa2b30893bcc12f46e73ac34c63b5b05b27af5f | [
"MIT"
] | 1 | 2017-01-03T02:24:34.000Z | 2017-01-03T02:24:34.000Z | count_div.py | odellus/year_of_code | bfa2b30893bcc12f46e73ac34c63b5b05b27af5f | [
"MIT"
] | null | null | null | count_div.py | odellus/year_of_code | bfa2b30893bcc12f46e73ac34c63b5b05b27af5f | [
"MIT"
] | null | null | null | #! /usr/bin/python
| 21.233333 | 37 | 0.400314 |
842064b9ee1d937a6d9bb100474bd7dafa3c5859 | 3,766 | py | Python | applications/plugins/SofaPython/python/SofaPython/DAGValidation.py | sofa-framework/issofa | 94855f488465bc3ed41223cbde987581dfca5389 | [
"OML"
] | null | null | null | applications/plugins/SofaPython/python/SofaPython/DAGValidation.py | sofa-framework/issofa | 94855f488465bc3ed41223cbde987581dfca5389 | [
"OML"
] | null | null | null | applications/plugins/SofaPython/python/SofaPython/DAGValidation.py | sofa-framework/issofa | 94855f488465bc3ed41223cbde987581dfca5389 | [
"OML"
] | null | null | null | import sys
import Sofa
import Tools
| 30.128 | 123 | 0.521774 |
842128da3d89d5f7a471cc4a5a88b8952b188592 | 7,216 | py | Python | models/DGIFullPipeline.py | nicolas-racchi/hpc2020-graphML | 7f0d8b7c18469e1c793c7097bd10a9e0322e75be | [
"Apache-2.0"
] | null | null | null | models/DGIFullPipeline.py | nicolas-racchi/hpc2020-graphML | 7f0d8b7c18469e1c793c7097bd10a9e0322e75be | [
"Apache-2.0"
] | null | null | null | models/DGIFullPipeline.py | nicolas-racchi/hpc2020-graphML | 7f0d8b7c18469e1c793c7097bd10a9e0322e75be | [
"Apache-2.0"
] | null | null | null | import time
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import f1_score
import stellargraph as sg
from stellargraph.mapper import CorruptedGenerator, HinSAGENodeGenerator
from stellargraph.layer import DeepGraphInfomax, HinSAGE
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras import Model, optimizers, losses, metrics
'''
Runs the entire pipeline:
- Takes preprocessed data as input
- Outputs predictions on the test_set nodes.
''' | 33.877934 | 106 | 0.651746 |
84226726736f353bcbde4bab4581da03be81116f | 878 | py | Python | Newsfeed/Newsfeed/app.py | akshayseth7/Intership_Snapshot | e262ec4939e2e5c5e2037333b7fa37f7c57d5425 | [
"MIT"
] | null | null | null | Newsfeed/Newsfeed/app.py | akshayseth7/Intership_Snapshot | e262ec4939e2e5c5e2037333b7fa37f7c57d5425 | [
"MIT"
] | null | null | null | Newsfeed/Newsfeed/app.py | akshayseth7/Intership_Snapshot | e262ec4939e2e5c5e2037333b7fa37f7c57d5425 | [
"MIT"
] | null | null | null | from flask import Flask , render_template, request
import google_news
app = Flask(__name__)
outFile = ''
if __name__ == "__main__":
app.run()
| 20.904762 | 50 | 0.67426 |
842586bea147f3e4d054e06882c5e5cefb545add | 1,222 | py | Python | physics_planning_games/mujoban/mujoban_level_test.py | mitchchristow/deepmind-research | 49c7ebe6acc48dd276ca09eca6924ba6cb5ec3a3 | [
"Apache-2.0"
] | 10,110 | 2019-08-27T20:05:30.000Z | 2022-03-31T16:31:56.000Z | physics_planning_games/mujoban/mujoban_level_test.py | ibex-training/deepmind-research | 6f8ae40b2626b30f5f80dfc92f5676689eff5599 | [
"Apache-2.0"
] | 317 | 2019-11-09T10:19:10.000Z | 2022-03-31T00:05:19.000Z | physics_planning_games/mujoban/mujoban_level_test.py | ibex-training/deepmind-research | 6f8ae40b2626b30f5f80dfc92f5676689eff5599 | [
"Apache-2.0"
] | 2,170 | 2019-08-28T12:53:36.000Z | 2022-03-31T13:15:11.000Z | # Copyright 2020 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tests for mujoban_level."""
from absl.testing import absltest
from physics_planning_games.mujoban import mujoban_level
_LEVEL = """
#####
# @####
# $. #
###$.# #
# $.# #
# #$. #
# ###
######"""
_GRID_LEVEL = """********
*..P****
*..BG..*
***BG*.*
*..BG*.*
*.*BG..*
*....***
********
"""
if __name__ == '__main__':
absltest.main()
| 22.62963 | 78 | 0.636661 |
84272a9b78bd142a71da410927baa64f753039be | 1,069 | py | Python | TeamX/TeamXapp/migrations/0040_auto_20190712_1351.py | rootfinlay/SageTeamX | cf4cde3360c8cccb8a727ba64d66345805d7a0ed | [
"Unlicense"
] | null | null | null | TeamX/TeamXapp/migrations/0040_auto_20190712_1351.py | rootfinlay/SageTeamX | cf4cde3360c8cccb8a727ba64d66345805d7a0ed | [
"Unlicense"
] | null | null | null | TeamX/TeamXapp/migrations/0040_auto_20190712_1351.py | rootfinlay/SageTeamX | cf4cde3360c8cccb8a727ba64d66345805d7a0ed | [
"Unlicense"
] | null | null | null | # Generated by Django 2.2.3 on 2019-07-12 12:51
from django.db import migrations, models
import django.db.models.deletion
| 35.633333 | 168 | 0.649205 |
842b2f72a08093681d688bb2f92eb0afb6f06354 | 742 | py | Python | quartic_sdk/core/entities/site.py | divyquartic/QuarticSDK | e3ce6387ed5f27845e0909878c831ae39badd8eb | [
"MIT"
] | 1 | 2021-03-26T12:39:44.000Z | 2021-03-26T12:39:44.000Z | quartic_sdk/core/entities/site.py | divyquartic/QuarticSDK | e3ce6387ed5f27845e0909878c831ae39badd8eb | [
"MIT"
] | 95 | 2021-02-18T03:15:38.000Z | 2022-03-25T05:39:12.000Z | quartic_sdk/core/entities/site.py | divyquartic/QuarticSDK | e3ce6387ed5f27845e0909878c831ae39badd8eb | [
"MIT"
] | 1 | 2021-09-03T12:46:18.000Z | 2021-09-03T12:46:18.000Z | """
The given file contains the class to refer to the Site entity
"""
from quartic_sdk.core.entities.base import Base
import quartic_sdk.utilities.constants as Constants
| 23.935484 | 91 | 0.630728 |
842c3f72d982dddd1077d864f70783e67cb8182b | 525 | py | Python | newapp/migrations/0003_auto_20190524_1511.py | HCDigitalScholarship/liason_lair | 6035d100e3ea1216af2907a4cccd319a1cc4f8d8 | [
"MIT"
] | null | null | null | newapp/migrations/0003_auto_20190524_1511.py | HCDigitalScholarship/liason_lair | 6035d100e3ea1216af2907a4cccd319a1cc4f8d8 | [
"MIT"
] | null | null | null | newapp/migrations/0003_auto_20190524_1511.py | HCDigitalScholarship/liason_lair | 6035d100e3ea1216af2907a4cccd319a1cc4f8d8 | [
"MIT"
] | 1 | 2019-08-03T01:30:30.000Z | 2019-08-03T01:30:30.000Z | # Generated by Django 2.0.5 on 2019-05-24 15:11
from django.db import migrations, models
| 21.875 | 47 | 0.565714 |
842f1947d1778a3623e9a7a62865a578b298416e | 2,027 | py | Python | comment/views/blocker.py | Italo-Carvalho/Comment | 86424d02a901b74ccbcaa438fffc38f352535301 | [
"MIT"
] | 75 | 2018-09-08T14:29:35.000Z | 2022-03-25T16:17:06.000Z | comment/views/blocker.py | p0-oya/Comment | 39f6fb6c40314d97391d36fc25112d6420c96991 | [
"MIT"
] | 165 | 2018-10-07T21:55:31.000Z | 2022-02-27T14:44:32.000Z | comment/views/blocker.py | p0-oya/Comment | 39f6fb6c40314d97391d36fc25112d6420c96991 | [
"MIT"
] | 37 | 2019-12-01T19:44:23.000Z | 2022-02-13T16:46:14.000Z | from django.views import View
from comment.models import BlockedUser, BlockedUserHistory, Comment
from comment.mixins import CanBlockUsersMixin
from comment.responses import UTF8JsonResponse, DABResponseData
from comment.messages import BlockUserError
| 34.948276 | 99 | 0.655649 |
84377da9e8bef2666e66841f43d9581ba693e418 | 39,550 | py | Python | wicon/glyph.py | Wudan07/wIcon | 9189b7029759a22371827426b5342b6dc976f1b2 | [
"MIT"
] | null | null | null | wicon/glyph.py | Wudan07/wIcon | 9189b7029759a22371827426b5342b6dc976f1b2 | [
"MIT"
] | null | null | null | wicon/glyph.py | Wudan07/wIcon | 9189b7029759a22371827426b5342b6dc976f1b2 | [
"MIT"
] | null | null | null | # -*- coding: utf-8 -*-
# Copyright (c) 2015 Brad Newbold (wudan07 [at] gmail.com)
# See LICENSE for details.
# glyph.py
#
"""wIcon library:
glyph provides GlyphObject
"""
##from handy import *
##from common import *
### represents a character in a glyphString
def glyphstr_length(gls):
""" Returns length of glyphstr gls
"""
length = 0
for gl in gls:
length += gl.flash
return length - 2
def glyphstr_monospace(gls, wide=6):
""" for each GlyphObject in gls, calls .center(wide)
"""
for gl in gls:
gl.center(wide)
def glyphstr_center(gls, width=100):
""" given a width of an area (such as column heading width) it will adjust the start point of each glyph in a glyphstr_, centering the string
"""
length = glyphstr_length(gls)
glen = len(gls)
#addlen = (width-length)/(glen))
print length
print width - length
hl = (width-length)/2
for i in range(0, glen):
gl = gls[i]
flash = gl.flash
gl._flash(flash+hl)
def glyphstr_justify(gls, width=100):
""" given a width of an area (such as column heading width) it will adjust the start point of each glyph in a glyphstr_, justifying the string
"""
length = glyphstr_length(gls)
glen = len(gls)
#addlen = (width-length)/(glen))
print length
print width - length
ct = 0
for i in range(0, width-length):
if ct >= glen-1:
ct = 0
gl = gls[ct]
flash = gl.flash
gl._flash(flash+1)
ct += 1
def glyphstr_bounds_get(string, mono=False):
""" Returns 2 len integer array, size and height of string as glyphstr_
"""
#xk = 0
#yk = 0
xz = 0
#yz = 10
vals = string.split('\n')
yz = len(vals) * 10
for val in vals:
gs = glyphstr_get(val)
if mono:
glyphstr_monospace(gs)
sz = glyphstr_length(gs)
if sz > xz:
xz = sz
return [xz, yz]
def glyphstr_get(string):
""" given a string, Returns glyphs, a list of glyphs
"""
glyphs = []
i = 0
while i < len(string):
letter = string[i:i+1]
glyphs.append(GlyphObject(letter))
i += 1
return glyphs
| 26.759134 | 143 | 0.596207 |
8438a4e8ec614cde523653248e7af3039519099a | 463 | py | Python | mqtt_sender.py | kehtolaulu/iot-ccs811 | 611ca30ffaec067d730ac95c59b6800fda2cf148 | [
"MIT"
] | null | null | null | mqtt_sender.py | kehtolaulu/iot-ccs811 | 611ca30ffaec067d730ac95c59b6800fda2cf148 | [
"MIT"
] | null | null | null | mqtt_sender.py | kehtolaulu/iot-ccs811 | 611ca30ffaec067d730ac95c59b6800fda2cf148 | [
"MIT"
] | null | null | null | import json
from paho.mqtt.client import Client
from subscriber import Subscriber
from datetime import datetime
| 25.722222 | 72 | 0.695464 |
8439225f8d80c110768afbd91dc3a48cb1f55f67 | 1,914 | py | Python | users/migrations/0004_auto_20201228_1613.py | hhdMrLion/django-crm | 9f6f021e0cddc323c88280b733144366a0cb9fa6 | [
"Apache-2.0"
] | 1 | 2021-06-18T03:03:43.000Z | 2021-06-18T03:03:43.000Z | users/migrations/0004_auto_20201228_1613.py | hhdMrLion/django-crm | 9f6f021e0cddc323c88280b733144366a0cb9fa6 | [
"Apache-2.0"
] | null | null | null | users/migrations/0004_auto_20201228_1613.py | hhdMrLion/django-crm | 9f6f021e0cddc323c88280b733144366a0cb9fa6 | [
"Apache-2.0"
] | null | null | null | # Generated by Django 2.2.17 on 2020-12-28 08:13
from django.db import migrations, models
| 46.682927 | 106 | 0.581505 |
843bb9c05ba6309f2f5fa04bc4ff12d51bd9395e | 430 | py | Python | pages/homepage.py | eugenexxx/laptop_docker | 362ea238296e64fdd5c49ac55185d65b05e718cc | [
"Apache-2.0"
] | null | null | null | pages/homepage.py | eugenexxx/laptop_docker | 362ea238296e64fdd5c49ac55185d65b05e718cc | [
"Apache-2.0"
] | null | null | null | pages/homepage.py | eugenexxx/laptop_docker | 362ea238296e64fdd5c49ac55185d65b05e718cc | [
"Apache-2.0"
] | null | null | null | from webium import BasePage, Finds, Find
from selenium.webdriver.common.by import By
| 43 | 99 | 0.746512 |
843c2a9f5e722e97bca056334565acff3143bb58 | 3,112 | py | Python | finetune/TensorFlow/download_model_and_dataset.py | cgouttham/microsoft-hackathon | 7e50981e0f165543676504592ad26818db13432f | [
"MIT"
] | 340 | 2019-05-15T06:42:37.000Z | 2022-02-23T13:29:34.000Z | finetune/TensorFlow/download_model_and_dataset.py | cgouttham/microsoft-hackathon | 7e50981e0f165543676504592ad26818db13432f | [
"MIT"
] | 43 | 2019-05-14T21:26:06.000Z | 2022-02-13T02:42:57.000Z | finetune/TensorFlow/download_model_and_dataset.py | cgouttham/microsoft-hackathon | 7e50981e0f165543676504592ad26818db13432f | [
"MIT"
] | 113 | 2019-05-23T08:21:48.000Z | 2022-03-03T19:18:17.000Z | from __future__ import print_function
import argparse
import sys
import os
import shutil
import zipfile
import urllib
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--bert_model_name",
default = None,
type = str,
required = True,
help = "Name of pretrained BERT model. Possible values: "
"uncased_L-12_H-768_A-12,uncased_L-24_H-1024_A-16,cased_L-12_H-768_A-12,"
"multilingual_L-12_H-768_A-12,chinese_L-12_H-768_A-12")
parser.add_argument("--model_dump_path",
default = None,
type = str,
required = True,
help = "Path to the output model.")
parser.add_argument("--glue_data_path",
default = None,
type = str,
required = True,
help = "Path to store downloaded GLUE dataset")
args = parser.parse_args()
bert_model_url_map = {
'uncased_L-12_H-768_A-12': 'https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip',
'uncased_L-24_H-1024_A-16': 'https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-1024_A-16.zip',
'cased_L-12_H-768_A-12': 'https://storage.googleapis.com/bert_models/2018_10_18/cased_L-12_H-768_A-12.zip',
'multilingual_L-12_H-768_A-12': 'https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip',
'chinese_L-12_H-768_A-12': 'https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip'
}
if args.bert_model_name not in bert_model_url_map:
sys.stderr.write('Unknown BERT model name ' + args.bert_model_name)
sys.exit(1)
pretrained_model_url = bert_model_url_map.get(args.bert_model_name)
# make local directory for pretrained tensorflow BERT model
tensorflow_model_dir = './tensorflow_model'
if not os.path.exists(tensorflow_model_dir):
os.makedirs(tensorflow_model_dir)
# download and extract pretrained tensorflow BERT model
download_file_name = 'tensorflow_model.zip'
urllib.request.urlretrieve(pretrained_model_url, filename=download_file_name)
print('Extracting pretrained model...')
with zipfile.ZipFile(download_file_name, 'r') as z:
z.extractall(tensorflow_model_dir)
# make destination path
if not os.path.exists(args.model_dump_path):
os.makedirs(args.model_dump_path)
files = ['bert_model.ckpt.meta', 'bert_model.ckpt.index', 'bert_model.ckpt.data-00000-of-00001', 'bert_config.json', 'vocab.txt']
for file in files:
shutil.copy(os.path.join(tensorflow_model_dir, args.bert_model_name, file), os.path.join(args.model_dump_path, file))
print('Start to download GLUE dataset...\n')
urllib.request.urlretrieve(
'https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py',
filename='download_glue_data.py')
if os.system('python download_glue_data.py --data_dir {0} --tasks all'.format(args.glue_data_path)) != 0: sys.exit(1) | 43.222222 | 151 | 0.70662 |
843ca99856298b4d971576c36ef2ff0db2f48136 | 1,386 | py | Python | pdata_app/migrations/0035_auto_20180221_1515.py | jonseddon/primavera-dmt | 1239044e37f070b925a3d06db68351f285df780c | [
"BSD-3-Clause"
] | null | null | null | pdata_app/migrations/0035_auto_20180221_1515.py | jonseddon/primavera-dmt | 1239044e37f070b925a3d06db68351f285df780c | [
"BSD-3-Clause"
] | 49 | 2018-11-14T17:00:03.000Z | 2021-12-20T11:04:22.000Z | pdata_app/migrations/0035_auto_20180221_1515.py | jonseddon/primavera-dmt | 1239044e37f070b925a3d06db68351f285df780c | [
"BSD-3-Clause"
] | 2 | 2018-07-04T10:58:43.000Z | 2018-09-29T14:55:08.000Z | # -*- coding: utf-8 -*-
# Generated by Django 1.11 on 2018-02-21 15:15
from __future__ import unicode_literals
from django.db import migrations, models
| 33.804878 | 101 | 0.622655 |
843d9417ba37601232cb640d55f1d03f38cd7f76 | 3,226 | py | Python | python/examples/imagenet/image_reader.py | gongweibao/Serving | d234a1421e8b964c5fa3e9901f57f24aa49e3a91 | [
"Apache-2.0"
] | null | null | null | python/examples/imagenet/image_reader.py | gongweibao/Serving | d234a1421e8b964c5fa3e9901f57f24aa49e3a91 | [
"Apache-2.0"
] | null | null | null | python/examples/imagenet/image_reader.py | gongweibao/Serving | d234a1421e8b964c5fa3e9901f57f24aa49e3a91 | [
"Apache-2.0"
] | null | null | null | # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import numpy as np
| 32.26 | 74 | 0.591135 |
843f97dd8ec994e4357ed02f96f7842db3d9a402 | 5,867 | py | Python | cloudflare-deploy.py | antonini/certbot-hooks | 61e200b7a038952f2f559953f47be62e1f992e39 | [
"Apache-2.0"
] | null | null | null | cloudflare-deploy.py | antonini/certbot-hooks | 61e200b7a038952f2f559953f47be62e1f992e39 | [
"Apache-2.0"
] | null | null | null | cloudflare-deploy.py | antonini/certbot-hooks | 61e200b7a038952f2f559953f47be62e1f992e39 | [
"Apache-2.0"
] | null | null | null | #!/usr/bin/env python
import logging
import sys
import CloudFlare
import os
import re
from os import path
from certbot.plugins import dns_common
__author__ = "Endrigo Antonini"
__copyright__ = "Copyright 2020, Endrigo Antonini"
__license__ = "Apache License 2.0"
__version__ = "1.0"
__maintainer__ = "Endrigo Antonini"
__email__ = "eantonini@eidoscode.com"
__status__ = "Production"
logger = logging.getLogger(__name__)
DEFAULT_CERT_FOLDER = "/etc/letsencrypt/live"
CERTBOT_CONF_DIR = "/etc/letsencrypt/renewal"
PROPERTIES = {}
def read_file(filename):
"""
Read a file from disk and return all the content
:param str filename: File name of the file that is going to read.
:raises Exception: if the file doesn't exists
"""
if not path.isfile(filename):
raise Exception("File {} doesn't exists!".format(filename))
with open(filename) as f:
return f.read()
if __name__ == '__main__':
main() | 32.236264 | 110 | 0.670701 |
84416b0aa44ff310962bcf2724c753d72fba9519 | 476 | py | Python | main/schemas/location_lat.py | ohioh/ohioh_Framework_Cluster_3_Flask | 69e50b9d697b5e8818305328335d26314b625732 | [
"Apache-2.0"
] | 1 | 2020-08-11T18:37:36.000Z | 2020-08-11T18:37:36.000Z | main/schemas/location_lat.py | ohioh/ohioh_Framework_Cluster_3_Flask | 69e50b9d697b5e8818305328335d26314b625732 | [
"Apache-2.0"
] | null | null | null | main/schemas/location_lat.py | ohioh/ohioh_Framework_Cluster_3_Flask | 69e50b9d697b5e8818305328335d26314b625732 | [
"Apache-2.0"
] | null | null | null | from datetime import datetime
from marshmallow import Schema, EXCLUDE
import marshmallow.fields as ms_fields
| 23.8 | 63 | 0.737395 |
84418df14873be48f72ce565d6b9bb740aefa623 | 411 | py | Python | Python/34-match.py | strawman2511/Learning | 21ee7bdad376060503fdc0a739fed2d7bd40f9b9 | [
"MIT"
] | 1 | 2022-03-16T23:25:54.000Z | 2022-03-16T23:25:54.000Z | Python/34-match.py | strawman2511/Learning | 21ee7bdad376060503fdc0a739fed2d7bd40f9b9 | [
"MIT"
] | null | null | null | Python/34-match.py | strawman2511/Learning | 21ee7bdad376060503fdc0a739fed2d7bd40f9b9 | [
"MIT"
] | null | null | null | # Till now only Python 3.10 can run match statement
x = 1
y = 2
point = (x, y)
check_point(point)
| 20.55 | 51 | 0.452555 |
8441be7fed412cc2b0c06a54eaceebee4908fef7 | 272 | py | Python | incremental/settings.py | Nana0606/IUAD | c52439eb5bbbef6bd50533b5d9e142e18091d85e | [
"BSD-2-Clause"
] | 1 | 2021-07-05T02:20:32.000Z | 2021-07-05T02:20:32.000Z | incremental/settings.py | Nana0606/IUAD | c52439eb5bbbef6bd50533b5d9e142e18091d85e | [
"BSD-2-Clause"
] | null | null | null | incremental/settings.py | Nana0606/IUAD | c52439eb5bbbef6bd50533b5d9e142e18091d85e | [
"BSD-2-Clause"
] | 1 | 2021-08-22T08:45:18.000Z | 2021-08-22T08:45:18.000Z | # python3
# -*- coding: utf-8 -*-
# @Author : lina
# @Time : 2018/4/22 21:17
"""
code function: define all parameters.
"""
matched_file_name = "../data/gcn_res.txt"
wordvec_path = '../data/word2vec.model'
incremental_path = "../data/incremental_res.txt"
| 20.923077 | 49 | 0.628676 |
84425e6e37d98a459d555c6b47a64806ebbb0769 | 246 | py | Python | app/newsletter/views.py | valeriansaliou/waaave-web | 8a0cde773563865a905af38f5a0b723a43b17341 | [
"RSA-MD"
] | 1 | 2020-04-06T10:04:43.000Z | 2020-04-06T10:04:43.000Z | app/newsletter/views.py | valeriansaliou/waaave-web | 8a0cde773563865a905af38f5a0b723a43b17341 | [
"RSA-MD"
] | null | null | null | app/newsletter/views.py | valeriansaliou/waaave-web | 8a0cde773563865a905af38f5a0b723a43b17341 | [
"RSA-MD"
] | null | null | null | from django.shortcuts import render
from django.http import HttpResponseRedirect
from django.core.urlresolvers import reverse
def root(request):
"""
Newsletter > Root
"""
return render(request, 'newsletter/newsletter_root.jade') | 24.6 | 61 | 0.756098 |
84464ba3de7de8074ab4f3a72392eb3da290f401 | 16,826 | py | Python | transformer_courses/BERT_distillation/PaddleSlim-develop/paddleslim/nas/search_space/mobilenet_block.py | wwhio/awesome-DeepLearning | 2cc92edcf0c22bdfc670c537cc819c8fadf33fac | [
"Apache-2.0"
] | 1,150 | 2021-06-01T03:44:21.000Z | 2022-03-31T13:43:42.000Z | transformer_courses/BERT_distillation/PaddleSlim-develop/paddleslim/nas/search_space/mobilenet_block.py | wwhio/awesome-DeepLearning | 2cc92edcf0c22bdfc670c537cc819c8fadf33fac | [
"Apache-2.0"
] | 358 | 2021-06-01T03:58:47.000Z | 2022-03-28T02:55:00.000Z | transformer_courses/BERT_distillation/PaddleSlim-develop/paddleslim/nas/search_space/mobilenet_block.py | wwhio/awesome-DeepLearning | 2cc92edcf0c22bdfc670c537cc819c8fadf33fac | [
"Apache-2.0"
] | 502 | 2021-05-31T12:52:14.000Z | 2022-03-31T02:51:41.000Z | # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from .search_space_base import SearchSpaceBase
from .base_layer import conv_bn_layer
from .search_space_registry import SEARCHSPACE
from .utils import compute_downsample_num, check_points, get_random_tokens
__all__ = ["MobileNetV1BlockSpace", "MobileNetV2BlockSpace"]
| 39.130233 | 178 | 0.530013 |
8446c1c3c431374432b1f4f4b191c7dc6650169d | 1,580 | py | Python | src/cltk/phonology/gmh/phonology.py | yelircaasi/cltk | 1583aa24682543a1f33434a21918f039ca27d60c | [
"MIT"
] | 757 | 2015-11-20T00:58:52.000Z | 2022-03-31T06:34:24.000Z | src/cltk/phonology/gmh/phonology.py | yelircaasi/cltk | 1583aa24682543a1f33434a21918f039ca27d60c | [
"MIT"
] | 950 | 2015-11-17T05:38:29.000Z | 2022-03-14T16:09:34.000Z | src/cltk/phonology/gmh/phonology.py | yelircaasi/cltk | 1583aa24682543a1f33434a21918f039ca27d60c | [
"MIT"
] | 482 | 2015-11-22T18:13:02.000Z | 2022-03-20T21:22:02.000Z | """Middle High German phonology tools
"""
from typing import List
from cltk.phonology.gmh.transcription import Transcriber
from cltk.phonology.syllabify import Syllabifier
__author__ = ["Clment Besnier <clem@clementbesnier.fr>"]
| 26.333333 | 103 | 0.666456 |
844826018788435b356bf6f9c896357ffb15fd09 | 11,680 | py | Python | baiduspider/core/parser.py | samzhangjy/GSSpider | 344d9c9053a5d5bf08692e0c817d30763dbd8ab7 | [
"MIT"
] | 31 | 2020-07-17T08:26:37.000Z | 2021-08-24T02:28:50.000Z | baiduspider/core/parser.py | samzhangjy/GSSpider | 344d9c9053a5d5bf08692e0c817d30763dbd8ab7 | [
"MIT"
] | 6 | 2020-07-14T17:13:17.000Z | 2020-09-12T06:02:01.000Z | baiduspider/core/parser.py | samzhangjy/GSSpider | 344d9c9053a5d5bf08692e0c817d30763dbd8ab7 | [
"MIT"
] | 12 | 2020-07-27T08:38:26.000Z | 2021-07-28T16:05:58.000Z | import json
from html import unescape
from bs4 import BeautifulSoup
from baiduspider.core._spider import BaseSpider
from baiduspider.errors import ParseError
| 36.72956 | 162 | 0.447603 |
8449b868c5c55bebc3c70da12ca1d458ad2a711a | 2,142 | py | Python | virtual/lib/python3.6/site-packages/requests_unixsocket/adapters.py | marknesh/pitches | 0a480d9bc2beafaefa0121393b1502cc05edab89 | [
"MIT"
] | null | null | null | virtual/lib/python3.6/site-packages/requests_unixsocket/adapters.py | marknesh/pitches | 0a480d9bc2beafaefa0121393b1502cc05edab89 | [
"MIT"
] | 10 | 2020-03-08T21:13:29.000Z | 2021-04-08T19:41:14.000Z | flask/lib/python3.6/site-packages/requests_unixsocket/adapters.py | JOFLIX/grapevines | 34576e01184570d79cc140b42ffb71d322132da6 | [
"MIT",
"Unlicense"
] | 1 | 2020-11-04T06:48:34.000Z | 2020-11-04T06:48:34.000Z | import socket
from requests.adapters import HTTPAdapter
from requests.compat import urlparse, unquote
try:
from requests.packages.urllib3.connection import HTTPConnection
from requests.packages.urllib3.connectionpool import HTTPConnectionPool
except ImportError:
from urllib3.connection import HTTPConnection
from urllib3.connectionpool import HTTPConnectionPool
# The following was adapted from some code from docker-py
# https://github.com/docker/docker-py/blob/master/docker/unixconn/unixconn.py
| 35.114754 | 77 | 0.710551 |
844a39e610cb54a65514ca7f805b41f45b503518 | 3,021 | py | Python | jarvis/resume/tests/test_utils.py | Anubhav722/blahblah | 160698e06a02e671ac40de3113cd37d642e72e96 | [
"MIT"
] | 1 | 2019-01-03T06:10:04.000Z | 2019-01-03T06:10:04.000Z | jarvis/resume/tests/test_utils.py | Anubhav722/blahblah | 160698e06a02e671ac40de3113cd37d642e72e96 | [
"MIT"
] | 1 | 2021-03-31T19:11:52.000Z | 2021-03-31T19:11:52.000Z | jarvis/resume/tests/test_utils.py | Anubhav722/blahblah | 160698e06a02e671ac40de3113cd37d642e72e96 | [
"MIT"
] | null | null | null | from django.test import TestCase
from jarvis.resume.utils.extractor import get_text
from jarvis.resume.utils.parser_helper import get_urls, get_url_response, url_categories, get_github_username, get_stackoverflow_userid, get_stackoverflow_username, get_name, get_id_from_linkedin_url, get_email
from unidecode import unidecode
path_to_test_data = 'resume/tests/test_data/1.pdf'
urls = ['https://github.com/imnithin', 'http://imnithin.github.io', 'https://gist.github.com/imnithin',
'http://stackoverflow.com/users/2231236/nithin', 'https://www.linkedin.com/in/imnithink']
categories = {'blog': ['http://imnithin.github.io'], 'coding': [],
'contributions': ['https://github.com/imnithin', 'https://gist.github.com/imnithin'],
'forums': ['http://stackoverflow.com/users/2231236/nithin'], 'others': [],
'social': ['https://www.linkedin.com/in/imnithink']}
url_response = [{'name': 'https://github.com/imnithin', 'type': 'contributions'},
{'name': 'https://gist.github.com/imnithin', 'type': 'contributions'},
{'name': 'https://www.linkedin.com/in/imnithink', 'type': 'social'},
{'name': 'http://imnithin.github.io', 'type': 'blog'},
{'name': 'http://stackoverflow.com/users/2231236/nithin', 'type': 'forums'}]
| 43.782609 | 210 | 0.676266 |
844aff8b757e567eab04101d17c08cb3e245797f | 8,032 | py | Python | profiles_weak.py | andreuvall/HybridPlaylistContinuation | 6e31e50050c61a2c3ae55183e18b665fd54c7250 | [
"BSD-2-Clause"
] | 8 | 2017-06-04T11:42:49.000Z | 2021-10-19T12:16:01.000Z | profiles_weak.py | andreuvall/HybridPlaylistContinuation | 6e31e50050c61a2c3ae55183e18b665fd54c7250 | [
"BSD-2-Clause"
] | null | null | null | profiles_weak.py | andreuvall/HybridPlaylistContinuation | 6e31e50050c61a2c3ae55183e18b665fd54c7250 | [
"BSD-2-Clause"
] | 5 | 2017-08-27T17:02:14.000Z | 2020-06-09T01:21:09.000Z | from __future__ import print_function
from __future__ import division
from sklearn.utils import check_random_state
from sklearn import preprocessing as prep
from utils.data import load_data, show_data_splits, shape_data
from utils.evaluation import evaluate
from utils.profiles import select_model, show_design, train, fit, compute_scores
import theano
import lasagne as lg
import numpy as np
import argparse
import os
'''
Hybrid music playlist continuation based on a song-to-playlist classifier.
We learn a classifier that takes song features as inputs and predicts the
playlists songs belong to. Once it is learned, such classifier can be
used to populate a matrix of song-playlist scores describing how well a song
and a playlist fit together. Thus, a playlist can be extended by selecting
the songs with highest score. This approach is "hybrid" in the usual sense in
the recommender systems literature, i.e., it combines content (given by the
song features) and cf information (given by playlists examples).
As it is, this approach only works on the so-called weak generalization setting.
That is, the model is trained on the same playlists that will be extended.
'''
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hybrid music playlist continuation based on a song-to-playlist classifier.')
parser.add_argument('--model', type=str, help='path to the model specification file', metavar='')
parser.add_argument('--dataset', type=str, help='path to the playlists dataset directory', metavar='')
parser.add_argument('--msd', type=str, help='path to the MSD directory', metavar='')
parser.add_argument('--train', action='store_true', help='train the song-to-playist classifier with monitoring')
parser.add_argument('--fit', action='store_true', help='fit the song-to-playlist classifier')
parser.add_argument('--test', action='store_true', help='evaluate the playlist continuations')
parser.add_argument('--ci', action='store_true', help='compute confidence intervals if True')
parser.add_argument('--song_occ', type=int, help='test on songs observed song_occ times during training', nargs='+', metavar='')
parser.add_argument('--metrics_file', type=str, help='file name to save metrics', metavar='')
parser.add_argument('--seed', type=int, help='set random behavior', metavar='')
args = parser.parse_args()
# set random behavior
rng = check_random_state(args.seed)
lg.random.set_rng(rng)
# set model configuration
model = select_model(args.model)
# prepare output directory
data_name = os.path.basename(os.path.normpath(args.dataset))
out_dir = os.path.join('params', 'profiles', model.name + '_' + data_name + '_weak')
if not os.path.exists(out_dir):
os.makedirs(out_dir)
# load data: playlists, splits, features and artist info
data = load_data(args.dataset, args.msd, model)
playlists_coo, split_weak, _, features, song2artist = data
# playlists_coo are the playlists stored in coordinate format
playlists_idx, songs_idx, _, idx2song = playlists_coo
# each playlist is split into a "query" of ~80% of the songs (train_idx +
# valid_idx) and a "continuation" of ~20% of the songs (test_idx)
train_idx, valid_idx, test_idx = split_weak
# define splits for this experiment
# train model on the training queries
# validate model on the validation queries
# fit the model on the full queries
# extend all the playlists, using all queries and continuations
train_idx = train_idx
valid_idx = valid_idx
fit_idx = np.hstack((train_idx, valid_idx))
query_idx = fit_idx
cont_idx = test_idx
# provide data information
show_data_splits(playlists_idx, songs_idx, idx2song, song2artist,
train_idx, valid_idx, fit_idx, query_idx, cont_idx)
# provide model information
print('\nNetwork:')
show_design(model)
if args.train:
#
# train the hybrid model while validating on withheld playlists
#
# prepare input song features and playlist targets at training
X_train, Y_train = shape_data(
playlists_idx, songs_idx, idx2song, features,
mode='train', subset=train_idx
)
# prepare input song features and playlist targets at validation
X_valid, Y_valid = shape_data(
playlists_idx, songs_idx, idx2song, features,
mode='test', subset=valid_idx
)
# preprocess input features if required
# use the training song features to standardize the validation data
if model.standardize:
scaler = prep.RobustScaler()
X_train = scaler.fit_transform(X_train)
X_valid = scaler.transform(X_valid)
if model.normalize:
X_train = prep.normalize(X_train, norm=model.normalize)
X_valid = prep.normalize(X_valid, norm=model.normalize)
# train the classifier
train(
model=model,
train_input=X_train.astype(theano.config.floatX),
train_target=Y_train.astype(np.int8),
valid_input=X_valid.astype(theano.config.floatX),
valid_target=Y_valid.astype(np.int8),
out_dir=out_dir,
random_state=rng
)
if args.fit:
#
# fit the hybrid model
#
# prepare input song features and playlist targets at training
X_fit, Y_fit = shape_data(
playlists_idx, songs_idx, idx2song, features,
mode='train', subset=fit_idx
)
# preprocess input features if required
if model.standardize:
X_fit = prep.robust_scale(X_fit)
if model.normalize:
X_fit = prep.normalize(X_fit, norm=model.normalize)
# fit the classifier
fit(
model=model,
fit_input=X_fit.astype(theano.config.floatX),
fit_target=Y_fit.astype(np.int8),
out_dir=out_dir,
random_state=rng
)
if args.test:
#
# extend the playlists in the query split and evaluate the
# continuations by comparing them to actual withheld continuations
#
# prepare input song features and playlist targets at test
X_cont, Y_cont = shape_data(
playlists_idx, songs_idx, idx2song, features,
mode='test', subset=cont_idx
)
# preprocess input features if required
# use the training song features to standardize the test data
if model.standardize:
X_fit, _ = shape_data(
playlists_idx, songs_idx, idx2song, features,
mode='train', subset=fit_idx
)
scaler = prep.RobustScaler()
scaler.fit(X_fit)
X_cont = scaler.transform(X_cont)
if model.normalize:
X_cont = prep.normalize(X_cont, norm=model.normalize)
# songs in the "query" playlists need to be masked to make sure that
# they are not recommended as continuations
_, Y_query = shape_data(
playlists_idx, songs_idx, idx2song, features,
mode='test', subset=query_idx
)
# get number of song occurrences when fitting for cold-start analysis
# Y_fit = Y_query
train_occ = np.asarray(Y_query.sum(axis=1)).flatten()
# compute the song-playlist scores
cont_output = compute_scores(
model=model,
params_dir=out_dir,
cont_input=X_cont.astype(theano.config.floatX),
cont_target=Y_cont.astype(np.int8)
)
# evaluate the continuations
evaluate(
scores=[cont_output.T],
targets=[Y_cont.T.tocsr()],
queries=[Y_query.T.tocsr()],
train_occ=[train_occ],
k_list=[10, 30, 100],
ci=args.ci,
song_occ=args.song_occ,
metrics_file=args.metrics_file
)
| 37.886792 | 132 | 0.662475 |
844bd667c2563dc8f5e9e83fc9eaf8e0c1857eb6 | 560 | py | Python | news/admin.py | trojsten/news | aa1dfb4ee31a7f810dcd484eecafd49659292d76 | [
"BSD-3-Clause"
] | null | null | null | news/admin.py | trojsten/news | aa1dfb4ee31a7f810dcd484eecafd49659292d76 | [
"BSD-3-Clause"
] | 6 | 2016-07-10T00:22:02.000Z | 2021-12-23T22:43:41.000Z | news/admin.py | trojsten/news | aa1dfb4ee31a7f810dcd484eecafd49659292d76 | [
"BSD-3-Clause"
] | 2 | 2019-04-30T20:20:38.000Z | 2021-02-16T18:41:01.000Z | from django.contrib import admin
from django.db import models
from easy_select2.widgets import Select2Multiple
from news.models import Entry
admin.site.register(Entry, EntryAdmin)
| 25.454545 | 61 | 0.682143 |
844c48d7274f542cdb76ae374555eb9e43a3cc30 | 21,999 | py | Python | deliverable1/analyzer/clientGUI.py | tonellotto/pira-project | 13f1f40fd3339d60067c09396822af8f3c83239c | [
"MIT"
] | null | null | null | deliverable1/analyzer/clientGUI.py | tonellotto/pira-project | 13f1f40fd3339d60067c09396822af8f3c83239c | [
"MIT"
] | null | null | null | deliverable1/analyzer/clientGUI.py | tonellotto/pira-project | 13f1f40fd3339d60067c09396822af8f3c83239c | [
"MIT"
] | null | null | null | import analyzer_client as analyzer
from tkinter import *
from tkinter import filedialog
from tkinter import messagebox
from tkinter import ttk
import json
import os
from pathlib import Path
IP_ADDRESS = "localhost"
PORT = "8061"
ENGINE_CURR_OPTIONS = {}
ANALYZE_CURR_OPTIONS = {'language':'en', 'entities': None, 'correlation_id': None, 'score_threshold': "0.1", 'return_decision_process': "0" }
DENY_LIST = {'supported_entities': [], 'valuesList': [], 'length': 0 }
REGEX_LIST = {'entities': [], 'names_pattern': [], 'patterns': [], 'scores': [], 'context_words': [], 'length': 0 }
root = Tk()
app = Frames(root)
root.mainloop() | 50.456422 | 208 | 0.589027 |
844d85dc62ed6dfb3a4f73a387bf2a08be758a8e | 53 | py | Python | 05-functions_and_modules/mods_1.py | palmieric/Tecnologie_Web-Introduzione_a_Python | b10ce49a947b239ca2af1938248f7191937b2f89 | [
"CC0-1.0"
] | 3 | 2021-05-17T14:48:42.000Z | 2021-05-24T10:12:06.000Z | 05-functions_and_modules/mods_1.py | palmieric/Tecnologie_Web-Introduzione_a_Python | b10ce49a947b239ca2af1938248f7191937b2f89 | [
"CC0-1.0"
] | null | null | null | 05-functions_and_modules/mods_1.py | palmieric/Tecnologie_Web-Introduzione_a_Python | b10ce49a947b239ca2af1938248f7191937b2f89 | [
"CC0-1.0"
] | 2 | 2021-05-17T13:52:15.000Z | 2021-05-24T10:44:54.000Z | # mods 1
import random
print(random.randint(1,10))
| 10.6 | 27 | 0.716981 |
844ee290c97366006e042d8ac5ba0899c883ac56 | 1,903 | py | Python | kge/core/component.py | Fredkiss3/kge | 389d5ab21ecb6dc1a25dd9f98245ba5938a5d253 | [
"CC0-1.0"
] | 4 | 2020-03-17T02:15:10.000Z | 2021-06-29T13:34:40.000Z | kge/core/component.py | Fredkiss3/kge | 389d5ab21ecb6dc1a25dd9f98245ba5938a5d253 | [
"CC0-1.0"
] | 4 | 2020-05-23T05:47:30.000Z | 2022-01-13T02:15:35.000Z | kge/core/component.py | Fredkiss3/kge | 389d5ab21ecb6dc1a25dd9f98245ba5938a5d253 | [
"CC0-1.0"
] | null | null | null | from typing import Callable
import kge
from kge.core import events
from kge.core.eventlib import EventMixin
from kge.core.events import Event
Component = BaseComponent
| 33.982143 | 104 | 0.603783 |
84508cc0743106693c25a4c91852516182d10958 | 11,162 | py | Python | generate_population_dataset.py | p-enel/stable-and-dynamic-value | 3f78e24f5bef9b12b8cc43d075d2e66b8a603325 | [
"CC0-1.0"
] | 1 | 2020-07-29T09:18:00.000Z | 2020-07-29T09:18:00.000Z | generate_population_dataset.py | p-enel/stable-and-dynamic-value | 3f78e24f5bef9b12b8cc43d075d2e66b8a603325 | [
"CC0-1.0"
] | null | null | null | generate_population_dataset.py | p-enel/stable-and-dynamic-value | 3f78e24f5bef9b12b8cc43d075d2e66b8a603325 | [
"CC0-1.0"
] | 3 | 2020-07-27T03:12:19.000Z | 2021-11-02T20:03:00.000Z | from pathlib import Path
import numpy as np
import pickle as pk
from itertools import chain, product
from collections import OrderedDict
from structure import Struct
MONKEYS = ['M', 'N']
REGIONS = ['OFC', 'ACC']
TASKVARS = ['value', 'type']
SUBSPACES = [True, False]
EVT_WINS = OrderedDict((('cues ON', (-500, 1500)),
('response cue', (-500, 500)),
('rwd', (-400, 400))))
def pp_from_filename(filename):
'''Get the preprocessing parameters from a unit data set filename
Arguments:
filename - str or Path: name or full path of unit data set file
'''
fnamestr = filename if isinstance(filename, str) else filename.name
params = [paramstr.split('.') for paramstr in fnamestr.split('_')[2:]]
preproc_params = {'align': params[0][1],
'binsize': int(params[1][1]),
'smooth': params[2][1],
'smoothsize': int(params[3][1]),
'step': int(params[4][1])}
return preproc_params
def get_dataset_fname(dataseed, pp):
'''Generate the file name of a population data set given data seed and preprocessing parameters
Arguments:
dataseed - int: the seed of the data set that will be included in the file name
pp - dict: the pre-processing parameters of the data set'''
fname = "population_dataset_align.{align}_binsize.{binsize}_smooth.{smooth}"
fname += "_smoothsize.{smoothsize}_step.{step}_seed.%d.pk" % dataseed
fname = fname.format(**pp)
return fname
def generate_dataset(dataseed, unit_folder, unit_file, save_folder=None):
'''Generate a pseudo-population by combining data from monkeys and sessions
Arguments:
dataseed - int: the seed for pseudo-random selection of the trials to be
part of the data set
unit_file - str: the path to the file containing the unit data set
save_folder - str or Path: optional, a folder to save the generated data
set. After being saved once, if the same folder is specified, it will be
loaded instead of being generated.
Returns:
X - Structure: A structure that contains the pseudo-population firing rate
data. The structure contains 3 levels:
- monkey: which can take values 'M' or 'N' for individual monkey data,
or 'both' for the data of both monkeys combined
- region: which can take value 'OFC' or 'ACC'
- task variable: which can take value 'value' or 'type' for data sets
targeted to decoding these variables
The elements of the structure are numpy arrays of the shape:
trials x bins x neurons
Example:
X['N', 'ACC', 'value'] contains a matrix of the pseudo-population
firing rate of monkey N for region ACC meant to decode value
y - Structure: A structure of numpy vectors with the same map as 'X' that
contains the ground truth of the related variable for each trial.
Example:
y['N', 'ACC', 'value'] contains the value of each trials of monkey N
for ACC population.
delaymask - numpy vector of booleans: A boolean mask for the time bin
dimension to select time bins that are part of the delay activity
bins - numpy vector of ints: The time of each bin of the firing rate data
in the structure X, with events ordered this way:
'cues ON' -> 'response cue' -> 'rwd'
'''
events = list(EVT_WINS.keys())
pp = pp_from_filename(unit_file)
if save_folder is not None:
dataset_fname = get_dataset_fname(dataseed, pp)
dataset_fullpath = Path(save_folder)/dataset_fname
if dataset_fullpath.exists():
print("Data set already generated, loading...")
with open(dataset_fullpath, 'rb') as f:
X, y, delaymask, bins = pk.load(f)
return X, y, delaymask, bins
with open(Path(unit_folder)/unit_file, 'rb') as f:
data = pk.load(f)
evtxs = data['M']['OFC'][0]['bins']
#### Format the data for decoding
#################################
keymap = [MONKEYS, REGIONS, TASKVARS]
act = Struct.new_empty(keymap)
minntrials = Struct.new_empty(keymap)
for monkey, region in product(MONKEYS, REGIONS):
act[monkey, region, 'value'] = [[] for _ in range(4)]
act[monkey, region, 'type'] = [[], []]
minntrials[monkey, region, 'value'] = [[] for _ in range(4)]
minntrials[monkey, region, 'type'] = [[], []]
datamr = data[monkey][region]
## Select bins that are within the window of interest for each event
## then concatenate the activity of the different events in a single tensor
catepochs = []
for sessdata in datamr:
if sessdata['fr'] is not None:
cattmp = []
for evt in events:
included_bins = (evtxs[evt] >= EVT_WINS[evt][0]) & (evtxs[evt] <= EVT_WINS[evt][1])
cattmp.append(sessdata['fr'][evt][included_bins])
catepochs.append(np.concatenate(cattmp))
else:
catepochs.append(None)
## Separate trials by value and type
for sessfr, sessdata in zip(catepochs, datamr):
if sessfr is not None:
if sessdata['fr'] is not None:
sessvars = sessdata['vars']
for val in range(1, 5):
trialbool = (sessvars.value == val)
act[monkey, region, 'value'][val-1].append(sessfr[:, :, trialbool])
for itype, type_ in enumerate(['juice', 'bar']):
trialbool = (sessvars.type == type_)
act[monkey, region, 'type'][itype].append(sessfr[:, :, trialbool])
## Get the minimum number of trials across all sessions for each value/type
minntrials[monkey, region, 'value'] = [np.nanmin([sessfr.shape[2] for sessfr in valdata])
for valdata in act[monkey, region, 'value']]
minntrials[monkey, region, 'type'] = [np.nanmin([sessfr.shape[2] for sessfr in typedata])
for typedata in act[monkey, region, 'type']]
## Get the minimum number of trials for pooled data across monkeys
minntrials.move_level_(0, 2)
mintogether = minntrials.apply(lambda x: [min(valmin) for valmin in zip(*x.values())], depth=2)
mintogether = Struct.from_nested_dict({'both': mintogether.ndict}, n_layers=3)
minntrials.move_level_(2, 0)
minntrials = minntrials.combine(mintogether)
# extra trials are discarded after trials are shuffled
np.random.seed(dataseed)
catactboth = Struct.empty_like(act, values=list)
# taskvar, monkey, region = next(product(TASKVARS, MONKEYS, REGIONS))
for taskvar, monkey, region in product(TASKVARS, MONKEYS, REGIONS):
keymap = [monkey, region, taskvar]
minns = minntrials['both', region, taskvar]
# minn, acttmp = next(zip(minns, act[keymap]))
for minn, acttmp in zip(minns, act[keymap]):
tocat = []
for sessdata in acttmp:
ntrials = sessdata.shape[2]
trialind = np.arange(ntrials)
np.random.shuffle(trialind)
tmp = sessdata[:, :, trialind]
tocat.append(tmp[:, :, :minn])
catactboth[keymap].append(np.concatenate(tocat, 1))
catact = Struct.empty_like(act, values=list)
for taskvar, monkey, region in product(TASKVARS, MONKEYS, REGIONS):
keymap = [monkey, region, taskvar]
minns = minntrials[keymap]
for minn, acttmp in zip(minns, act[keymap]):
tocat = []
for sessdata in acttmp:
ntrials = sessdata.shape[2]
trialind = np.arange(ntrials)
np.random.shuffle(trialind)
tmp = sessdata[:, :, trialind]
tocat.append(tmp[:, :, :minn])
catact[keymap].append(np.concatenate(tocat, 1))
catactboth.move_level_(0, 2)
def cat_monkeys(x):
'''x: {monkey}[4 (values)] np.array<nbins*nneurons*ntrials>'''
return [np.concatenate([x['M'][ival], x['N'][ival]], axis=1) for ival in range(len(x['M']))]
catactboth.apply_agg_(cat_monkeys, depth=2)
catactboth = Struct.from_nested_dict({'both': catactboth.ndict}, n_layers=3)
catact = catact.combine(catactboth)
#### Moving data from arrays to a list ####
actvallist = catact.apply(get_actvallist)
X, y = actvallist.apply(lambda x: x[0]), actvallist.apply(lambda x: x[1])
X.apply_(np.stack)
y.apply_(np.array)
del(catact, act)
#### Defining a boolean mask to get only the bins between cue ON and rwd
########################################################################
cuesON_bins_mask = (evtxs['cues ON'] >= EVT_WINS['cues ON'][0]) & (evtxs['cues ON'] <= EVT_WINS['cues ON'][1])
cuesON_bins = evtxs['cues ON'][cuesON_bins_mask]
resp_bins_mask = (evtxs['response cue'] >= EVT_WINS['response cue'][0]) &\
(evtxs['response cue'] <= EVT_WINS['response cue'][1])
resp_bins = evtxs['response cue'][resp_bins_mask]
rwd_bins_mask = (evtxs['rwd'] >= EVT_WINS['rwd'][0]) & (evtxs['rwd'] <= EVT_WINS['rwd'][1])
rwd_bins = evtxs['rwd'][rwd_bins_mask]
delaymask = np.concatenate((cuesON_bins >= 0, np.ones(resp_bins.shape, dtype=bool), rwd_bins <= 0))
bins = {}
for evt, (start, end) in EVT_WINS.items():
xs = evtxs[evt]
bins[evt] = xs[(xs >= start) & (xs <= end)]
if save_folder is not None:
with open(dataset_fullpath, 'wb') as f:
pk.dump((X, y, delaymask, bins), f)
print(f'data set created and saved in {unit_folder}')
return X, y, delaymask, bins
# The following is an example. Replace the right hand side of the first three
# statements to get a specific data set
if __name__ == '__main__':
# Data seeds used to generate the pseudo population data for decoding are
# listed below:
# dataseeds = [634564236, 9453241, 70010207, 43661999, 60410205]
dataseed = 634564236
# The following folder path must contain the unit data set file specified
# below
unit_folder = Path("/home/john/datasets")
# The following statement specifies which unit data set (with which
# preprocessing parameters) is to be used to generate the population data
# set
unit_file = "unit_dataset_align.center_binsize.100_smooth.gaussian_smoothsize.100_step.25.pk"
# The last argument of the function allows you to save the data set in a
# specified folder, or to load an already generated population data set if
# it already exists in this folder. In this example the population data set
# is saved in the same folder as the unit data set.
X, y, delaymask, bins = generate_dataset(dataseed, unit_folder, unit_file,
save_folder=unit_folder)
| 43.601563 | 114 | 0.614854 |
8450d07e5cec286e40f858637377c3e87f1ab9e5 | 634 | py | Python | setup.py | joepatmckenna/ohmlr | 2f3e63243758b995596f37897814634fc432f337 | [
"MIT"
] | null | null | null | setup.py | joepatmckenna/ohmlr | 2f3e63243758b995596f37897814634fc432f337 | [
"MIT"
] | null | null | null | setup.py | joepatmckenna/ohmlr | 2f3e63243758b995596f37897814634fc432f337 | [
"MIT"
] | null | null | null | import setuptools
with open('README.rst', 'r') as f:
readme = f.read()
with open('version', 'r') as f:
version = f.read()
if __name__ == '__main__':
setuptools.setup(
name='ohmlr',
version=version,
description='One-hot multinomial logisitc regression',
long_description=readme,
author='Joseph P. McKenna',
author_email='joepatmckenna@gmail.com',
url='http://joepatmckenna.github.io/ohmlr',
download_url='https://pypi.org/project/ohmlr',
packages=['ohmlr'],
license='MIT',
keywords=['inference', 'statistics', 'machine learning'])
| 27.565217 | 65 | 0.615142 |
8450ee0e08874b8a26468c905f5abfbc7260c448 | 1,301 | py | Python | commands/climber/holdcimbersposition.py | 1757WestwoodRobotics/2022-RapidReact | b6d9cf203fd35e93dc5d26ba2d6889e2a9edb137 | [
"MIT"
] | 1 | 2022-01-21T22:00:24.000Z | 2022-01-21T22:00:24.000Z | commands/climber/holdcimbersposition.py | 1757WestwoodRobotics/2022-RapidReact | b6d9cf203fd35e93dc5d26ba2d6889e2a9edb137 | [
"MIT"
] | 40 | 2022-01-18T21:20:54.000Z | 2022-03-31T20:56:44.000Z | commands/climber/holdcimbersposition.py | 1757WestwoodRobotics/2022-RapidReact | b6d9cf203fd35e93dc5d26ba2d6889e2a9edb137 | [
"MIT"
] | 1 | 2022-01-28T02:46:38.000Z | 2022-01-28T02:46:38.000Z | from commands2 import CommandBase, ParallelCommandGroup
from subsystems.climbers.leftclimbersubsystem import LeftClimber
from subsystems.climbers.rightclimbersubsystem import RightClimber
| 35.162162 | 77 | 0.730976 |
84513ebf1e835ed2f032b1060dd720580d3e05a2 | 668 | py | Python | practicer_flask/app.py | DominikPott/practicer-flask | c8e523095bdd5912dadb7357d16a4e76229a04da | [
"MIT"
] | null | null | null | practicer_flask/app.py | DominikPott/practicer-flask | c8e523095bdd5912dadb7357d16a4e76229a04da | [
"MIT"
] | null | null | null | practicer_flask/app.py | DominikPott/practicer-flask | c8e523095bdd5912dadb7357d16a4e76229a04da | [
"MIT"
] | null | null | null | import os
from flask import Flask
import practicer_flask.auth
import practicer_flask.exercises
import practicer_flask.dashboard
import practicer_flask.topic
import practicer_flask.model_viewer
app = create_app()
if __name__ == "__main__":
app.run(debug=os.environ.get("DEV", False))
| 23.857143 | 77 | 0.784431 |
84533ec2f7f2ad9597755a4499563c795ed9f246 | 737 | py | Python | algo/visualizations/temporalchart.py | alexeyev/visartm | d19e193b3c084d7f355a45b966c8bb2ebb6fa366 | [
"BSD-3-Clause"
] | 1 | 2020-10-01T10:11:21.000Z | 2020-10-01T10:11:21.000Z | algo/visualizations/temporalchart.py | alexeyev/visartm | d19e193b3c084d7f355a45b966c8bb2ebb6fa366 | [
"BSD-3-Clause"
] | null | null | null | algo/visualizations/temporalchart.py | alexeyev/visartm | d19e193b3c084d7f355a45b966c8bb2ebb6fa366 | [
"BSD-3-Clause"
] | null | null | null | from models.models import Topic, TopicInTopic
import json
| 32.043478 | 76 | 0.639077 |
84580bc22605d3bb58c5f232f6e1f847342e88fa | 3,596 | py | Python | submissions-api/app/main/model/submissions_manifest.py | sanger-tol/tol-submissions | 8dbbfaa98b1dfa09a09cb54cf1b2eb9d1dca5331 | [
"MIT"
] | null | null | null | submissions-api/app/main/model/submissions_manifest.py | sanger-tol/tol-submissions | 8dbbfaa98b1dfa09a09cb54cf1b2eb9d1dca5331 | [
"MIT"
] | null | null | null | submissions-api/app/main/model/submissions_manifest.py | sanger-tol/tol-submissions | 8dbbfaa98b1dfa09a09cb54cf1b2eb9d1dca5331 | [
"MIT"
] | null | null | null | # SPDX-FileCopyrightText: 2021 Genome Research Ltd.
#
# SPDX-License-Identifier: MIT
from .base import Base, db
| 44.95 | 88 | 0.614294 |
8458ddef5330c4ed60d249ea5883464e063cf5ba | 6,411 | py | Python | eden/integration/hg/histedit_test.py | jmswen/eden | 5e0b051703fa946cc77fc43004435ae6b20599a1 | [
"BSD-3-Clause"
] | null | null | null | eden/integration/hg/histedit_test.py | jmswen/eden | 5e0b051703fa946cc77fc43004435ae6b20599a1 | [
"BSD-3-Clause"
] | null | null | null | eden/integration/hg/histedit_test.py | jmswen/eden | 5e0b051703fa946cc77fc43004435ae6b20599a1 | [
"BSD-3-Clause"
] | null | null | null | #!/usr/bin/env python3
#
# Copyright (c) 2016-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree. An additional grant
# of patent rights can be found in the PATENTS file in the same directory.
import os
from eden.integration.lib import hgrepo
from .lib.hg_extension_test_base import EdenHgTestCase, hg_test
from .lib.histedit_command import HisteditCommand
| 36.220339 | 86 | 0.608641 |
8459ea4275ad26f2fdfb1430948999a41ff39caf | 408 | py | Python | dailypy/__init__.py | HuangJiaLian/dailypy | b838a4f6743fca8ccc5c4fa73142d0f7095dbbc3 | [
"CC0-1.0"
] | null | null | null | dailypy/__init__.py | HuangJiaLian/dailypy | b838a4f6743fca8ccc5c4fa73142d0f7095dbbc3 | [
"CC0-1.0"
] | 1 | 2020-08-19T13:42:52.000Z | 2020-08-19T14:32:31.000Z | dailypy/__init__.py | HuangJiaLian/dailypy | b838a4f6743fca8ccc5c4fa73142d0f7095dbbc3 | [
"CC0-1.0"
] | null | null | null | import numpy as np
import os
# Data manipulate
| 20.4 | 53 | 0.568627 |
845c29a7df8a071ea4d00366b934a8a0a5899a8f | 2,832 | py | Python | vbb_backend/session/migrations/0002_auto_20210215_1509.py | patrickb42/backend-vbb-portal | 88362bc5b4d5cab95aa67e12694f98371604b65a | [
"MIT"
] | 3 | 2021-04-14T02:59:09.000Z | 2021-06-08T00:17:27.000Z | vbb_backend/session/migrations/0002_auto_20210215_1509.py | patrickb42/backend-vbb-portal | 88362bc5b4d5cab95aa67e12694f98371604b65a | [
"MIT"
] | 81 | 2020-12-08T00:11:52.000Z | 2021-08-09T18:13:32.000Z | vbb_backend/session/migrations/0002_auto_20210215_1509.py | patrickb42/backend-vbb-portal | 88362bc5b4d5cab95aa67e12694f98371604b65a | [
"MIT"
] | 5 | 2021-01-12T04:50:26.000Z | 2021-06-04T02:00:03.000Z | # Generated by Django 3.0.10 on 2021-02-15 15:09
from django.db import migrations, models
import django.db.models.deletion
import uuid
| 37.76 | 153 | 0.598517 |
845d03992ff2924ffdc957b51de3c6b486a7c0ea | 880 | py | Python | src/las_util/serializers.py | dcslagel/las-util-django | cea8437813969b3b22182de6b9553b9e6694c548 | [
"BSD-3-Clause"
] | 3 | 2020-05-15T05:40:43.000Z | 2021-11-09T06:19:41.000Z | src/las_util/serializers.py | dcslagel/las-util-django | cea8437813969b3b22182de6b9553b9e6694c548 | [
"BSD-3-Clause"
] | 26 | 2020-05-20T13:03:02.000Z | 2021-09-23T19:36:39.000Z | src/las_util/serializers.py | dcslagel/las-util-django | cea8437813969b3b22182de6b9553b9e6694c548 | [
"BSD-3-Clause"
] | 1 | 2021-11-09T01:40:05.000Z | 2021-11-09T01:40:05.000Z | """
File-Name: [app]/serializers.py
File-Desc: Rest API serializers for las_util
App-Name: las_util
Project-Name: Las-Util-Django
Copyright: Copyright (c) 2019, DC Slagel
License-Identifier: BSD-3-Clause
"""
from rest_framework import serializers
from las_util.models import SectionInfo
# TODO: replace view.api_upload with to use this
# class UploadSerializer(serializer.ModelSerializer):
# """Link ModelSerializer to the Upload model"""
# class Meta:
# model = Upload
# fields = ['filename',]
| 29.333333 | 55 | 0.7125 |
845d9d3e1de64db798d6f4d7e46d76bf4c2959c6 | 3,965 | py | Python | UI/python/runtext.py | maxxscholten/nyc-train-sign | 7da32c413270f3bf4629969bcf16f7def4ddb372 | [
"MIT"
] | 8 | 2020-02-19T21:17:04.000Z | 2022-01-04T03:52:56.000Z | UI/python/runtext.py | maxxscholten/nyc-train-sign | 7da32c413270f3bf4629969bcf16f7def4ddb372 | [
"MIT"
] | 1 | 2021-09-20T02:13:41.000Z | 2021-09-21T07:01:14.000Z | UI/python/runtext.py | maxxscholten/nyc-train-sign | 7da32c413270f3bf4629969bcf16f7def4ddb372 | [
"MIT"
] | 4 | 2021-03-11T17:11:40.000Z | 2021-11-10T01:20:33.000Z | #!/usr/bin/env python
# Display a runtext with double-buffering.
from samplebase import SampleBase
from rgbmatrix import graphics
import time
import requests
import transitfeed
import datetime
import arrow
import schedule
today = datetime.date.today()
starttime = time.time()
schedule = transitfeed.Schedule()
url = "http://localhost:5000/by-id/077e"
font = graphics.Font()
font.LoadFont("../fonts/tom-thumb.bdf")
textColor = graphics.Color(0, 110, 0)
circleColor = graphics.Color(110, 0, 0)
circleNumberColor = graphics.Color(0, 0, 0)
# Main function
if __name__ == "__main__":
run_text = RunText()
if (not run_text.process()):
run_text.print_help()
| 37.056075 | 121 | 0.640858 |
8460d12d7847a84d2047777b7d49fa013dbd6421 | 92 | py | Python | back/apps/base_user/apps.py | pylvin/nuxt-drf-template | e3f32cf98a2bdf393f88fbda2afedf2c0bf99dc7 | [
"MIT"
] | 2 | 2021-11-16T03:47:06.000Z | 2021-12-21T20:19:30.000Z | back/apps/base_user/apps.py | pylvin/nuxt-drf-template | e3f32cf98a2bdf393f88fbda2afedf2c0bf99dc7 | [
"MIT"
] | null | null | null | back/apps/base_user/apps.py | pylvin/nuxt-drf-template | e3f32cf98a2bdf393f88fbda2afedf2c0bf99dc7 | [
"MIT"
] | 2 | 2021-12-21T20:19:39.000Z | 2022-01-03T11:27:04.000Z | from django.apps import AppConfig
| 15.333333 | 33 | 0.76087 |
8462591fa4b3c8c3275d239bf45765f52bee1b94 | 1,188 | py | Python | model/board_generator.py | myrmarachne/minesweeper | 777170b7a31f1feed0bdf7aca31aaa9916c9b915 | [
"AFL-1.1"
] | null | null | null | model/board_generator.py | myrmarachne/minesweeper | 777170b7a31f1feed0bdf7aca31aaa9916c9b915 | [
"AFL-1.1"
] | null | null | null | model/board_generator.py | myrmarachne/minesweeper | 777170b7a31f1feed0bdf7aca31aaa9916c9b915 | [
"AFL-1.1"
] | null | null | null | from random import sample
from tile import Tile
from utils import neighbours
| 38.322581 | 115 | 0.616162 |
8463673ccc7d5d8251d46b1bed4eb08caa70dd68 | 1,054 | py | Python | src/the_tale/the_tale/game/pvp/objects.py | al-arz/the-tale | 542770257eb6ebd56a5ac44ea1ef93ff4ab19eb5 | [
"BSD-3-Clause"
] | 85 | 2017-11-21T12:22:02.000Z | 2022-03-27T23:07:17.000Z | src/the_tale/the_tale/game/pvp/objects.py | al-arz/the-tale | 542770257eb6ebd56a5ac44ea1ef93ff4ab19eb5 | [
"BSD-3-Clause"
] | 545 | 2017-11-04T14:15:04.000Z | 2022-03-27T14:19:27.000Z | src/the_tale/the_tale/game/pvp/objects.py | al-arz/the-tale | 542770257eb6ebd56a5ac44ea1ef93ff4ab19eb5 | [
"BSD-3-Clause"
] | 45 | 2017-11-11T12:36:30.000Z | 2022-02-25T06:10:44.000Z |
import smart_imports
smart_imports.all()
| 31.939394 | 85 | 0.66129 |
8463c9fd49aa8b29fdde20c5d6a8fdfd2fb75f46 | 300 | py | Python | src/gencoef/test.py | bwasti/sleef | 4d260ae7f5d0e76a3c5424149deb838373e1894b | [
"BSL-1.0"
] | null | null | null | src/gencoef/test.py | bwasti/sleef | 4d260ae7f5d0e76a3c5424149deb838373e1894b | [
"BSL-1.0"
] | null | null | null | src/gencoef/test.py | bwasti/sleef | 4d260ae7f5d0e76a3c5424149deb838373e1894b | [
"BSL-1.0"
] | null | null | null | import numpy as np
import math
p = np.poly1d([
+0.1429511242e-53,
+0.1561712123e-44,
-0.2259472298e-35,
-0.2669710222e-26,
+0.9784247973e-18,
+0.1655572013e-8,
+0.3991098106e+0,
])
for i in range(1000):
k = float(i) / 100
print(sigmoid(k), p(k))
| 15.789474 | 31 | 0.656667 |
846536aeea05536d64f4f59f9d2196f85d857b4d | 19,035 | py | Python | forever/Database.py | dss285/4ever | bd6f70f92d76d43342da401562f2c504adaf3867 | [
"MIT"
] | null | null | null | forever/Database.py | dss285/4ever | bd6f70f92d76d43342da401562f2c504adaf3867 | [
"MIT"
] | null | null | null | forever/Database.py | dss285/4ever | bd6f70f92d76d43342da401562f2c504adaf3867 | [
"MIT"
] | null | null | null | import psycopg2
import psycopg2.extras
import discord
from models.BotMention import BotMention
from models.UpdatedMessage import UpdatedMessage
from forever.Steam import Steam_API, Dota_Match, Dota_Match_Player
from forever.Utilities import run_in_executor, log
from forever.Warframe import CetusMessage, FissureMessage, SortieMessage, NightwaveMessage, InvasionMessage, SolSystem
from forever.Newswire import NewswireMessage
from models.Server import Server
from forever.Arknights import Formula, Item, Stage
from forever.GFL import Doll, Fairy
| 38.222892 | 180 | 0.640294 |
8465f309612202475ac3cb61d22a9dcf1509182e | 822 | py | Python | Week06/q_cifar10_cnn.py | HowardNTUST/HackNTU_Data_2017 | ad8e753a16719b6f9396d88b313a5757f5ed4794 | [
"MIT"
] | null | null | null | Week06/q_cifar10_cnn.py | HowardNTUST/HackNTU_Data_2017 | ad8e753a16719b6f9396d88b313a5757f5ed4794 | [
"MIT"
] | null | null | null | Week06/q_cifar10_cnn.py | HowardNTUST/HackNTU_Data_2017 | ad8e753a16719b6f9396d88b313a5757f5ed4794 | [
"MIT"
] | 1 | 2019-02-24T17:41:45.000Z | 2019-02-24T17:41:45.000Z | import keras
from keras.layers import Dense, Activation, Conv2D, MaxPool2D, Reshape
model = Sequential()
model.add(Reshape((3, 32, 32), input_shape=(3*32*32,) ))
model.add(Conv2D(filters=32, kernel_size=(3,3), padding='same', activation="relu", data_format='channels_first'))
model.add(MaxPool2D())
model.add(Conv2D(filters=64, kernel_size=(3,3), padding='same', activation="relu", data_format='channels_first'))
model.add(MaxPool2D())
model.add(Reshape((-1,)))
model.add(Dense(units=1024, activation="relu"))
model.add(Dense(units=10, activation="softmax"))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit(train_X, train_Y, validation_split=0.02, batch_size=128, epochs=30)
rtn = model.evaluate(test_X, test_Y)
print("\ntest accuracy=", rtn[1]) | 48.352941 | 113 | 0.723844 |
8465fe705e2203a309cb2f80aab7f362306bc341 | 1,111 | py | Python | testesDuranteAulas/aula019.py | Igor3550/Exercicios-de-python | e0f6e043df4f0770ac15968485fbb19698b4ac6b | [
"MIT"
] | null | null | null | testesDuranteAulas/aula019.py | Igor3550/Exercicios-de-python | e0f6e043df4f0770ac15968485fbb19698b4ac6b | [
"MIT"
] | null | null | null | testesDuranteAulas/aula019.py | Igor3550/Exercicios-de-python | e0f6e043df4f0770ac15968485fbb19698b4ac6b | [
"MIT"
] | null | null | null | # Dicionarios
pessoas = {'nome': 'Igor', 'sexo': 'M', 'idade': 20}
print(f'O {pessoas["nome"]} tem {pessoas["idade"]} anos.')
print(pessoas.keys()) #chaves do dicionario
print(pessoas.values())#valores das chaves
print(pessoas.items())#mostra os itens do dicionario
print()
for k in pessoas.keys():
print(k)
for v in pessoas.values():
print(v)
for k, v in pessoas.items():
print(k, v)
print()
for k, v in pessoas.items():
print(f'{k} = {v}')
print()
del pessoas['sexo']# deleta uma chave
pessoas['peso'] = 72# adiciona uma nova chave
for k, v in pessoas.items():
print(f'{k} = {v}')
print()
# Dicionario dentro de uma lista
brasil = []
estado1 = {'uf': 'Rio de Janeiro', 'sigla': 'RJ'}
estado2 = {'uf': 'So Paulo', 'sigla': 'SP'}
brasil.append(estado1)
brasil.append(estado2)
print(brasil[0]['uf'])
print()
brasil = list()
estado = dict()
for c in range(0, 3):
estado['uf'] = str(input('Unidade federativa: '))
estado['sigla'] = str(input('Sigla: '))
brasil.append(estado.copy())# cpia de um dicionario
for e in brasil:
for k, v in e.items():
print(f'{k} = {v}')
| 26.452381 | 58 | 0.629163 |
84664082e1511f1729add08f835b69444a8edf67 | 9,697 | py | Python | polyanalyst6api/api.py | Megaputer/polyanalyst6api-python | c6626a8a5f8f926b1f32285e18457ed70dfba73a | [
"MIT"
] | 2 | 2021-01-30T19:04:12.000Z | 2021-06-18T09:41:15.000Z | polyanalyst6api/api.py | Megaputer/polyanalyst6api-python | c6626a8a5f8f926b1f32285e18457ed70dfba73a | [
"MIT"
] | null | null | null | polyanalyst6api/api.py | Megaputer/polyanalyst6api-python | c6626a8a5f8f926b1f32285e18457ed70dfba73a | [
"MIT"
] | 1 | 2021-04-19T09:57:14.000Z | 2021-04-19T09:57:14.000Z | """
polyanalyst6api.api
~~~~~~~~~~~~~~~~~~~
This module contains functionality for access to PolyAnalyst API.
"""
import configparser
import contextlib
import pathlib
import warnings
from typing import Any, Dict, List, Tuple, Union, Optional
from urllib.parse import urljoin, urlparse
import requests
import urllib3
from . import __version__
from .drive import Drive
from .project import Parameters, Project
from .exceptions import APIException, ClientException, _WrapperNotFound
__all__ = ['API']
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
warnings.simplefilter(
'always', UserWarning
) # without this set_parameters will show warnings only once
NodeTypes = [
"CSV Exporter/",
"DataSource/CSV",
"DataSource/EXCEL",
"DataSource/FILES",
"DataSource/INET",
"DataSource/ODBC",
"DataSource/RSS",
"DataSource/XML",
"Dataset/Biased",
"Dataset/ExtractTerms",
"Dataset/Python",
"Dataset/R",
"Dataset/ReplaceTerms",
"ODBC Exporter/",
"PA6TaxonomyResult/TaxonomyResult",
"SRLRuleSet/Filter Rows",
"SRLRuleSet/SRL Rule",
"TmlEntityExtractor/FEX",
"Sentiment Analysis",
"TmlLinkTerms/",
]
| 35.00722 | 113 | 0.608642 |
ffbcc28e993823f93d8f7e3809b6abd49a5cc187 | 1,998 | py | Python | froide/publicbody/admin.py | rufuspollock/froide | 8ef4dbdd54a74f8c986d59e90348dfdbd85c5da4 | [
"MIT"
] | null | null | null | froide/publicbody/admin.py | rufuspollock/froide | 8ef4dbdd54a74f8c986d59e90348dfdbd85c5da4 | [
"MIT"
] | null | null | null | froide/publicbody/admin.py | rufuspollock/froide | 8ef4dbdd54a74f8c986d59e90348dfdbd85c5da4 | [
"MIT"
] | null | null | null | from django.contrib import admin
from django.http import HttpResponse
from django.utils.translation import ugettext as _
from froide.publicbody.models import (PublicBody, FoiLaw, PublicBodyTopic,
Jurisdiction)
admin.site.register(PublicBody, PublicBodyAdmin)
admin.site.register(FoiLaw, FoiLawAdmin)
admin.site.register(Jurisdiction, JurisdictionAdmin)
admin.site.register(PublicBodyTopic, PublicBodyTopicAdmin)
| 34.448276 | 87 | 0.699199 |
ffbf148e7df59ebdd237d38695723231b7824b44 | 462 | py | Python | src/abc/106/106_b.py | ryuichi1208/atcoder_stack | 19ec81fb9a3edb44be422b79e98b23e8ff17ef60 | [
"MIT"
] | null | null | null | src/abc/106/106_b.py | ryuichi1208/atcoder_stack | 19ec81fb9a3edb44be422b79e98b23e8ff17ef60 | [
"MIT"
] | null | null | null | src/abc/106/106_b.py | ryuichi1208/atcoder_stack | 19ec81fb9a3edb44be422b79e98b23e8ff17ef60 | [
"MIT"
] | null | null | null | n = int(input())
# @return [0]: [1]:
L=[]
ans=0
for i in range(1,n+1):
if(i%2==0):
continue
else:
for j in range(1,n+1):
if(i%j==0):
L.append(j)
if (len(L)==8):
ans+=1
L.clear()
print(ans)
print(divisor(15))
| 14.4375 | 30 | 0.452381 |
ffbfef0bf96a36ae6a5da2b1bf0bdc5756f1e309 | 3,931 | py | Python | poc.py | evinr/basis-scraper | cb20574aadc469c6d1527ddb5a3cc69df531cbfd | [
"MIT"
] | null | null | null | poc.py | evinr/basis-scraper | cb20574aadc469c6d1527ddb5a3cc69df531cbfd | [
"MIT"
] | null | null | null | poc.py | evinr/basis-scraper | cb20574aadc469c6d1527ddb5a3cc69df531cbfd | [
"MIT"
] | null | null | null | import serial
#TODO: define the gathering of all of the possible data sets being extracted
#Biometrics
# Heart Rate
# STEPS
# CALORIES
# SKIN TEMP
# PERSPIRATION
#Activity
# Walking
# Running
# Biking
#Sleep
# REM
# Mind Refresh
# Light
# Deep
# Body Refresh
# Interruptions
# Toss & Turn
| 27.110345 | 135 | 0.675401 |
ffc0fbef26aaac232d9390250ce89e31f64b7ad8 | 31 | py | Python | multinet/db/models/__init__.py | multinet-app/multinet-girder | f34c87849d92c7fe2f8589760f97bebbe04bd4af | [
"Apache-2.0"
] | 3 | 2019-10-22T15:21:10.000Z | 2020-02-13T17:40:07.000Z | multinet/db/models/__init__.py | multinet-app/multinet | f34c87849d92c7fe2f8589760f97bebbe04bd4af | [
"Apache-2.0"
] | 183 | 2019-08-01T14:27:00.000Z | 2020-03-04T17:47:49.000Z | multinet/db/models/__init__.py | multinet-app/multinet-girder | f34c87849d92c7fe2f8589760f97bebbe04bd4af | [
"Apache-2.0"
] | 2 | 2020-08-20T11:57:17.000Z | 2020-11-10T22:54:19.000Z | """ORM models for multinet."""
| 15.5 | 30 | 0.645161 |
ffc1536722c6684539bdbe4eaba7de45c07a8edb | 6,296 | py | Python | dataPipelines/gc_crawler/nato_stanag/models.py | ekmixon/gamechanger-crawlers | 60a0cf20338fb3dc134eec117bccd519cede9288 | [
"MIT"
] | null | null | null | dataPipelines/gc_crawler/nato_stanag/models.py | ekmixon/gamechanger-crawlers | 60a0cf20338fb3dc134eec117bccd519cede9288 | [
"MIT"
] | 4 | 2021-07-27T21:44:51.000Z | 2022-03-04T01:38:48.000Z | dataPipelines/gc_crawler/nato_stanag/models.py | ekmixon/gamechanger-crawlers | 60a0cf20338fb3dc134eec117bccd519cede9288 | [
"MIT"
] | null | null | null | import bs4
import os
import re
from typing import Iterable
from selenium import webdriver
from selenium.webdriver.support.ui import WebDriverWait # for implicit and explict waits
from selenium.webdriver.support import expected_conditions as ec
from selenium.webdriver.common.by import By
from dataPipelines.gc_crawler.requestors import MapBasedPseudoRequestor
from dataPipelines.gc_crawler.exec_model import Crawler, Parser, Pager
from dataPipelines.gc_crawler.data_model import Document, DownloadableItem
from dataPipelines.gc_crawler.utils import abs_url, close_driver_windows_and_quit
from . import SOURCE_SAMPLE_DIR, BASE_SOURCE_URL
| 38.625767 | 127 | 0.550191 |
ffc168320dcc3879d9935e0c48e2582d2d304fa1 | 3,938 | py | Python | app/signals.py | MakuZo/bloggy | 550e5285728b285e0d5243670d6aa0f40c414777 | [
"MIT"
] | 7 | 2018-11-12T20:52:53.000Z | 2021-12-17T23:04:41.000Z | app/signals.py | MakuZo/bloggy | 550e5285728b285e0d5243670d6aa0f40c414777 | [
"MIT"
] | 2 | 2019-12-24T08:53:51.000Z | 2019-12-26T19:26:51.000Z | app/signals.py | MakuZo/bloggy | 550e5285728b285e0d5243670d6aa0f40c414777 | [
"MIT"
] | 8 | 2018-12-28T12:31:51.000Z | 2020-01-25T09:07:52.000Z | import re
from django.db.models.signals import m2m_changed, post_save, pre_delete
from django.dispatch import receiver
from django.urls import reverse
from .models import Entry, Notification, User
| 39.777778 | 127 | 0.561199 |
ffc1d0bbd0644054a0b22502249482b17c06c941 | 2,532 | py | Python | tests/utils/test_commons.py | jajomi/flow | c984be6f7de1a34192601c129dbc19f2ce45f135 | [
"Apache-2.0"
] | null | null | null | tests/utils/test_commons.py | jajomi/flow | c984be6f7de1a34192601c129dbc19f2ce45f135 | [
"Apache-2.0"
] | 6 | 2021-03-05T16:39:42.000Z | 2021-06-11T01:04:57.000Z | tests/utils/test_commons.py | jajomi/flow | c984be6f7de1a34192601c129dbc19f2ce45f135 | [
"Apache-2.0"
] | null | null | null | from unittest.mock import mock_open
from unittest.mock import patch
import flow.utils.commons as commons
commit_example = [
"223342f Adding ability to specify artifactory user [#134082057]",
"4326d00 Adding slack channel option for errors [#130798449]",
"09c1983 Merge pull request #25 from ci-cd/revert-18-github-version-fix",
"445fd02 Revert \"GitHub version fix\""
]
commit_example_nested_brackets = [
"223342f Adding ability to specify artifactory user [#134082057, [bubba]]",
"4326d00 Adding slack channel option for errors [#130798449]",
"09c1983 Merge pull request #25 from ci-cd/revert-18-github-version-fix",
"445fd02 Revert \"GitHub version fix\""
]
commit_example_multiple_per_brackets = [
"223342f Adding ability to specify artifactory user [#134082057,#134082058]",
"4326d00 Adding slack channel option for errors [#130798449,123456]",
"09c1983 Merge pull request #25 from ci-cd/revert-18-github-version-fix",
"445fd02 Revert \"GitHub version fix\""
]
commit_example_dedup = [
"223342f Adding ability to specify artifactory user [#134082057,#134082057]",
"4326d00 Adding slack channel option for errors [#134082057,134082057]",
"09c1983 Merge pull request #25 from ci-cd/revert-18-github-version-fix",
"445fd02 Revert \"GitHub version fix\""
]
| 36.171429 | 100 | 0.781991 |
ffc234c8fa1382a81cd3f2b1ea5e202da915c840 | 28,482 | py | Python | swagger_client/models/client_configuration.py | chbndrhnns/finapi-client | 259beda8b05e912c49d2dc4c3ed71205134e5d8a | [
"MIT"
] | 2 | 2019-04-15T05:58:21.000Z | 2021-11-15T18:26:37.000Z | swagger_client/models/client_configuration.py | chbndrhnns/finapi-client | 259beda8b05e912c49d2dc4c3ed71205134e5d8a | [
"MIT"
] | 1 | 2021-06-18T09:46:25.000Z | 2021-06-18T20:12:41.000Z | swagger_client/models/client_configuration.py | chbndrhnns/finapi-client | 259beda8b05e912c49d2dc4c3ed71205134e5d8a | [
"MIT"
] | 2 | 2019-07-08T13:41:09.000Z | 2020-12-07T12:10:04.000Z | # coding: utf-8
"""
finAPI RESTful Services
finAPI RESTful Services # noqa: E501
OpenAPI spec version: v1.42.1
Generated by: https://github.com/swagger-api/swagger-codegen.git
"""
import pprint
import re # noqa: F401
import six
def to_str(self):
"""Returns the string representation of the model"""
return pprint.pformat(self.to_dict())
def __repr__(self):
"""For `print` and `pprint`"""
return self.to_str()
def __eq__(self, other):
"""Returns true if both objects are equal"""
if not isinstance(other, ClientConfiguration):
return False
return self.__dict__ == other.__dict__
def __ne__(self, other):
"""Returns true if both objects are not equal"""
return not self == other
| 71.027431 | 1,696 | 0.743066 |
ffc35164c1764ae381a92d8e3682d0250a4793ea | 912 | py | Python | utils/jwt_custom_decorator.py | w0rm1995/face-comparison-backend | 9e231aabcf129e887e25a8ffdb5ae9617fee3e00 | [
"MIT"
] | null | null | null | utils/jwt_custom_decorator.py | w0rm1995/face-comparison-backend | 9e231aabcf129e887e25a8ffdb5ae9617fee3e00 | [
"MIT"
] | 3 | 2021-06-08T22:05:30.000Z | 2022-01-13T03:04:03.000Z | utils/jwt_custom_decorator.py | w0rm1995/face-comparison-backend | 9e231aabcf129e887e25a8ffdb5ae9617fee3e00 | [
"MIT"
] | null | null | null | from functools import wraps
from flask_jwt_extended import verify_jwt_in_request, get_jwt_claims, exceptions
from jwt import exceptions as jwt_exception
from utils.custom_response import bad_request
| 35.076923 | 80 | 0.638158 |
ffc40ad7630c4587dcf4487c052a523769c15b4a | 1,254 | py | Python | packages/M2Crypto-0.21.1/demo/smime/unsmime.py | RaphaelPrevost/Back2Shops | 5f2d369e82fe2a7b9b3a6c55782319b23d142dfd | [
"CECILL-B"
] | null | null | null | packages/M2Crypto-0.21.1/demo/smime/unsmime.py | RaphaelPrevost/Back2Shops | 5f2d369e82fe2a7b9b3a6c55782319b23d142dfd | [
"CECILL-B"
] | 6 | 2021-03-31T19:21:50.000Z | 2022-01-13T01:46:09.000Z | packages/M2Crypto-0.21.1/demo/smime/unsmime.py | RaphaelPrevost/Back2Shops | 5f2d369e82fe2a7b9b3a6c55782319b23d142dfd | [
"CECILL-B"
] | null | null | null | #!/usr/bin/env python
"""S/MIME demo.
Copyright (c) 2000 Ng Pheng Siong. All rights reserved."""
from M2Crypto import BIO, Rand, SMIME, X509
import sys
if __name__ == '__main__':
Rand.load_file('../randpool.dat', -1)
decrypt_verify(BIO.File(sys.stdin), 'client.pem', 'client2.pem','ca.pem')
Rand.save_file('../randpool.dat')
| 24.588235 | 77 | 0.6563 |
ffc4351a518b97d5c4916014accd51d41d76de87 | 14,867 | py | Python | skybright/skybright.py | ehneilsen/skybright | b0e2d7e6e25131393ee76ce334ce1df1521e3659 | [
"MIT"
] | 1 | 2019-09-24T21:06:45.000Z | 2019-09-24T21:06:45.000Z | skybright/skybright.py | ehneilsen/skybright | b0e2d7e6e25131393ee76ce334ce1df1521e3659 | [
"MIT"
] | null | null | null | skybright/skybright.py | ehneilsen/skybright | b0e2d7e6e25131393ee76ce334ce1df1521e3659 | [
"MIT"
] | 1 | 2019-09-24T21:14:35.000Z | 2019-09-24T21:14:35.000Z | #!/usr/bin/env python
"""A model for the sky brightness
"""
from functools import partial
from math import pi, cos, acos, sin, sqrt, log10
from datetime import datetime, tzinfo, timedelta
from time import strptime
from calendar import timegm
from copy import deepcopy
from sys import argv
from collections import namedtuple, OrderedDict
from argparse import ArgumentParser
try:
from ConfigParser import ConfigParser
except:
from configparser import ConfigParser
import numexpr
from numexpr import NumExpr
import warnings
from warnings import warn
import numpy as np
try:
from palpy import rdplan as rdplan_not_vectorized
from palpy import gmst as gmst_not_vectorized
from palpy import dmoon
from palpy import evp
except ImportError:
from pyslalib.slalib import sla_rdplan as rdplan_not_vectorized
from pyslalib.slalib import sla_gmst as gmst_not_vectorized
from pyslalib.slalib import sla_dmoon as dmoon
from pyslalib.slalib import sla_evp as evp
palpy_body = {'sun': 0,
'moon': 3}
MAG0 = 23.9
# warnings.simplefilter("always")
rdplan = np.vectorize(rdplan_not_vectorized)
## Works and is trivially faster, but less flexible w.r.t. data types
#
# ang_sep = NumExpr("2*arcsin(sqrt(cos(decl1)*cos(decl2)*(sin(((ra1-ra2)/2))**2) + (sin((decl1-decl2)/2))**2))",
# (('ra1', np.float64), ('decl1', np.float64), ('ra2', np.float64), ('decl2', np.float64)))
def elongation_not_vectorized(mjd):
"Calculate the elongation of the moon in radians"
pv = dmoon(mjd)
moon_distance = (sum([x**2 for x in pv[:3]]))**0.5
dvb, dpb, dvh, dph = evp(mjd,-1)
sun_distance = (sum([x**2 for x in dph[:3]]))**0.5
a = np.degrees(np.arccos(
(-pv[0]*dph[0] - pv[1]*dph[1] - pv[2]*dph[2])/
(moon_distance*sun_distance)))
return a
elongation = np.vectorize(elongation_not_vectorized)
def calc_moon_brightness(mjd, moon_elongation=None):
"""The brightness of the moon (relative to full)
The value here matches about what I expect from the value in
Astrophysical Quantities corresponding to the elongation calculated by
http://ssd.jpl.nasa.gov/horizons.cgi
>>> mjd = 51778.47
>>> print "%3.2f" % moon_brightness(mjd)
0.10
"""
if moon_elongation is None:
moon_elongation = elongation(mjd)
alpha = 180.0-moon_elongation
# Allen's _Astrophysical Quantities_, 3rd ed., p. 144
return 10**(-0.4*(0.026*abs(alpha) + 4E-9*(alpha**4)))
#
# Included for backword compatibility with previous implementation
#
def skymag(m_inf, m_zen, h, g, mie_m, rayl_m, ra, decl, mjd, k, latitude, longitude, offset=0.0,
sun_dm=-14.0, twi1=-2.52333, twi2=0.01111):
config = ConfigParser()
sect = "Observatory Position"
config.add_section(sect)
config.set(sect, 'longitude', longitude)
config.set(sect, 'latitude', latitude)
sect = "sky"
config.add_section(sect)
config.set(sect, 'filters', 'x')
config.set(sect, 'k', k)
config.set(sect, 'm_inf', m_inf)
config.set(sect, 'm_zen', m_zen)
config.set(sect, 'h', h)
config.set(sect, 'rayl_m', rayl_m)
config.set(sect, 'g', g)
config.set(sect, 'mie_m', mie_m)
config.set(sect, 'sun_dm', sun_dm)
config.set(sect, 'twi1', twi1)
config.set(sect, 'twi2', twi2)
calc_sky = MoonSkyModel(config)
sky = calc_sky(mjd, ra, decl, 'x')
return sky
if __name__=='__main__':
parser = ArgumentParser('Estimate the sky brightness')
parser.add_argument("-m", "--mjd", type=float,
help="Modified Julian Date (float) (UTC)")
parser.add_argument("-r", "--ra", type=float,
help="the RA (decimal degrees)")
parser.add_argument("-d", "--dec", type=float,
help="the declination (decimal degrees)")
parser.add_argument("-f", "--filter",
help="the filter")
parser.add_argument("-c", "--config",
help="the configuration file")
args = parser.parse_args()
model_config = ConfigParser()
model_config.read(args.config)
longitude = model_config.getfloat("Observatory Position",
"longitude")
latitude = model_config.getfloat("Observatory Position",
"latitude")
lst = gmst(args.mjd) + np.radians(longitude)
print("GMST: %f" % np.degrees(gmst(args.mjd)))
print("LST: %f" % np.degrees(lst))
sun_ra, sun_decl, diam = rdplan(args.mjd, 0, np.radians(longitude), np.radians(latitude))
sun_ha = lst - sun_ra
sun_zd = np.degrees(calc_zd(np.radians(latitude), sun_ha, sun_decl))
print("Sun zenith distance: %f" % sun_zd)
moon_ra, moon_decl, diam = rdplan(args.mjd, 3, longitude, latitude)
moon_ha = lst - moon_ra
moon_zd = np.degrees(calc_zd(np.radians(latitude), moon_ha, moon_decl))
print("Moon zenith distance: %f" % moon_zd)
print("Elongation of the moon: %f" % elongation(args.mjd))
print("Moon brightness: %f" % calc_moon_brightness(args.mjd))
sep = ang_sep(moon_ra, moon_decl, np.radians(args.ra), np.radians(args.dec))
print("Pointing angle with moon: %f" % sep)
ha = lst - np.radians(args.ra)
print("Hour angle: %f" % np.degrees(ha))
z = calc_zd(np.radians(latitude), ha, np.radians(args.dec))
print("Pointing zenith distance: %f" % np.degrees(z))
print("Airmass: %f" % calc_airmass(np.cos(z)))
sky_model = MoonSkyModel(model_config)
print("Sky brightness at pointing: %f" % sky_model(args.mjd, args.ra, args.dec, args.filter))
| 37.1675 | 163 | 0.609807 |
ffc57756064cdbfdff55d925646e8ab713a50ba6 | 1,675 | py | Python | timeseries/test.py | zoobree/MachineLearning | 67fd35e67469d9f03afd5c090f2ca23f514bebfd | [
"Apache-2.0"
] | null | null | null | timeseries/test.py | zoobree/MachineLearning | 67fd35e67469d9f03afd5c090f2ca23f514bebfd | [
"Apache-2.0"
] | 1 | 2018-04-07T05:24:40.000Z | 2018-04-07T05:24:40.000Z | timeseries/test.py | joybree/MachineLearning | 69a381efa35436a6d211005c320576db966eea11 | [
"Apache-2.0"
] | null | null | null | # -*- coding: utf-8 -*-
import unittest
import arima
import os
import pandas as pd
if __name__ == "__main__":
unittest.main()
| 25.769231 | 99 | 0.587463 |
ffc7043d4112113fd11d3bba2367bfc4002daece | 8,004 | py | Python | pynetstation_send_tags/pynetstation_send_tags.py | mattmoo/Pynetstation-Plug-In | aba2d312e5543cc5c2100793805acfeff075c59c | [
"MIT"
] | null | null | null | pynetstation_send_tags/pynetstation_send_tags.py | mattmoo/Pynetstation-Plug-In | aba2d312e5543cc5c2100793805acfeff075c59c | [
"MIT"
] | null | null | null | pynetstation_send_tags/pynetstation_send_tags.py | mattmoo/Pynetstation-Plug-In | aba2d312e5543cc5c2100793805acfeff075c59c | [
"MIT"
] | null | null | null | # -*- coding:utf-8 -*-
"""
This file is part of OpenSesame.
OpenSesame is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenSesame is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenSesame. If not, see <http://www.gnu.org/licenses/>.
"""
from libopensesame.item import item
from libqtopensesame.items.qtautoplugin import qtautoplugin
from openexp.canvas import canvas
blankText = u'Enter Variable Name Here'
blankID = u'****'
| 35.415929 | 115 | 0.594328 |
ffc7fe1be16dc65b683b9d6a05ef9740a31e195b | 42,563 | py | Python | ion/simulators/SBE37_SMP_simulator.py | ooici/coi-services | 43246f46a82e597345507afd7dfc7373cb346afa | [
"BSD-2-Clause"
] | 3 | 2016-09-20T09:50:06.000Z | 2018-08-10T01:41:38.000Z | ion/simulators/SBE37_SMP_simulator.py | ooici/coi-services | 43246f46a82e597345507afd7dfc7373cb346afa | [
"BSD-2-Clause"
] | null | null | null | ion/simulators/SBE37_SMP_simulator.py | ooici/coi-services | 43246f46a82e597345507afd7dfc7373cb346afa | [
"BSD-2-Clause"
] | 2 | 2016-03-16T22:25:49.000Z | 2016-11-26T14:54:21.000Z | #!/usr/bin/env python
__author__ = 'Roger Unwin'
import socket
import time
from time import gmtime, strftime
import datetime
import string
import sys
import random
import asyncore
import thread
import getopt
import select
import os
### default values defined below (b/c class is not yet defined)
#default_port = 4001 # TCP port to run on.
#default_message_rate = 5 # 5 sec between messages when streaming
#default_sim=SBE37_random
########### BASE class here handles SBE37 behaviors
########### see below for subclasses that provide different data values
def usage():
print "SBE37-SMP Simulator:\n"
print "This program simulates a SBE37-SMP sensor deployed by \nbeing connected to a MOXA NPort 5410 Serial Device Server."
print "Available options are:"
print " -h, --help : Displays this message"
print " -p, --port= : Sets the port to listen on (>1024, default = %s)." % default_port
def get_opts():
opts, args = getopt.getopt(sys.argv[1:], "c:p:h", ["class=", "port=", "rate="])
out={'rate':default_message_rate,'port':default_port,'simulator':SBE37_random}
for o, a in opts:
if o in ("-c", "--class"):
out['simulator'] = getattr(sys.modules[__name__],a)
if o in ("-r", "--rate"):
out['message_rate'] = int(a)
elif o in ("-p", "--port"):
out['port'] = int(a)
else:
print 'unknown option: '+o
return out
def main():
try:
args = get_opts()
except Exception as e:
print 'Exception: %s'%e
usage()
sys.exit()
print 'using args: %r'%args
SBE37_server(sim_class=args['simulator'], host='', port=args['port'], rate=args['rate'])
try:
asyncore.loop()
except:
sys.exit() # Be silent when ^c pressed
################################################################################################
##
## THESE CLASSES generate different sample values for the simulator
#
# return tuple of: temperature, conductivity, pressure, salinity, sound velocity
import math
# vary as sine wave over time
# narrower, valid range to help ensure density can be calculated
#> Valid ranges for conductivity are 0-7 S/m. Typical values we've seen off the Oregon coast are ~35 mS/cm, which converts to ~3.5 S/m.
#>
#> Valid ranges for temperature are -2-40 deg_C. Typical values we've seen off the Oregon coast are between 5 and 20 deg_C. 12 deg_C would be absolutely reasonable.
#>
#> Valid ranges for pressure are 0-7000 dbar. Really, just choose a depth.
#>
#> I would recommend the simulator produce at C of 3.5 S/m, a T of 12 deg_C and a depth of 10 dbar. Apply sine wave functions with some small fraction of random white noise and let it rip.
#>
################################################################################################
default_port = 4001 # TCP port to run on.
default_message_rate = 5 # 5 sec between messages when streaming
default_sim=SBE37_random
if __name__ == '__main__':
main()
| 44.94509 | 405 | 0.453398 |
ffc857a75ba7aa5ef44304f6675fe0e78e0727a5 | 976 | py | Python | experiments/centralisation/centralisation.py | MichaelAllen1966/2105_london_acute_stroke_unit | 56b710c58b5b6bdf5c03e3fb9ec65c53cd5336ff | [
"MIT"
] | null | null | null | experiments/centralisation/centralisation.py | MichaelAllen1966/2105_london_acute_stroke_unit | 56b710c58b5b6bdf5c03e3fb9ec65c53cd5336ff | [
"MIT"
] | null | null | null | experiments/centralisation/centralisation.py | MichaelAllen1966/2105_london_acute_stroke_unit | 56b710c58b5b6bdf5c03e3fb9ec65c53cd5336ff | [
"MIT"
] | null | null | null | import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
data = pd.read_csv('results.csv')
labels = [1,2,3,4]
width = 0.75
x = np.arange(len(labels)) # the label locations
fig = plt.figure(figsize=(9,6))
# Number people waiting
ax1 = fig.add_subplot(121)
y1 = data['av_waiting'].values.flatten()
waiting = ax1.bar(x, y1, width, color='b')
ax1.set_ylabel('Average number of patients waiting for ASU bed')
ax1.set_xlabel('ASUs per region')
ax1.set_title('Average number of patients waiting\nfor ASU bed')
ax1.set_xticks(x)
ax1.set_xticklabels(labels)
ax2 = fig.add_subplot(122)
y2 = data['av_waiting_days'].values.flatten()
days = ax2.bar(x, y2, width, color='r')
ax2.set_ylabel('Average waiting time (days)')
ax2.set_xlabel('ASUs per region')
ax2.set_title('Average waiting time\n(days, for patients who have to wait)')
ax2.set_xticks(x)
ax2.set_xticklabels(labels)
plt.tight_layout(pad=2)
plt.savefig('centralisation.png', dpi=300)
plt.show()
| 21.217391 | 76 | 0.731557 |
ffc9b886976a36f8168389759472ba04ff485037 | 10,360 | py | Python | Case_Study_1.py | Amritha29/Stout_DDA_FULL_STACK_21.github.io | 89be2324468dfba2ba9afb378881c6e9e460696b | [
"CC-BY-4.0"
] | null | null | null | Case_Study_1.py | Amritha29/Stout_DDA_FULL_STACK_21.github.io | 89be2324468dfba2ba9afb378881c6e9e460696b | [
"CC-BY-4.0"
] | null | null | null | Case_Study_1.py | Amritha29/Stout_DDA_FULL_STACK_21.github.io | 89be2324468dfba2ba9afb378881c6e9e460696b | [
"CC-BY-4.0"
] | null | null | null | # -*- coding: utf-8 -*-
"""
Spyder Editor
Amritha Subburayan code for STOUT DDA FULL STACK CASE STUDIES
"""
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from sklearn import preprocessing
import sklearn.metrics as sm
data = pd.read_csv(r'//Users//amrithasubburayan//Downloads//loans_full_schema.csv')
data.info()
data.describe()
#Checking missing values
data.isna().sum()
#removing emp_title, state , num_accounts_120d_past_due , num_accounts_30d_past_due, tax_liens, public_record_bankrupt,
# paid_late_fees , total_collection_amount_ever , current_accounts_delinq , num_historical_failed_to_pay
# num_collections_last_12m, delinq_2y
# check corr and remove this num_mort_accounts
#storing data to other temp
data2 = data
# DATA DESCRIPTION AND ISSUES :
#There are two issues in this dataset :
#1) Missing values 2) Multi-collinearity
#Missing values can be found in the following rows:
#1) emp_title 2) emp_length 3) annual_income_joint 4) verification_income_joint
# 5) debt_to_income_joint 6) months_since_last_delinq 7) months_since_90d_late
#8) months_since_last_credit_inquiry 9) num_accounts_120d_past_due
#Multicollinearity can be found between these columns :
#1) installment and loan amount - 0.94 2) balance and loan amount - 0.93
# 3) annula income joint and total credit limit - 0.54
#4) Inquires last 12 m and months since last credit inq - 0.51
#5) total credit lines and open credit lines - 0.76 6)
#num satisfactory acc and total credit lines - 0.75
#7) total credit lines and num total cc accounts - 0.77 8)
#total credit lines and num open cc accounts - 0.62
#Visualizations
plt.figure(figsize=(40,35))
sns.heatmap(data2.corr(), annot = True, cmap = "RdYlGn")
plt.show()
data2['loan_purpose'].value_counts().plot(kind='bar',color=['gray','red','blue','green','purple','yellow','black']).set_title('Loan Purpose')
data2.groupby('homeownership').verified_income.value_counts().unstack(0).plot.bar()
data2.groupby('homeownership').application_type.value_counts().unstack(0).plot(kind="pie",subplots=True, shadow = True,startangle=90,figsize=(15,10),autopct='%1.1f%%')
plt.scatter(data2['installment'],data2['loan_amount'])
d = data2.groupby('emp_length')
s=[]
for key,item in d:
if(key!=7.0):
s.append(d.get_group(key)['interest_rate'].mean())
dict1={"emp_length":[0,1,2,3,4,5,6,8,9,10],"int_rate":s}
plt.plot(dict1['emp_length'],s)
df= data2['application_type']
data2.groupby('application_type').loan_purpose.value_counts()
data2.groupby('application_type').loan_purpose.value_counts().unstack(0).plot(kind="pie",subplots=True, shadow = True,startangle=90,figsize=(25,20),autopct='%1.1f%%')
#Replacing missing rows
d = data2.groupby('application_type').loan_purpose.value_counts()
#data2["verification_income_joint"] = data2['verification_income_joint'].fillna('Not Verified')
for i in range(0, len(data2["verification_income_joint"])):
if pd.isna(data2['verification_income_joint'][i]):
data2['verification_income_joint'][i] = data2['verified_income'][i]
data2["debt_to_income"] = data2['debt_to_income'].fillna(0)
#combining annual income with joint annual income
for i in range(0, len(data2["annual_income_joint"])):
if pd.isna(data2['annual_income_joint'][i]):
data2['annual_income_joint'][i] = data2['annual_income'][i]
#combining debt income with joint debt income
for i in range(0, len(data2["debt_to_income_joint"])):
if pd.isna(data2['debt_to_income_joint'][i]):
data2['debt_to_income_joint'][i] = data2['debt_to_income'][i]
## Replacing with mean values
data2["months_since_last_credit_inquiry"] = data2['months_since_last_credit_inquiry'].fillna(np.mean(data2["months_since_last_credit_inquiry"]))
data2["emp_length"] = data2['emp_length'].fillna(np.mean(data2["emp_length"]))
#Removing unwanted columns because it has more 0 values which will not impact on building a model
data2.drop("emp_title", axis = 1, inplace=True)
data2.drop("state", axis = 1, inplace=True)
data2.drop("num_accounts_120d_past_due", axis = 1, inplace=True)
data2.drop("num_accounts_30d_past_due", axis = 1, inplace=True)
data2.drop("tax_liens", axis = 1, inplace=True)
data2.drop("public_record_bankrupt", axis = 1, inplace=True)
data2.drop("paid_late_fees", axis = 1, inplace=True)
data2.drop("total_collection_amount_ever", axis = 1, inplace=True)
data2.drop("current_accounts_delinq", axis = 1, inplace=True)
data2.drop("num_historical_failed_to_pay", axis = 1, inplace=True)
data2.drop("num_collections_last_12m", axis = 1, inplace=True)
data2.drop("delinq_2y", axis = 1, inplace=True)
data2.drop("verified_income", axis = 1, inplace=True)
data2.drop("annual_income", axis = 1, inplace=True)
data2.drop("debt_to_income", axis = 1, inplace=True)
data2.drop("months_since_90d_late", axis = 1, inplace=True)
data2.drop("months_since_last_delinq", axis = 1, inplace=True)
data2.drop("issue_month", axis = 1, inplace=True)
data2.drop("initial_listing_status", axis = 1, inplace=True)
data2.drop("disbursement_method", axis = 1, inplace=True)
data2.drop("grade", axis = 1, inplace=True)
#removing columns based on correlation
data2.drop("total_credit_limit", axis = 1, inplace=True)
data2.drop("current_installment_accounts", axis = 1, inplace=True)
data2.drop("accounts_opened_24m", axis = 1, inplace=True)
data2.drop("open_credit_lines", axis = 1, inplace=True)
data2.drop("loan_amount", axis = 1, inplace=True)
data2.drop("balance", axis = 1, inplace=True)
data2.drop("paid_principal", axis = 1, inplace=True)
data2.drop("num_satisfactory_accounts", axis = 1, inplace=True)
data2.drop("total_credit_lines", axis = 1, inplace=True)
data2.drop("num_active_debit_accounts", axis = 1, inplace=True)
data2.drop("num_open_cc_accounts", axis = 1, inplace=True)
data2.drop("installment", axis = 1, inplace=True)
data2.drop("num_total_cc_accounts", axis = 1, inplace=True)
#Removing Outliers based on its Quartile and Max Value
data5 = data2
sns.boxplot(data5['paid_interest'])
data5 = data5.loc[data5["inquiries_last_12m"] < 15]
data5 = data5.loc[data5["total_credit_utilized"] < 400000]
data5 = data5.loc[data5["months_since_last_credit_inquiry"] < 20]
data5 = data5.loc[data5["total_debit_limit"] < 220000]
data5 = data5.loc[data5["num_cc_carrying_balance"] < 20]
data5 = data5.loc[data5["num_mort_accounts"] < 10]
data5 = data5.loc[data5["paid_total"] < 35000]
data5 = data5.loc[data5["paid_interest"] < 3000]
# Encoding Categorical Data using LabelEncoder
le = preprocessing.LabelEncoder()
data5['sub_grade'] = le.fit_transform(data5['sub_grade'].values)
data5['verification_income_joint'] = le.fit_transform(data5['verification_income_joint'].values)
data5['loan_status'] = le.fit_transform(data5['loan_status'].values)
data5['loan_purpose'] = le.fit_transform(data5['loan_purpose'].values)
data5['application_type'] = le.fit_transform(data5['application_type'].values)
data5['homeownership'] = le.fit_transform(data5['homeownership'].values)
data5 = data5.reindex(columns=['emp_length', 'homeownership', 'annual_income_joint',
'verification_income_joint', 'debt_to_income_joint',
'earliest_credit_line', 'inquiries_last_12m', 'total_credit_utilized',
'months_since_last_credit_inquiry', 'total_debit_limit',
'num_cc_carrying_balance', 'num_mort_accounts',
'account_never_delinq_percent', 'loan_purpose', 'application_type',
'term', 'sub_grade', 'loan_status', 'paid_total',
'paid_interest', 'interest_rate'])
X = data5.iloc[:, :-1].values
y = data5.iloc[:, -1].values
y = y.reshape(len(y),1)
#Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
sc_y = StandardScaler()
X = sc_X.fit_transform(X)
y = sc_y.fit_transform(y)
#Train Test Split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
#Modelling the Data
#Support Vector Regression
from sklearn.svm import SVR
regressor_SVM = SVR(kernel = 'rbf')
regressor_SVM.fit(X_train, y_train)
#For Training Data
SVR_train_pred = regressor_SVM.predict(X_train)
score2=r2_score(y_train,SVR_train_pred)
score2
print("Mean absolute error =", round(sm.mean_absolute_error(y_train, SVR_train_pred), 2))
print("Mean squared error =", round(sm.mean_squared_error(y_train, SVR_train_pred), 2))
print("Median absolute error =", round(sm.median_absolute_error(y_train, SVR_train_pred), 2))
print("Explain variance score =", round(sm.explained_variance_score(y_train, SVR_train_pred), 2))
#For Testing data
SVR_test_pred = regressor_SVM.predict(X_test)
score3=r2_score(y_test,SVR_test_pred)
score3
print("Mean absolute error =", round(sm.mean_absolute_error(y_test, SVR_test_pred), 2))
print("Mean squared error =", round(sm.mean_squared_error(y_test, SVR_test_pred), 2))
print("Median absolute error =", round(sm.median_absolute_error(y_test, SVR_test_pred), 2))
print("Explain variance score =", round(sm.explained_variance_score(y_test, SVR_test_pred), 2))
#Random Forest Model
from sklearn.ensemble import RandomForestRegressor
regressor1 = RandomForestRegressor(n_estimators = 10, random_state = 0)
regressor1.fit(X_train, y_train)
#For Training Data
random_train_pred = regressor1.predict(X_train)
score1=r2_score(y_train,random_train_pred)
score1
print("Mean absolute error =", round(sm.mean_absolute_error(y_train, random_train_pred), 2))
print("Mean squared error =", round(sm.mean_squared_error(y_train, random_train_pred), 2))
print("Median absolute error =", round(sm.median_absolute_error(y_train, random_train_pred), 2))
print("Explain variance score =", round(sm.explained_variance_score(y_train, random_train_pred), 2))
#For Testing Data
random_test_pred = regressor1.predict(X_test)
score=r2_score(y_test,random_test_pred)
score
print("Mean absolute error =", round(sm.mean_absolute_error(y_test, random_test_pred), 2))
print("Mean squared error =", round(sm.mean_squared_error(y_test, random_test_pred), 2))
print("Median absolute error =", round(sm.median_absolute_error(y_test, random_test_pred), 2))
print("Explain variance score =", round(sm.explained_variance_score(y_test, random_test_pred), 2))
| 32.888889 | 167 | 0.754826 |
ffcbaba69ba29dbe70293f1d332c038a6aaf91b9 | 1,373 | py | Python | datastore/__init__.py | Swixx/py-datastore | dfa1f9dcc3cc3beac3c3e79d085cb6e89da97a1c | [
"MIT"
] | 6 | 2019-08-04T04:11:36.000Z | 2020-02-20T17:10:26.000Z | datastore/__init__.py | Swixx/py-datastore | dfa1f9dcc3cc3beac3c3e79d085cb6e89da97a1c | [
"MIT"
] | 23 | 2019-09-17T11:35:06.000Z | 2020-04-07T16:18:15.000Z | datastore/__init__.py | Swixx/py-datastore | dfa1f9dcc3cc3beac3c3e79d085cb6e89da97a1c | [
"MIT"
] | 6 | 2019-08-04T02:02:25.000Z | 2020-03-01T15:43:41.000Z | """
Datastore is a generic layer of abstraction for data store and database access.
It is a **simple** API with the aim to enable application development in a
datastore-agnostic way, allowing datastores to be swapped seamlessly without
changing application code. Thus, one can leverage different datastores with
different strengths without committing the application to one datastore
throughout its lifetime.
"""
__version__ = "0.3.6"
__author__ = "Juan Batiz-Benet, Alexander Schlarb"
__email__ = "juan@benet.ai, alexander@ninetailed.ninja"
__all__ = (
"Key", "Namespace",
"BinaryNullDatastore", "BinaryDictDatastore",
"ObjectNullDatastore", "ObjectDictDatastore",
"Query", "Cursor",
"SerializerAdapter",
"abc", "typing", "util"
)
# import core.key
from .core.key import Key
from .core.key import Namespace
# import core.binarystore, core.objectstore
from .core.binarystore import NullDatastore as BinaryNullDatastore
from .core.binarystore import DictDatastore as BinaryDictDatastore
from .core.objectstore import NullDatastore as ObjectNullDatastore
from .core.objectstore import DictDatastore as ObjectDictDatastore
# import core.query
from .core.query import Query
from .core.query import Cursor
# import core.serialize
from .core.serialize import SerializerAdapter
### Exposed submodules ###
from . import abc
from . import typing
from . import util
| 29.212766 | 79 | 0.79024 |
ffce3c914809fe508a87b5cc18e2cdab125e42d4 | 402 | py | Python | public_goods_str_nonoise/tests.py | bocchan/costly | ba52f82e36e28012a63a78805963bdf384679955 | [
"BSD-3-Clause"
] | null | null | null | public_goods_str_nonoise/tests.py | bocchan/costly | ba52f82e36e28012a63a78805963bdf384679955 | [
"BSD-3-Clause"
] | null | null | null | public_goods_str_nonoise/tests.py | bocchan/costly | ba52f82e36e28012a63a78805963bdf384679955 | [
"BSD-3-Clause"
] | null | null | null | # -*- coding: utf-8 -*-
from __future__ import division
import random
from otree.common import Currency as c, currency_range
from . import views
from ._builtin import Bot
from .models import Constants
| 18.272727 | 54 | 0.691542 |
ffd1926ccd96f4b70e990d54bad23c4b64c849e9 | 2,531 | py | Python | cloudianapi/tools/statistics.py | romerojunior/cloudian-api | f17b45653a0e3e27a78d0d6bdc094ec6ab521550 | [
"Apache-2.0"
] | 11 | 2017-11-01T17:48:10.000Z | 2020-08-25T04:29:17.000Z | cloudianapi/tools/statistics.py | romerojunior/cloudian-api | f17b45653a0e3e27a78d0d6bdc094ec6ab521550 | [
"Apache-2.0"
] | 5 | 2017-11-10T12:46:44.000Z | 2019-09-18T07:18:19.000Z | cloudianapi/tools/statistics.py | romerojunior/cloudian-api | f17b45653a0e3e27a78d0d6bdc094ec6ab521550 | [
"Apache-2.0"
] | 7 | 2018-01-26T20:08:37.000Z | 2021-05-26T14:32:06.000Z | #!/usr/bin/env python
# -*- coding:utf8 -*-
# Copyright 2017, Schuberg Philis BV
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# Romero Galiza Jr. - rgaliza@schubergphilis.com
""" This is not part of the Admin API, but it incorporates additional tooling
to support statistical analysis of monitored data within a cluster, data center
or node """
def get_hs_used_kb(node):
""" Receives a node monitor JSON string and returns a list containing the
used disk space in KB for each hyperstore disk.
:param node: an iterable object
:type node: dict
:rtype: list
"""
if 'disksInfo' not in node:
raise TypeError('Unsupported input.')
# filter function to select only HyperStore disks:
f = (lambda n: True if 'HS' in n['storageUse'] else False)
hs_disks = filter(
f, (d for d in node['disksInfo']['disks'])
)
return [abs(int(disk['diskUsedKb'])) for disk in hs_disks]
def disk_avg_abs_deviation(node):
""" Returns the average absolute deviation for a given set of disks of a
given node based entirely on used capacity (expressed in KB).
Particularly useful if you want to visualize the average difference
between all disks in a given node. The closer the result is to zero the
better (less deviation = balanced usage).
:param node: an iterable object
:type node: dict
:rtype: int
"""
try:
disk_usage = get_hs_used_kb(node)
except TypeError:
return 0
mean = (sum(disk_usage) / len(disk_usage))
deviation = [abs(kb_used - mean) for kb_used in disk_usage]
return sum(deviation)/len(deviation)
| 34.202703 | 79 | 0.66772 |
ffd4de322115b22ae4e36e0be2d07a40743376b4 | 1,340 | py | Python | users/models.py | connorgannaway/dockmate | 040d44cac896aabc1488f3ed9d59b417e20719d8 | [
"MIT"
] | null | null | null | users/models.py | connorgannaway/dockmate | 040d44cac896aabc1488f3ed9d59b417e20719d8 | [
"MIT"
] | null | null | null | users/models.py | connorgannaway/dockmate | 040d44cac896aabc1488f3ed9d59b417e20719d8 | [
"MIT"
] | null | null | null | from os import name
from django.db import models
from django.contrib.auth.models import User
from PIL import Image
#Model classes are tables objects in a database.
#each variable is a column and its datatype.
#__str__ method defines the name of a object (row) in a database table
#profile model is meant to be used as an extension to the User model
#this is so users can have a profile picture and be connected to a company
""" def save(self, *args, **kwargs):
super().save(*args, **kwargs)
image = Image.open(self.picture.path)
if image.width > 300 or image.height > 300:
image.thumbnail((300, 300))
image.save(self.picture.path) """
| 37.222222 | 92 | 0.709701 |
ffd544a103259a41233ed3e0af2e2d453a43568d | 1,446 | py | Python | E_ledproject.py | randomstring/raspberrypi | fe226ce33f116480bfea8f258fdffa1fd96e379c | [
"MIT"
] | null | null | null | E_ledproject.py | randomstring/raspberrypi | fe226ce33f116480bfea8f258fdffa1fd96e379c | [
"MIT"
] | null | null | null | E_ledproject.py | randomstring/raspberrypi | fe226ce33f116480bfea8f258fdffa1fd96e379c | [
"MIT"
] | null | null | null | #!/usr/bin/env python
import RPi.GPIO as GPIO
GPIO.setwarnings(False)
led_color_gpio = {
'yellow': 0,
'orange': 2,
'red': 3,
'green': 4,
'blue': 5,
'white': 6
}
buttons_gpio = {
'red': 28,
'blue': 29,
}
gpio_to_bcm = {
0: 17,
1: 18,
2: 27,
3: 22,
4: 23,
5: 24,
6: 25,
21: 5,
22: 6,
23: 13,
24: 19,
25: 26,
26: 12,
27: 16,
28: 20,
29: 21,
}
GPIO.setmode(GPIO.BCM)
for gpio in led_color_gpio.values():
bcm_pin = gpio_to_bcm[gpio]
GPIO.setup(bcm_pin, GPIO.OUT)
GPIO.output(bcm_pin, True)
print("Type 'quit' to quit")
while True:
user_input = raw_input("Enter Color and on/off: ")
tokens = user_input.split()
if len(tokens) < 1:
continue
color = tokens[0]
if color == "quit":
break
onoff = 1
if len(tokens) > 1:
onoff = tokens[1]
if onoff == "on":
onoff = 1
elif onoff == "off":
onoff = 0
else:
onoff = int(onoff)
led_color(color, onoff)
for gpio in led_color_gpio.values():
bcm_pin = gpio_to_bcm[gpio]
GPIO.output(bcm_pin, True)
| 18.075 | 54 | 0.538728 |
ffd73066eb937a59b32d4daec9ba6f8807fa09da | 5,551 | py | Python | utils/StartMOOS.py | ianfixes/MOOS-python-utils | 1c34f3b8cde4fdcee48a8ee128a3c160eb17d722 | [
"WTFPL"
] | 3 | 2015-07-09T17:51:20.000Z | 2016-04-14T23:06:04.000Z | utils/StartMOOS.py | ifreecarve/MOOS-python-utils | 1c34f3b8cde4fdcee48a8ee128a3c160eb17d722 | [
"WTFPL"
] | null | null | null | utils/StartMOOS.py | ifreecarve/MOOS-python-utils | 1c34f3b8cde4fdcee48a8ee128a3c160eb17d722 | [
"WTFPL"
] | 3 | 2015-03-31T04:18:21.000Z | 2016-10-22T04:55:16.000Z | #!/usr/bin/env python
###########################################################################
#
# Written in 2009 by Ian Katz <ijk5@mit.edu>
# Terms: WTFPL (http://sam.zoy.org/wtfpl/)
# See COPYING and WARRANTY files included in this distribution
#
###########################################################################
# this program launches MOOS processes and verifies that they're up.
# this sequential launch method is gentler to low-horsepower CPUs.
#
# It takes 2 command line arguments:
# 1. the MOOS config file to be used
# 2. OPTIONALLY the working directory that all apps should launch from
import os
import sys
import time
#MAKE ANY CHANGES HERE
if __name__ == "__main__":
if len(sys.argv) < 2:
print "Usage: " + sys.argv[0] + "<MOOS config file name> [working directory]"
exit(1)
#The app name, and -- optionally -- its ID string
moosProcList = desired_MOOS_procs()
moosConfigFile = sys.argv[1]
if len(sys.argv) == 3:
#we want to run all processes in this directory
os.chdir(sys.argv[2])
print "Starting MOOSDB...",
start_MOOS_process_in_new_screen("MOOSDB", moosConfigFile)
#see if we can use pyMOOS to intelligently launch processes
try:
import pyMOOS
pi = pyMOOS.PI # force an error
except:
#fall back on basic implementation
print "Done"
print "\nNo pyMOOS detected... falling back on timed launch sequence\n"
start_all_MOOSProcesses(moosProcList, moosConfigFile, 5.0)
exit(0)
#wait for connect
myComms = pyMOOS.CMOOSCommClient()
if myComms.Run("localhost", 9000, "StartMOOS.py[" + os.uname()[1] + "]"):
print "Done!"
print "\n\nStarting MOOS processes the SCHMANCY way!\n"
else:
print "Failed to connect to local MOOSDB."
print "You may want to 'killall screen' and try again."
exit(1)
print "Connecting to MOOSDB...",
while not myComms.IsConnected():
tick()
print "Done!"
#start each process and wait for it to connect
start_MOOS_processes_sequentially(moosProcList, moosConfigFile, myComms)
print "\nAll MOOS processes successfully launched!"
| 26.816425 | 85 | 0.572149 |
ffd92d23d660d2a840a6dec51a3209da982b029c | 1,172 | py | Python | word_vectorizer/tests/unittest/model_downloading/test_gensimModelDownloader.py | RodSernaPerez/WordVectorizer | 097b2ccfc284b39ad43f56047ee25e393b7525ec | [
"ECL-2.0",
"Apache-2.0"
] | null | null | null | word_vectorizer/tests/unittest/model_downloading/test_gensimModelDownloader.py | RodSernaPerez/WordVectorizer | 097b2ccfc284b39ad43f56047ee25e393b7525ec | [
"ECL-2.0",
"Apache-2.0"
] | null | null | null | word_vectorizer/tests/unittest/model_downloading/test_gensimModelDownloader.py | RodSernaPerez/WordVectorizer | 097b2ccfc284b39ad43f56047ee25e393b7525ec | [
"ECL-2.0",
"Apache-2.0"
] | null | null | null | from unittest import TestCase
from unittest.mock import patch
from word_vectorizer.constants import Constants
from word_vectorizer.model_downloading.gensim_model_downloader import \
GensimModelDownloader
| 41.857143 | 77 | 0.728669 |
ffd92f6660bddf66dfe789ef939a022a436eddba | 26,840 | py | Python | results/generate_result.py | riscv-android-src/platform-test-mlts-benchmark | fc22878823896b81eb8b7e63e952a13f9675edcb | [
"Apache-2.0"
] | null | null | null | results/generate_result.py | riscv-android-src/platform-test-mlts-benchmark | fc22878823896b81eb8b7e63e952a13f9675edcb | [
"Apache-2.0"
] | null | null | null | results/generate_result.py | riscv-android-src/platform-test-mlts-benchmark | fc22878823896b81eb8b7e63e952a13f9675edcb | [
"Apache-2.0"
] | null | null | null | #!/usr/bin/python3
#
# Copyright 2018, The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MLTS benchmark result generator.
Reads a CSV produced by MLTS benchmark and generates
an HTML page with results summary.
Usage:
generate_result [csv input file] [html output file]
"""
import argparse
import collections
import csv
import os
import re
import math
LatencyResult = collections.namedtuple(
'LatencyResult',
['iterations', 'total_time_sec', 'time_freq_start_sec', 'time_freq_step_sec', 'time_freq_sec'])
COMPILATION_TYPES = ['compile_without_cache', 'save_to_cache', 'prepare_from_cache']
BASELINE_COMPILATION_TYPE = COMPILATION_TYPES[0]
CompilationResult = collections.namedtuple(
'CompilationResult',
['cache_size_bytes'] + COMPILATION_TYPES)
BenchmarkResult = collections.namedtuple(
'BenchmarkResult',
['name', 'backend_type', 'inference_latency', 'max_single_error',
'testset_size', 'evaluator_keys', 'evaluator_values', 'validation_errors',
'compilation_results'])
ResultsWithBaseline = collections.namedtuple(
'ResultsWithBaseline',
['baseline', 'other'])
BASELINE_BACKEND = 'TFLite_CPU'
KNOWN_GROUPS = [
(re.compile('mobilenet_v1.*quant.*'), 'MobileNet v1 Quantized'),
(re.compile('mobilenet_v1.*'), 'MobileNet v1 Float'),
(re.compile('mobilenet_v2.*quant.*'), 'MobileNet v2 Quantized'),
(re.compile('mobilenet_v2.*'), 'MobileNet v2 Float'),
(re.compile('mobilenet_v3.*uint8.*'), 'MobileNet v3 Quantized'),
(re.compile('mobilenet_v3.*'), 'MobileNet v3 Float'),
(re.compile('tts.*'), 'LSTM Text-to-speech'),
(re.compile('asr.*'), 'LSTM Automatic Speech Recognition'),
]
def parse_csv_input(input_filename):
"""Parse input CSV file, returns: (benchmarkInfo, list of BenchmarkResult)."""
with open(input_filename, 'r') as csvfile:
parser = BenchmarkResultParser(csvfile)
# First line contain device info
benchmark_info = parser.next()
results = []
while parser.next():
results.append(parser.read_benchmark_result())
return (benchmark_info, results)
def group_results(results):
"""Group list of results by their name/backend, returns list of lists."""
# Group by name
groupings = collections.defaultdict(list)
for result in results:
groupings[result.name].append(result)
# Find baseline for each group, make ResultsWithBaseline for each name
groupings_baseline = {}
for name, results in groupings.items():
baseline = next(filter(lambda x: x.backend_type == BASELINE_BACKEND,
results))
other = sorted(filter(lambda x: x is not baseline, results),
key=lambda x: x.backend_type)
groupings_baseline[name] = ResultsWithBaseline(
baseline=baseline,
other=other)
# Merge ResultsWithBaseline for known groups
known_groupings_baseline = collections.defaultdict(list)
for name, results_with_bl in sorted(groupings_baseline.items()):
group_name = name
for known_group in KNOWN_GROUPS:
if known_group[0].match(results_with_bl.baseline.name):
group_name = known_group[1]
break
known_groupings_baseline[group_name].append(results_with_bl)
# Turn into a list sorted by name
groupings_list = []
for name, results_wbl in sorted(known_groupings_baseline.items()):
groupings_list.append((name, results_wbl))
return groupings_list
def get_frequency_graph_min_max(latencies):
"""Get min and max times of latencies frequency."""
mins = []
maxs = []
for latency in latencies:
mins.append(latency.time_freq_start_sec)
to_add = len(latency.time_freq_sec) * latency.time_freq_step_sec
maxs.append(latency.time_freq_start_sec + to_add)
return min(mins), max(maxs)
def get_frequency_graph(time_freq_start_sec, time_freq_step_sec, time_freq_sec,
start_sec, end_sec):
"""Generate input x/y data for latency frequency graph."""
left_to_pad = (int((time_freq_start_sec - start_sec) / time_freq_step_sec)
if time_freq_step_sec != 0
else math.inf)
end_time = time_freq_start_sec + len(time_freq_sec) * time_freq_step_sec
right_to_pad = (int((end_sec - end_time) / time_freq_step_sec)
if time_freq_step_sec != 0
else math.inf)
# After pading more that 64 values, graphs start to look messy,
# bail out in that case.
if (left_to_pad + right_to_pad) < 64:
left_pad = (['{:.2f}ms'.format(
(start_sec + x * time_freq_step_sec) * 1000.0)
for x in range(left_to_pad)], [0] * left_to_pad)
right_pad = (['{:.2f}ms'.format(
(end_time + x * time_freq_step_sec) * 1000.0)
for x in range(right_to_pad)], [0] * right_to_pad)
else:
left_pad = [[], []]
right_pad = [[], []]
data = (['{:.2f}ms'.format(
(time_freq_start_sec + x * time_freq_step_sec) * 1000.0)
for x in range(len(time_freq_sec))], time_freq_sec)
return (left_pad[0] + data[0] + right_pad[0],
left_pad[1] + data[1] + right_pad[1])
def is_topk_evaluator(evaluator_keys):
"""Are these evaluator keys from TopK evaluator?"""
return (len(evaluator_keys) == 5 and
evaluator_keys[0] == 'top_1' and
evaluator_keys[1] == 'top_2' and
evaluator_keys[2] == 'top_3' and
evaluator_keys[3] == 'top_4' and
evaluator_keys[4] == 'top_5')
def is_melceplogf0_evaluator(evaluator_keys):
"""Are these evaluator keys from MelCepLogF0 evaluator?"""
return (len(evaluator_keys) == 2 and
evaluator_keys[0] == 'max_mel_cep_distortion' and
evaluator_keys[1] == 'max_log_f0_error')
def is_phone_error_rate_evaluator(evaluator_keys):
"""Are these evaluator keys from PhoneErrorRate evaluator?"""
return (len(evaluator_keys) == 1 and
evaluator_keys[0] == 'max_phone_error_rate')
def generate_accuracy_headers(result):
"""Accuracy-related headers for result table."""
if is_topk_evaluator(result.evaluator_keys):
return ACCURACY_HEADERS_TOPK_TEMPLATE
elif is_melceplogf0_evaluator(result.evaluator_keys):
return ACCURACY_HEADERS_MELCEPLOGF0_TEMPLATE
elif is_phone_error_rate_evaluator(result.evaluator_keys):
return ACCURACY_HEADERS_PHONE_ERROR_RATE_TEMPLATE
else:
return ACCURACY_HEADERS_BASIC_TEMPLATE
raise ScoreException('Unknown accuracy headers for: ' + str(result))
def generate_accuracy_values(baseline, result):
"""Accuracy-related data for result table."""
if is_topk_evaluator(result.evaluator_keys):
val = [float(x) * 100.0 for x in result.evaluator_values]
if result is baseline:
topk = [TOPK_BASELINE_TEMPLATE.format(val=x) for x in val]
return ACCURACY_VALUES_TOPK_TEMPLATE.format(
top1=topk[0], top2=topk[1], top3=topk[2], top4=topk[3],
top5=topk[4]
)
else:
base = [float(x) * 100.0 for x in baseline.evaluator_values]
diff = [a - b for a, b in zip(val, base)]
topk = [TOPK_DIFF_TEMPLATE.format(
val=v, diff=d, span=get_diff_span(d, 1.0, positive_is_better=True))
for v, d in zip(val, diff)]
return ACCURACY_VALUES_TOPK_TEMPLATE.format(
top1=topk[0], top2=topk[1], top3=topk[2], top4=topk[3],
top5=topk[4]
)
elif is_melceplogf0_evaluator(result.evaluator_keys):
val = [float(x) for x in
result.evaluator_values + [result.max_single_error]]
if result is baseline:
return ACCURACY_VALUES_MELCEPLOGF0_TEMPLATE.format(
max_log_f0=MELCEPLOGF0_BASELINE_TEMPLATE.format(
val=val[0]),
max_mel_cep_distortion=MELCEPLOGF0_BASELINE_TEMPLATE.format(
val=val[1]),
max_single_error=MELCEPLOGF0_BASELINE_TEMPLATE.format(
val=val[2]),
)
else:
base = [float(x) for x in
baseline.evaluator_values + [baseline.max_single_error]]
diff = [a - b for a, b in zip(val, base)]
v = [MELCEPLOGF0_DIFF_TEMPLATE.format(
val=v, diff=d, span=get_diff_span(d, 1.0, positive_is_better=False))
for v, d in zip(val, diff)]
return ACCURACY_VALUES_MELCEPLOGF0_TEMPLATE.format(
max_log_f0=v[0],
max_mel_cep_distortion=v[1],
max_single_error=v[2],
)
elif is_phone_error_rate_evaluator(result.evaluator_keys):
val = [float(x) for x in
result.evaluator_values + [result.max_single_error]]
if result is baseline:
return ACCURACY_VALUES_PHONE_ERROR_RATE_TEMPLATE.format(
max_phone_error_rate=PHONE_ERROR_RATE_BASELINE_TEMPLATE.format(
val=val[0]),
max_single_error=PHONE_ERROR_RATE_BASELINE_TEMPLATE.format(
val=val[1]),
)
else:
base = [float(x) for x in
baseline.evaluator_values + [baseline.max_single_error]]
diff = [a - b for a, b in zip(val, base)]
v = [PHONE_ERROR_RATE_DIFF_TEMPLATE.format(
val=v, diff=d, span=get_diff_span(d, 1.0, positive_is_better=False))
for v, d in zip(val, diff)]
return ACCURACY_VALUES_PHONE_ERROR_RATE_TEMPLATE.format(
max_phone_error_rate=v[0],
max_single_error=v[1],
)
else:
return ACCURACY_VALUES_BASIC_TEMPLATE.format(
max_single_error=result.max_single_error,
)
raise ScoreException('Unknown accuracy values for: ' + str(result))
def generate_avg_ms(baseline, latency):
"""Generate average latency value."""
if latency is None:
latency = baseline
result_avg_ms = (latency.total_time_sec / latency.iterations)*1000.0
if latency is baseline:
return LATENCY_BASELINE_TEMPLATE.format(val=result_avg_ms)
baseline_avg_ms = (baseline.total_time_sec / baseline.iterations)*1000.0
diff = (result_avg_ms/baseline_avg_ms - 1.0) * 100.0
diff_val = result_avg_ms - baseline_avg_ms
return LATENCY_DIFF_TEMPLATE.format(
val=result_avg_ms,
diff=diff,
diff_val=diff_val,
span=get_diff_span(diff, same_delta=1.0, positive_is_better=False))
def generate_latency_graph_entry(tag, latency, tmin, tmax):
"""Generate a single latency graph."""
return LATENCY_GRAPH_ENTRY_TEMPLATE.format(
tag=tag,
i=id(latency),
freq_data=get_frequency_graph(latency.time_freq_start_sec,
latency.time_freq_step_sec,
latency.time_freq_sec,
tmin, tmax))
def generate_latency_graphs_group(tags, latencies):
"""Generate a group of latency graphs with the same tmin and tmax."""
tmin, tmax = get_frequency_graph_min_max(latencies)
return ''.join(
generate_latency_graph_entry(tag, latency, tmin, tmax)
for tag, latency in zip(tags, latencies))
def generate_inference_latency_graph_entry(results_with_bl):
"""Generate a group of latency graphs for inference latencies."""
results = [results_with_bl.baseline] + results_with_bl.other
tags = [result.backend_type for result in results]
latencies = [result.inference_latency for result in results]
return generate_latency_graphs_group(tags, latencies)
def generate_compilation_latency_graph_entry(results_with_bl):
"""Generate a group of latency graphs for compilation latencies."""
tags = [
result.backend_type + ', ' + snake_case_to_title(type)
for result in results_with_bl.other
for type in COMPILATION_TYPES
if getattr(result.compilation_results, type)
]
latencies = [
getattr(result.compilation_results, type)
for result in results_with_bl.other
for type in COMPILATION_TYPES
if getattr(result.compilation_results, type)
]
return generate_latency_graphs_group(tags, latencies)
def generate_validation_errors(entries_group):
"""Generate validation errors table."""
errors = []
for result_and_bl in entries_group:
for result in [result_and_bl.baseline] + result_and_bl.other:
for error in result.validation_errors:
errors.append((result.name, result.backend_type, error))
if errors:
return VALIDATION_ERRORS_TEMPLATE.format(
results=''.join(
VALIDATION_ERRORS_ENTRY_TEMPLATE.format(
name=name,
backend=backend,
error=error) for name, backend, error in errors))
return ''
def generate_result(benchmark_info, data):
"""Turn list of results into HTML."""
return MAIN_TEMPLATE.format(
jsdeps=getchartjs_source(),
device_info=DEVICE_INFO_TEMPLATE.format(
benchmark_time=benchmark_info[0],
device_info=benchmark_info[1],
),
results_list=''.join((
RESULT_GROUP_TEMPLATE.format(
group_name=entries_name,
accuracy_headers=generate_accuracy_headers(
entries_group[0].baseline),
results=''.join(
RESULT_ENTRY_WITH_BASELINE_TEMPLATE.format(
baseline=generate_result_entry(
result_and_bl.baseline, None),
other=''.join(
generate_result_entry(
result_and_bl.baseline, x)
for x in result_and_bl.other)
) for result_and_bl in entries_group),
validation_errors=generate_validation_errors(entries_group),
latency_graphs=LATENCY_GRAPHS_TEMPLATE.format(
results=''.join(
LATENCY_GRAPH_ENTRY_GROUP_TEMPLATE.format(
name=result_and_bl.baseline.name,
results=generate_inference_latency_graph_entry(result_and_bl)
) for result_and_bl in entries_group)
),
compilation_results=''.join(
COMPILATION_RESULT_ENTRIES_TEMPLATE.format(
entries=''.join(
generate_compilation_result_entry(x) for x in result_and_bl.other)
) for result_and_bl in entries_group),
compilation_latency_graphs=LATENCY_GRAPHS_TEMPLATE.format(
results=''.join(
LATENCY_GRAPH_ENTRY_GROUP_TEMPLATE.format(
name=result_and_bl.baseline.name,
results=generate_compilation_latency_graph_entry(result_and_bl)
) for result_and_bl in entries_group)
),
) for entries_name, entries_group in group_results(data))
))
# -----------------
# Templates below
MAIN_TEMPLATE = """<!doctype html>
<html lang='en-US'>
<head>
<meta http-equiv='Content-Type' content='text/html; charset=utf-8'>
<script src='https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js'></script>
<script>{jsdeps}</script>
<title>MLTS results</title>
<style>
.results {{
border-collapse: collapse;
width: 100%;
}}
.results td, .results th {{
border: 1px solid #ddd;
padding: 6px;
}}
.results tbody.values {{
border-bottom: 8px solid #333;
}}
span.better {{
color: #070;
}}
span.worse {{
color: #700;
}}
span.same {{
color: #000;
}}
.results tr:nth-child(even) {{background-color: #eee;}}
.results tr:hover {{background-color: #ddd;}}
.results th {{
padding: 10px;
font-weight: bold;
text-align: left;
background-color: #333;
color: white;
}}
.results tr.failed {{
background-color: #ffc4ca;
}}
.group {{
padding-top: 25px;
}}
.group_name {{
padding-left: 10px;
font-size: 140%;
font-weight: bold;
}}
.section_name {{
padding: 10px;
font-size: 120%;
font-weight: bold;
}}
.latency_results {{
padding: 10px;
border: 1px solid #ddd;
overflow: hidden;
}}
.latency_with_baseline {{
padding: 10px;
border: 1px solid #ddd;
overflow: hidden;
}}
</style>
</head>
<body>
{device_info}
{results_list}
</body>
</html>"""
DEVICE_INFO_TEMPLATE = """<div id='device_info'>
Benchmark for {device_info}, started at {benchmark_time}
</div>"""
RESULT_GROUP_TEMPLATE = """<div class="group">
<div class="group_name">{group_name}</div>
<div class="section_name">Inference results</div>
<table class="results">
<tr>
<th>Name</th>
<th>Backend</th>
<th>Iterations</th>
<th>Test set size</th>
<th>Average latency ms</th>
{accuracy_headers}
</tr>
{results}
</table>
{validation_errors}
{latency_graphs}
<div class="section_name">Compilation results</div>
<table class="results">
<tr>
<th rowspan="2">Name</th>
<th rowspan="2">Backend</th>
<th colspan="2">Compile Without Cache</th>
<th colspan="2">Save To Cache</th>
<th colspan="2">Prepare From Cache</th>
<th rowspan="2">Cache size bytes</th>
</tr>
<tr>
<th>Iterations</th>
<th>Average latency ms</th>
<th>Iterations</th>
<th>Average latency ms</th>
<th>Iterations</th>
<th>Average latency ms</th>
</tr>
{compilation_results}
</table>
{compilation_latency_graphs}
</div>"""
VALIDATION_ERRORS_TEMPLATE = """
<table class="results">
<tr>
<th>Name</th>
<th>Backend</th>
<th>Error</th>
</tr>
{results}
</table>"""
VALIDATION_ERRORS_ENTRY_TEMPLATE = """
<tr class="failed">
<td>{name}</td>
<td>{backend}</td>
<td>{error}</td>
</tr>
"""
LATENCY_GRAPHS_TEMPLATE = """
<div class="latency_results">
{results}
</div>
<div style="clear: left;"></div>
"""
LATENCY_GRAPH_ENTRY_GROUP_TEMPLATE = """
<div class="latency_with_baseline" style="float: left;">
<b>{name}</b>
{results}
</div>
"""
LATENCY_GRAPH_ENTRY_TEMPLATE = """
<div class="latency_result" style='width: 350px;'>
{tag}
<canvas id='latency_chart{i}' class='latency_chart'></canvas>
<script>
$(function() {{
var freqData = {{
labels: {freq_data[0]},
datasets: [{{
data: {freq_data[1]},
backgroundColor: 'rgba(255, 99, 132, 0.6)',
borderColor: 'rgba(255, 0, 0, 0.6)',
borderWidth: 1,
}}]
}};
var ctx = $('#latency_chart{i}')[0].getContext('2d');
window.latency_chart{i} = new Chart(ctx,
{{
type: 'bar',
data: freqData,
options: {{
responsive: true,
title: {{
display: false,
text: 'Latency frequency'
}},
legend: {{
display: false
}},
scales: {{
xAxes: [ {{
barPercentage: 1.0,
categoryPercentage: 0.9,
}}],
yAxes: [{{
scaleLabel: {{
display: false,
labelString: 'Iterations Count'
}}
}}]
}}
}}
}});
}});
</script>
</div>
"""
RESULT_ENTRY_WITH_BASELINE_TEMPLATE = """
<tbody class="values">
{baseline}
{other}
</tbody>
"""
RESULT_ENTRY_TEMPLATE = """
<tr class={row_class}>
<td>{name}</td>
<td>{backend}</td>
<td>{iterations:d}</td>
<td>{testset_size:d}</td>
<td>{avg_ms}</td>
{accuracy_values}
</tr>"""
COMPILATION_RESULT_ENTRIES_TEMPLATE = """
<tbody class="values">
{entries}
</tbody>
"""
COMPILATION_RESULT_ENTRY_TEMPLATE = """
<tr class={row_class}>
<td>{name}</td>
<td>{backend}</td>
<td>{compile_without_cache_iterations}</td>
<td>{compile_without_cache_avg_ms}</td>
<td>{save_to_cache_iterations}</td>
<td>{save_to_cache_avg_ms}</td>
<td>{prepare_from_cache_iterations}</td>
<td>{prepare_from_cache_avg_ms}</td>
<td>{cache_size}</td>
</tr>"""
LATENCY_BASELINE_TEMPLATE = """{val:.2f}ms"""
LATENCY_DIFF_TEMPLATE = """{val:.2f}ms <span class='{span}'>
({diff_val:.2f}ms, {diff:.1f}%)</span>"""
ACCURACY_HEADERS_TOPK_TEMPLATE = """
<th>Top 1</th>
<th>Top 2</th>
<th>Top 3</th>
<th>Top 4</th>
<th>Top 5</th>
"""
ACCURACY_VALUES_TOPK_TEMPLATE = """
<td>{top1}</td>
<td>{top2}</td>
<td>{top3}</td>
<td>{top4}</td>
<td>{top5}</td>
"""
TOPK_BASELINE_TEMPLATE = """{val:.3f}%"""
TOPK_DIFF_TEMPLATE = """{val:.3f}% <span class='{span}'>({diff:.1f}%)</span>"""
ACCURACY_HEADERS_MELCEPLOGF0_TEMPLATE = """
<th>Max log(F0) error</th>
<th>Max Mel Cep distortion</th>
<th>Max scalar error</th>
"""
ACCURACY_VALUES_MELCEPLOGF0_TEMPLATE = """
<td>{max_log_f0}</td>
<td>{max_mel_cep_distortion}</td>
<td>{max_single_error}</td>
"""
MELCEPLOGF0_BASELINE_TEMPLATE = """{val:.2E}"""
MELCEPLOGF0_DIFF_TEMPLATE = \
"""{val:.2E} <span class='{span}'>({diff:.1f}%)</span>"""
ACCURACY_HEADERS_PHONE_ERROR_RATE_TEMPLATE = """
<th>Max phone error rate</th>
<th>Max scalar error</th>
"""
ACCURACY_VALUES_PHONE_ERROR_RATE_TEMPLATE = """
<td>{max_phone_error_rate}</td>
<td>{max_single_error}</td>
"""
PHONE_ERROR_RATE_BASELINE_TEMPLATE = """{val:.3f}"""
PHONE_ERROR_RATE_DIFF_TEMPLATE = \
"""{val:.3f} <span class='{span}'>({diff:.1f}%)</span>"""
ACCURACY_HEADERS_BASIC_TEMPLATE = """
<th>Max single scalar error</th>
"""
ACCURACY_VALUES_BASIC_TEMPLATE = """
<td>{max_single_error:.2f}</td>
"""
CHART_JS_FILE = 'Chart.bundle.min.js'
if __name__ == '__main__':
main()
| 31.613663 | 99 | 0.656222 |
ffda91245aed33f9125784b3f0d5a73c6224af00 | 6,975 | py | Python | ampel/ztf/dev/DevSkyPortalClient.py | AmpelProject/Ampel-ZTF | 7f9736a7be3aa526571004716160cae2a800e410 | [
"BSD-3-Clause"
] | 1 | 2021-03-11T15:39:28.000Z | 2021-03-11T15:39:28.000Z | ampel/ztf/dev/DevSkyPortalClient.py | AmpelProject/Ampel-ZTF | 7f9736a7be3aa526571004716160cae2a800e410 | [
"BSD-3-Clause"
] | 18 | 2021-08-02T17:11:25.000Z | 2022-01-11T16:20:04.000Z | ampel/ztf/dev/DevSkyPortalClient.py | AmpelProject/Ampel-ZTF | 7f9736a7be3aa526571004716160cae2a800e410 | [
"BSD-3-Clause"
] | null | null | null | #!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: Ampel-ZTF/ampel/ztf/dev/DevSkyPortalClient.py
# Author: Jakob van Santen <jakob.van.santen@desy.de>
# Date: 16.09.2020
# Last Modified Date: 16.09.2020
# Last Modified By: Jakob van Santen <jakob.van.santen@desy.de>
import gzip
import io
from collections import defaultdict
from datetime import datetime
from typing import Any
from collections.abc import Sequence, Generator
import numpy as np
import requests
from ampel.protocol.AmpelAlertProtocol import AmpelAlertProtocol
from astropy.io import fits
from astropy.time import Time
from matplotlib.colors import Normalize
from matplotlib.figure import Figure
def render_thumbnail(cutout_data: bytes) -> bytes:
"""
Render gzipped FITS as PNG
"""
with gzip.open(io.BytesIO(cutout_data), "rb") as f:
with fits.open(f) as hdu:
header = hdu[0].header
img = np.flipud(hdu[0].data)
mask = np.isfinite(img)
fig = Figure(figsize=(1, 1))
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
ax.set_axis_off()
ax.imshow(
img,
# clip pixel values below the median
norm=Normalize(*np.percentile(img[mask], [0.5, 99.5])),
aspect="auto",
origin="lower",
)
with io.BytesIO() as buf:
fig.savefig(buf, dpi=img.shape[0])
return buf.getvalue()
| 36.139896 | 151 | 0.531326 |
ffddb9df1f192b673556f7659d2310d13ba94e89 | 3,806 | py | Python | tools/test_detection_features_converter.py | jialinwu17/caption_vqa | 9bbbb580d031a20ba4f18ef14fcd3599b62a482a | [
"MIT"
] | 139 | 2018-03-21T09:39:39.000Z | 2021-07-07T14:19:26.000Z | tools/test_detection_features_converter.py | VincentYing/Attention-on-Attention-for-VQA | cbc767541667e9bb32760ac7cd2e822eff232ff5 | [
"MIT"
] | 4 | 2018-05-25T05:15:20.000Z | 2018-10-11T00:52:14.000Z | tools/test_detection_features_converter.py | VincentYing/Attention-on-Attention-for-VQA | cbc767541667e9bb32760ac7cd2e822eff232ff5 | [
"MIT"
] | 23 | 2018-03-22T10:12:35.000Z | 2021-02-20T06:18:00.000Z | """
Reads in a tsv file with pre-trained bottom up attention features and
stores it in HDF5 format. Also store {image_id: feature_idx}
as a pickle file.
Hierarchy of HDF5 file:
{ 'image_features': num_images x num_boxes x 2048 array of features
'image_bb': num_images x num_boxes x 4 array of bounding boxes }
"""
from __future__ import print_function
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import base64
import csv
import h5py
import cPickle
import numpy as np
import utils
csv.field_size_limit(sys.maxsize)
FIELDNAMES = ['image_id', 'image_w', 'image_h', 'num_boxes', 'boxes', 'features']
infile = 'data/test2015_36/test2015_resnet101_faster_rcnn_genome_36.tsv'
test_data_file = 'data/test36.hdf5'
test_indices_file = 'data/test36_imgid2idx.pkl'
test_ids_file = 'data/test_ids.pkl'
feature_length = 2048
num_fixed_boxes = 36
if __name__ == '__main__':
h_test = h5py.File(test_data_file, "w")
if os.path.exists(test_ids_file):
test_imgids = cPickle.load(open(test_ids_file))
else:
test_imgids = utils.load_imageid('data/test2015')
cPickle.dump(test_imgids, open(test_ids_file, 'wb'))
test_indices = {}
test_img_features = h_test.create_dataset(
'image_features', (len(test_imgids), num_fixed_boxes, feature_length), 'f')
test_img_bb = h_test.create_dataset(
'image_bb', (len(test_imgids), num_fixed_boxes, 4), 'f')
test_spatial_img_features = h_test.create_dataset(
'spatial_features', (len(test_imgids), num_fixed_boxes, 6), 'f')
test_counter = 0
print("reading tsv...")
with open(infile, "r+b") as tsv_in_file:
reader = csv.DictReader(tsv_in_file, delimiter='\t', fieldnames=FIELDNAMES)
for item in reader:
item['num_boxes'] = int(item['num_boxes'])
image_id = int(item['image_id'])
image_w = float(item['image_w'])
image_h = float(item['image_h'])
bboxes = np.frombuffer(
base64.decodestring(item['boxes']),
dtype=np.float32).reshape((item['num_boxes'], -1))
box_width = bboxes[:, 2] - bboxes[:, 0]
box_height = bboxes[:, 3] - bboxes[:, 1]
scaled_width = box_width / image_w
scaled_height = box_height / image_h
scaled_x = bboxes[:, 0] / image_w
scaled_y = bboxes[:, 1] / image_h
box_width = box_width[..., np.newaxis]
box_height = box_height[..., np.newaxis]
scaled_width = scaled_width[..., np.newaxis]
scaled_height = scaled_height[..., np.newaxis]
scaled_x = scaled_x[..., np.newaxis]
scaled_y = scaled_y[..., np.newaxis]
spatial_features = np.concatenate(
(scaled_x,
scaled_y,
scaled_x + scaled_width,
scaled_y + scaled_height,
scaled_width,
scaled_height),
axis=1)
if image_id in test_imgids:
test_imgids.remove(image_id)
test_indices[image_id] = test_counter
test_img_bb[test_counter, :, :] = bboxes
test_img_features[test_counter, :, :] = np.frombuffer(
base64.decodestring(item['features']),
dtype=np.float32).reshape((item['num_boxes'], -1))
test_spatial_img_features[test_counter, :, :] = spatial_features
test_counter += 1
else:
assert False, 'Unknown image id: %d' % image_id
if len(test_imgids) != 0:
print('Warning: test_image_ids is not empty')
cPickle.dump(test_indices, open(test_indices_file, 'wb'))
h_test.close()
print("done!")
| 34.6 | 83 | 0.618497 |
ffde4731dad77ca75123679807fabb3875a76017 | 176 | py | Python | src/registration/urls.py | jtrussell/swindle | 914f9ddc7b155cf895fc233b9f3f0c1804bf23e3 | [
"MIT"
] | 1 | 2021-04-07T20:14:43.000Z | 2021-04-07T20:14:43.000Z | src/registration/urls.py | jtrussell/swindle | 914f9ddc7b155cf895fc233b9f3f0c1804bf23e3 | [
"MIT"
] | null | null | null | src/registration/urls.py | jtrussell/swindle | 914f9ddc7b155cf895fc233b9f3f0c1804bf23e3 | [
"MIT"
] | null | null | null | from . import views
from django.urls import path
urlpatterns = [
path('', views.profile, name='profile'),
path('sign-up', views.sign_up, name='show_sign_up_form')
]
| 17.6 | 60 | 0.681818 |
ffde4e382f893654ea15768c8c27165eee09e3a4 | 3,720 | py | Python | src/Control/Sign.py | hieuhdh/Multi-tasking-program | 2f064a554f647247c84979b7a27f0797d1e1b5af | [
"MIT"
] | null | null | null | src/Control/Sign.py | hieuhdh/Multi-tasking-program | 2f064a554f647247c84979b7a27f0797d1e1b5af | [
"MIT"
] | null | null | null | src/Control/Sign.py | hieuhdh/Multi-tasking-program | 2f064a554f647247c84979b7a27f0797d1e1b5af | [
"MIT"
] | null | null | null | from tkinter.font import BOLD
from PIL import ImageTk
from tkinter import*
from PIL import Image
from tkinter import messagebox
from Tools.log_db import*
| 53.913043 | 265 | 0.596774 |
ffdf3cdd0117fb616bc6eff58d4c3d502c8bf807 | 6,301 | py | Python | aydin/it/classic_denoisers/bilateral.py | AhmetCanSolak/aydin | e8bc81ee88c96e0f34986df30a63c96468a45f70 | [
"BSD-3-Clause"
] | 78 | 2021-11-08T16:11:23.000Z | 2022-03-27T17:51:04.000Z | aydin/it/classic_denoisers/bilateral.py | AhmetCanSolak/aydin | e8bc81ee88c96e0f34986df30a63c96468a45f70 | [
"BSD-3-Clause"
] | 19 | 2021-11-08T17:15:40.000Z | 2022-03-30T17:46:55.000Z | aydin/it/classic_denoisers/bilateral.py | AhmetCanSolak/aydin | e8bc81ee88c96e0f34986df30a63c96468a45f70 | [
"BSD-3-Clause"
] | 7 | 2021-11-09T17:42:32.000Z | 2022-03-09T00:37:57.000Z | from functools import partial
from typing import Optional, List, Tuple
import numpy
from numpy.typing import ArrayLike
from skimage.restoration import denoise_bilateral as skimage_denoise_bilateral
from aydin.it.classic_denoisers import _defaults
from aydin.util.crop.rep_crop import representative_crop
from aydin.util.denoise_nd.denoise_nd import extend_nd
from aydin.util.j_invariance.j_invariance import calibrate_denoiser
def calibrate_denoise_bilateral(
image: ArrayLike,
bins: int = 10000,
crop_size_in_voxels: Optional[int] = _defaults.default_crop_size_normal.value,
optimiser: str = _defaults.default_optimiser.value,
max_num_evaluations: int = _defaults.default_max_evals_normal.value,
blind_spots: Optional[List[Tuple[int]]] = _defaults.default_blind_spots.value,
jinv_interpolation_mode: str = _defaults.default_jinv_interpolation_mode.value,
display_images: bool = False,
display_crop: bool = False,
**other_fixed_parameters,
):
"""
Calibrates the bilateral denoiser for the given image and returns the optimal
parameters obtained using the N2S loss.
Note: it seems that the bilateral filter of scikit-image
is broken!
Parameters
----------
image: ArrayLike
Image to calibrate denoiser for.
bins: int
Number of discrete values for Gaussian weights of
color filtering. A larger value results in improved
accuracy.
(advanced)
crop_size_in_voxels: int or None for default
Number of voxels for crop used to calibrate denoiser.
Increase this number by factors of two if denoising quality is
unsatisfactory -- this can be important for very noisy images.
Values to try are: 65000, 128000, 256000, 320000.
We do not recommend values higher than 512000.
optimiser: str
Optimiser to use for finding the best denoising
parameters. Can be: 'smart' (default), or 'fast' for a mix of SHGO
followed by L-BFGS-B.
(advanced)
max_num_evaluations: int
Maximum number of evaluations for finding the optimal parameters.
Increase this number by factors of two if denoising quality is
unsatisfactory.
blind_spots: bool
List of voxel coordinates (relative to receptive field center) to
be included in the blind-spot. For example, you can give a list of
3 tuples: [(0,0,0), (0,1,0), (0,-1,0)] to extend the blind spot
to cover voxels of relative coordinates: (0,0,0),(0,1,0), and (0,-1,0)
(advanced) (hidden)
jinv_interpolation_mode: str
J-invariance interpolation mode for masking. Can be: 'median' or
'gaussian'.
(advanced)
display_images: bool
When True the denoised images encountered during
optimisation are shown
(advanced) (hidden)
display_crop: bool
Displays crop, for debugging purposes...
(advanced) (hidden)
other_fixed_parameters: dict
Any other fixed parameters
Returns
-------
Denoising function, dictionary containing optimal parameters,
and free memory needed in bytes for computation.
"""
# Convert image to float if needed:
image = image.astype(dtype=numpy.float32, copy=False)
# obtain representative crop, to speed things up...
crop = representative_crop(
image, crop_size=crop_size_in_voxels, display_crop=display_crop
)
# Parameters to test when calibrating the denoising algorithm
parameter_ranges = {'sigma_spatial': (0.01, 1), 'sigma_color': (0.01, 1)}
# Combine fixed parameters:
other_fixed_parameters = other_fixed_parameters | {'bins': bins}
# Partial function:
_denoise_bilateral = partial(denoise_bilateral, **other_fixed_parameters)
# Calibrate denoiser
best_parameters = (
calibrate_denoiser(
crop,
_denoise_bilateral,
mode=optimiser,
denoise_parameters=parameter_ranges,
interpolation_mode=jinv_interpolation_mode,
max_num_evaluations=max_num_evaluations,
blind_spots=blind_spots,
display_images=display_images,
)
| other_fixed_parameters
)
# Memory needed:
memory_needed = 2 * image.nbytes
return denoise_bilateral, best_parameters, memory_needed
def denoise_bilateral(
image: ArrayLike,
sigma_color: Optional[float] = None,
sigma_spatial: float = 1,
bins: int = 10000,
**kwargs,
):
"""
Denoises the given image using a <a
href="https://en.wikipedia.org/wiki/Bilateral_filter">bilateral
filter</a>.
The bilateral filter is a edge-preserving smoothing filter that can
be used for image denoising. Each pixel value is replaced by a
weighted average of intensity values from nearby pixels. The
weighting is inversely related to the pixel distance in space but
also in the pixels value differences.
Parameters
----------
image : ArrayLike
Image to denoise
sigma_color : float
Standard deviation for grayvalue/color distance (radiometric
similarity). A larger value results in averaging of pixels with larger
radiometric differences. Note, that the image will be converted using
the `img_as_float` function and thus the standard deviation is in
respect to the range ``[0, 1]``. If the value is ``None`` the standard
deviation of the ``image`` will be used.
sigma_spatial : float
Standard deviation for range distance. A larger value results in
averaging of pixels with larger spatial differences.
bins : int
Number of discrete values for Gaussian weights of color filtering.
A larger value results in improved accuracy.
kwargs: dict
Other parameters
Returns
-------
Denoised image
"""
# Convert image to float if needed:
image = image.astype(dtype=numpy.float32, copy=False)
_skimage_denoise_bilateral = extend_nd(available_dims=[2])(
skimage_denoise_bilateral
)
return _skimage_denoise_bilateral(
image,
sigma_color=sigma_color,
sigma_spatial=sigma_spatial,
bins=bins,
mode='reflect',
**kwargs,
)
| 32.989529 | 83 | 0.690525 |
ffe13b312ebb3748c1aadfdca895d3557dc9d9a9 | 1,889 | py | Python | pymon/pymon.py | crest42/PyMon | 96494cc37f906e6a07388af29b04c559ec72f116 | [
"MIT"
] | null | null | null | pymon/pymon.py | crest42/PyMon | 96494cc37f906e6a07388af29b04c559ec72f116 | [
"MIT"
] | null | null | null | pymon/pymon.py | crest42/PyMon | 96494cc37f906e6a07388af29b04c559ec72f116 | [
"MIT"
] | null | null | null | import logging
import time
from .exceptions import HostEntryNotValid
from .check import CheckFactory
from .alert import AlertFactory
from .host import Host
from .logging import logger
| 28.19403 | 75 | 0.564849 |
ffe516953bedc8e02aa7624b4a14d347ba8dad15 | 52,397 | py | Python | ambulance/tests/test_calls.py | aschrist/WebServerAndClient | 3aa0af2c444acac88a1b51b4cfd4bb8d0c36e640 | [
"BSD-3-Clause"
] | null | null | null | ambulance/tests/test_calls.py | aschrist/WebServerAndClient | 3aa0af2c444acac88a1b51b4cfd4bb8d0c36e640 | [
"BSD-3-Clause"
] | null | null | null | ambulance/tests/test_calls.py | aschrist/WebServerAndClient | 3aa0af2c444acac88a1b51b4cfd4bb8d0c36e640 | [
"BSD-3-Clause"
] | null | null | null | import logging
import time
from django.test import Client
from django.conf import settings
from django.urls import reverse
from django.db import IntegrityError
from django.utils import timezone
from rest_framework.parsers import JSONParser
from rest_framework import serializers
from io import BytesIO
import json
from ambulance.models import Call, Patient, AmbulanceCall, CallStatus, CallPriority, \
AmbulanceUpdate, AmbulanceStatus, Waypoint, Location, LocationType, WaypointStatus, AmbulanceCallStatus
from ambulance.serializers import CallSerializer, AmbulanceCallSerializer, PatientSerializer, \
AmbulanceUpdateSerializer, WaypointSerializer, LocationSerializer
from emstrack.tests.util import date2iso, point2str
from login.tests.setup_data import TestSetup
logger = logging.getLogger(__name__)
| 37.533668 | 121 | 0.55444 |
ffe63e2dda8d22501b711fdd07b98a6cfff2ea5a | 2,484 | py | Python | bot/PythonProject/Commands.py | RamaDev09/CrateBot | 34b9f50b88da42cc1c449466402897340ec142df | [
"MIT"
] | null | null | null | bot/PythonProject/Commands.py | RamaDev09/CrateBot | 34b9f50b88da42cc1c449466402897340ec142df | [
"MIT"
] | null | null | null | bot/PythonProject/Commands.py | RamaDev09/CrateBot | 34b9f50b88da42cc1c449466402897340ec142df | [
"MIT"
] | null | null | null | import os
from bot.TextInput import TextInput
from bot.prompt import color_msg
| 45.163636 | 118 | 0.517311 |
ffe68f15e3bf96bdad0cec4870fd34ce0d8fbf6c | 223 | py | Python | src/methods/Addition.py | svanschooten/Flow | c7c158f986f7b108a255cbaa67ec7fff3518b637 | [
"MIT"
] | null | null | null | src/methods/Addition.py | svanschooten/Flow | c7c158f986f7b108a255cbaa67ec7fff3518b637 | [
"MIT"
] | null | null | null | src/methods/Addition.py | svanschooten/Flow | c7c158f986f7b108a255cbaa67ec7fff3518b637 | [
"MIT"
] | null | null | null | from methods.AbstactMethod import AbstractMethod
| 20.272727 | 48 | 0.591928 |
ffe7a09ec4555bf2573c09777fdb5c2946647fc9 | 3,914 | py | Python | submissions_comments.py | jbell1991/reddit-scraping | 73d88501ed0205e78000b9c30780a33186154fda | [
"MIT"
] | null | null | null | submissions_comments.py | jbell1991/reddit-scraping | 73d88501ed0205e78000b9c30780a33186154fda | [
"MIT"
] | null | null | null | submissions_comments.py | jbell1991/reddit-scraping | 73d88501ed0205e78000b9c30780a33186154fda | [
"MIT"
] | null | null | null | # imports
from decouple import config
import pandas as pd
import praw
import psycopg2
import schedule
from sqlalchemy import create_engine
import time
# automate script to run at the same time everyday
schedule.every().day.at("09:07").do(job)
while True:
schedule.run_pending()
time.sleep(1)
| 32.890756 | 93 | 0.667092 |
ffe7fe43c53e89a050ea85e42fd101e3306b2423 | 9,139 | py | Python | vision_proc/proc_frame.py | SMS-Raiders/First2016 | a08eb1fa195bd869f8e7de7761d791e3fcf23d22 | [
"BSD-3-Clause"
] | 1 | 2016-03-08T14:39:52.000Z | 2016-03-08T14:39:52.000Z | vision_proc/proc_frame.py | SMS-Raiders/First2016 | a08eb1fa195bd869f8e7de7761d791e3fcf23d22 | [
"BSD-3-Clause"
] | null | null | null | vision_proc/proc_frame.py | SMS-Raiders/First2016 | a08eb1fa195bd869f8e7de7761d791e3fcf23d22 | [
"BSD-3-Clause"
] | null | null | null | #!/bin/python
#Frame processing and distance estimation for
#goal
#-------------------------------------------------------------------------------
# IMPORTS
#-------------------------------------------------------------------------------
import cv2
import math
import numpy
import sys
#-------------------------------------------------------------------------------
# VARIABLES
#-------------------------------------------------------------------------------
def cvClr( R, G, B ):
"""
Color array macro
"""
return( numpy.array( [R,G,B], numpy.uint8 ) )
#=====================================================================
# Approx. The green color range
#=====================================================================
MASK_LOW = cvClr( 0, 0, 245 )
MASK_HIGH = cvClr( 255, 70, 255 )
#=====================================================================
# Approximate Areas for the goal (Pixels)
#=====================================================================
#MIN_AREA = 250
MIN_AREA = 1600
#MAX_AREA = 4000
MAX_AREA = 5000
#=================================================================
# Numbers Determined from experiment apart from 0 and 20
# Straight on to Goal
# width and height and area are in pixel area
# THIS IS THE COUNTOUR AREA NOT THE CONVEX HULL AREA!
#=================================================================
goal_lkup = [
{ 'dist ft' : 0, 'width' : 200, 'height' : 90, 'area' : 9000, 'ratio w_h' : 1.80 }, #0ft not tested needs to be large
{ 'dist ft' : 7, 'width' : 151, 'height' : 88, 'area' : 4828, 'ratio w_h' : 1.71 },
{ 'dist ft' : 8, 'width' : 141, 'height' : 85, 'area' : 4700, 'ratio w_h' : 1.65 },
{ 'dist ft' : 9, 'width' : 132, 'height' : 81, 'area' : 4300, 'ratio w_h' : 1.62 },
{ 'dist ft' : 10, 'width' : 123, 'height' : 78, 'area' : 3860, 'ratio w_h' : 1.57 },
{ 'dist ft' : 11, 'width' : 114, 'height' : 75, 'area' : 3420, 'ratio w_h' : 1.52 },
{ 'dist ft' : 12, 'width' : 108, 'height' : 73, 'area' : 3120, 'ratio w_h' : 1.47 },
{ 'dist ft' : 13, 'width' : 102, 'height' : 70, 'area' : 2770, 'ratio w_h' : 1.45 },
{ 'dist ft' : 14, 'width' : 96 , 'height' : 68, 'area' : 2357, 'ratio w_h' : 1.41 },
{ 'dist ft' : 20, 'width' : 60 , 'height' : 35, 'area' : 1000, 'ratio w_h' : 1.30 } ] #20 ft not tested needs to be small
#-------------------------------------------------------------------------------
# CLASSES
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# PROCEDURES
#-------------------------------------------------------------------------------
def find_squares( contours, debug=False ):
"""
Find square shaped objects
"""
#=================================================================
# The Minimum and Maximum rations for width vs height for the goal
# based on experimental results goal is approx 1.5:1
#=================================================================
MIN_RATIO = 1.3
MAX_RATIO = 1.8
ret = []
for shape in contours:
x, y, w, h = cv2.boundingRect( shape )
w_h_ratio = float( w ) / float( h )
if debug:
print "Area", (w * h)
print "Width ", w
print "Height", h
if MIN_RATIO < w_h_ratio and w_h_ratio < MAX_RATIO:
ret.append( shape )
return( ret )
def filter_area( contours, debug=False ):
"""
Filter out contours based on area
"""
ret = []
for x in contours:
area = cv2.contourArea( x )
if area > MIN_AREA and area < MAX_AREA:
if debug:
print "Area", area
ret.append( x )
return( ret )
def find_center( contours ):
"""
Find the center of a contour based on moments
"""
ret = []
for x in contours:
M = cv2.moments( x )
pt = Point()
pt.x = int( M['m10']/M['m00'] )
pt.y = int( M['m01']/M['m00'] )
ret.append( pt )
return( ret );
def convex_hull_area( contours, debug= False ):
"""
Find the Area of convex Hulls
"""
ret_areas = []
ret_hulls = []
for c in contours:
hull = cv2.convexHull( c )
area = cv2.contourArea( hull )
ret_areas.append( area )
ret_hulls.append( hull )
if( debug ):
print( "Hull area: {0}".format( area ) )
return ( ret_areas, ret_hulls )
def angle_from_point( x, img_width=640, fov_angle=44 ):
"""
Calculate the angle from a point
"""
return( -( ( img_width / 2 ) - x ) * fov_angle )
def lin_scale( val, x1, y1, x2, y2 ):
"""
Linearly scale Val to y1 and y2 from x1 and x2 range
x1 and y1 are low values
"""
x_range = (x2 - x1)
new_val = 0
if x_range is 0:
new_val = y1
else:
y_range = ( y2 - y1 )
new_val = ( ( ( val - x1 ) * y_range ) / x_range ) + y1
return new_val
def dist_from_goal( area ):
"""
Calculates the distance to the Goal based on area, x, y
Args:
area: the area in pixels of the target
Returns:
Feet from goal
"""
dist = 99
prev = goal_lkup[ 0 ]
for cur in goal_lkup:
#=============================================================
# If the area is less than the currently selected area, but
# greater then the previous area, then the distance is some
# where in between. Then do linear interpolation
#=============================================================
if area > cur[ 'area' ] and area < prev[ 'area' ]:
dist = lin_scale( area, cur[ 'area' ], cur[ 'dist ft' ], prev[ 'area' ], prev[ 'dist ft' ] )
return dist
prev = cur
return dist
def proc_frame( frame, debug=False ):
"""
Process a frame
"""
#=================================================================
# Convert to HSV so we can mask more easily
#=================================================================
hsv_frame = cv2.cvtColor( frame, cv2.COLOR_BGR2HSV )
#=================================================================
# Apply the color mask defined at the top of file
#=================================================================
if( debug ):
hlo = cv2.getTrackbarPos( "H low", "Mask" )
hhi = cv2.getTrackbarPos( "H hi", "Mask" )
slo = cv2.getTrackbarPos( "S low", "Mask" )
shi = cv2.getTrackbarPos( "S hi", "Mask" )
vlo = cv2.getTrackbarPos( "V low", "Mask" )
vhi = cv2.getTrackbarPos( "V hi", "Mask" )
lo = numpy.array( [ hlo, slo, vlo ], numpy.uint8 )
hi = numpy.array( [ hhi, shi, vhi ], numpy.uint8 )
color_mask = cv2.inRange( hsv_frame, lo, hi )
else:
color_mask = cv2.inRange( hsv_frame, MASK_LOW, MASK_HIGH )
#=================================================================
# Apply our color mask
#=================================================================
masked_frame = cv2.bitwise_and( hsv_frame, hsv_frame, mask = color_mask )
#=================================================================
# Contours stuff
# First convert to Gray and find the contours
#=================================================================
bw_frame = cv2.cvtColor( masked_frame, cv2.COLOR_BGR2GRAY )
contours, hierarchy = cv2.findContours( bw_frame, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE )
#=================================================================
# Filter the contours based on area, convex hull area etc...
#=================================================================
draw = filter_area( contours )
hull_areas, hulls = convex_hull_area( draw )
squares = find_squares( hulls )
centers = find_center( squares )
#=================================================================
# If debug mode, show the result of the line finding in a GUI
#=================================================================
if( debug ):
#contours
cv2.drawContours( frame, draw, -1, ( 0, 255, 0 ), 3 )
cv2.drawContours( frame, squares, -1, ( 255, 255, 0 ), 3 )
for i in centers:
cv2.circle( frame, ( i.x, i.y ), 3, ( 0, 255, 255 ), )
#print "X = {0} Y = {1}".format( i.x, i.y )
cv2.imshow( "Goal", frame )
#cv2.imshow( "Mask", masked_frame )
return dist_from_goal( squares ), angle_from_point( centers[0].x, len( frame[0] ) )
| 37.454918 | 135 | 0.402889 |
ffeabfb85c362b4fd5f28c9b1e056f66d191fed5 | 100 | py | Python | 9.py | sarika228/React-Projects | 24c342f71f839c257150f4b5e096c127b51d525c | [
"MIT"
] | null | null | null | 9.py | sarika228/React-Projects | 24c342f71f839c257150f4b5e096c127b51d525c | [
"MIT"
] | null | null | null | 9.py | sarika228/React-Projects | 24c342f71f839c257150f4b5e096c127b51d525c | [
"MIT"
] | null | null | null | i=1
while i<=4:
j=16
while j>=i:
print(i,end="")
j=j-1
print()
i=i+1 | 12.5 | 23 | 0.39 |
ffeb87db7651191ea5cf19f49a0c7c9aa356f87d | 8,539 | py | Python | site-packages/playhouse/sqliteq.py | lego-cloud/MDMPy | dc676a5d2245a14b9b98a2ac2dba64ff0bf61800 | [
"Python-2.0",
"OLDAP-2.7"
] | 674 | 2015-11-06T04:22:47.000Z | 2022-02-26T17:31:43.000Z | site-packages/playhouse/sqliteq.py | lego-cloud/MDMPy | dc676a5d2245a14b9b98a2ac2dba64ff0bf61800 | [
"Python-2.0",
"OLDAP-2.7"
] | 713 | 2015-11-06T10:48:58.000Z | 2018-11-27T16:32:18.000Z | site-packages/playhouse/sqliteq.py | lego-cloud/MDMPy | dc676a5d2245a14b9b98a2ac2dba64ff0bf61800 | [
"Python-2.0",
"OLDAP-2.7"
] | 106 | 2015-12-07T11:21:06.000Z | 2022-03-11T10:58:41.000Z | import logging
import weakref
from threading import Event
from threading import Thread
try:
from Queue import Queue
except ImportError:
from queue import Queue
try:
import gevent
from gevent import Greenlet as GThread
from gevent.event import Event as GEvent
from gevent.queue import Queue as GQueue
except ImportError:
GThread = GQueue = GEvent = None
from playhouse.sqlite_ext import SqliteExtDatabase
logger = logging.getLogger('peewee.sqliteq')
def fetchall(self):
return list(self) # Iterating implies waiting until populated.
def fetchone(self):
self._wait()
try:
return next(self)
except StopIteration:
return None
THREADLOCAL_ERROR_MESSAGE = ('threadlocals cannot be set to True when using '
'the Sqlite thread / queue database. All queries '
'are serialized through a single connection, so '
'allowing multiple threads to connect defeats '
'the purpose of this database.')
WAL_MODE_ERROR_MESSAGE = ('SQLite must be configured to use the WAL journal '
'mode when using this feature. WAL mode allows '
'one or more readers to continue reading while '
'another connection writes to the database.')
| 32.222642 | 79 | 0.610025 |
ffed6941b3c99947e3e5d93c80fbd2e963b7ad51 | 9,056 | py | Python | Common/Db.py | StrawberryTeam/pi_robot | c1b8ce2ad49c64173673df0eb59e0941624556e7 | [
"MIT"
] | 2 | 2018-08-30T14:38:53.000Z | 2019-12-12T09:33:42.000Z | Common/Db.py | StrawberryTeam/pi_robot | c1b8ce2ad49c64173673df0eb59e0941624556e7 | [
"MIT"
] | 1 | 2018-12-10T05:15:48.000Z | 2018-12-10T05:15:48.000Z | Common/Db.py | StrawberryTeam/pi_robot | c1b8ce2ad49c64173673df0eb59e0941624556e7 | [
"MIT"
] | 2 | 2019-06-28T06:05:17.000Z | 2019-10-28T08:34:50.000Z | #!/usr/bin/python3
from Common.Straw import Straw
import pymongo
from pymongo import MongoClient
from bson.objectid import ObjectId
import os
if __name__ == "__main__":
db()
| 35.100775 | 169 | 0.597946 |
ffed95a551ec4c75f989589df7d781a9f4387728 | 1,251 | py | Python | baya/tests/test_templatetags.py | kreneskyp/baya | 5cf04b6873927124b4a3f24c113c08699dd61315 | [
"MIT"
] | 4 | 2016-05-24T13:57:37.000Z | 2020-02-27T05:22:56.000Z | baya/tests/test_templatetags.py | kreneskyp/baya | 5cf04b6873927124b4a3f24c113c08699dd61315 | [
"MIT"
] | 29 | 2016-02-05T01:31:51.000Z | 2022-02-23T18:50:58.000Z | baya/tests/test_templatetags.py | hrichards/baya | f319cef5e95cd6a166265d51ae0ea236b6f65be3 | [
"MIT"
] | 6 | 2016-05-20T22:22:45.000Z | 2019-09-03T17:57:59.000Z | from django.template import Context
from django.template import Template
from .test_base import LDAPGroupAuthTestBase
from django.contrib.auth.models import AnonymousUser
| 29.785714 | 69 | 0.608313 |
fff185192df2e58db961f6b323cfb8259a7a9f46 | 2,611 | py | Python | egg/zoo/sum_game/architectures.py | CorentinKervadec/EGG | 5ccd49c4a493514b1194699954d41940f5e2a5c6 | [
"MIT"
] | null | null | null | egg/zoo/sum_game/architectures.py | CorentinKervadec/EGG | 5ccd49c4a493514b1194699954d41940f5e2a5c6 | [
"MIT"
] | null | null | null | egg/zoo/sum_game/architectures.py | CorentinKervadec/EGG | 5ccd49c4a493514b1194699954d41940f5e2a5c6 | [
"MIT"
] | null | null | null | # Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from torch.nn import functional as F
# In EGG, the game designer must implement the core functionality of the Sender and Receiver agents. These are then
# embedded in wrappers that are used to train them to play Gumbel-Softmax- or Reinforce-optimized games. The core
# Sender must take the input and produce a hidden representation that is then used by the wrapper to initialize
# the RNN or other module that will generate the message. The core Receiver expects a hidden representation
# generated by the message-processing wrapper, plus possibly other game-specific input, and it must generate the
# game-specific output.
# The RecoReceiver class implements the core Receiver agent for the reconstruction game. This is simply a linear layer
# that takes as input the vector generated by the message-decoding RNN in the wrapper (x in the forward method) and
# produces an output of n_features dimensionality, to be interpreted as a one-hot representation of the reconstructed
# attribute-value vector
# The Sender class implements the core Sender agent common to both games: it gets the input target vector and produces a hidden layer
# that will initialize the message producing RNN | 44.254237 | 133 | 0.711222 |
fff18656fd42956b8ef43e1d1fc5a06b2aa15f66 | 2,757 | py | Python | utils/random_training_splits.py | suvarnak/GenerativeFSLCovid | 0bdeb4ed444c5c9d59697c71d0733fc3a100944c | [
"MIT"
] | null | null | null | utils/random_training_splits.py | suvarnak/GenerativeFSLCovid | 0bdeb4ed444c5c9d59697c71d0733fc3a100944c | [
"MIT"
] | null | null | null | utils/random_training_splits.py | suvarnak/GenerativeFSLCovid | 0bdeb4ed444c5c9d59697c71d0733fc3a100944c | [
"MIT"
] | null | null | null | import os
import shutil
import random
if __name__ == '__main__':
main()
| 39.385714 | 105 | 0.673921 |
fff197ae68beb5dbb26583494df00c1fc7732948 | 1,285 | py | Python | tools/gen_bbox_ac.py | vincentzhang/faster-rcnn-fcn | 7118d715a430f0ec2697e5f7a9a39c9752b466da | [
"BSD-2-Clause"
] | 7 | 2019-07-19T21:30:26.000Z | 2021-06-17T03:57:22.000Z | tools/gen_bbox_ac.py | vincentzhang/faster-rcnn-fcn | 7118d715a430f0ec2697e5f7a9a39c9752b466da | [
"BSD-2-Clause"
] | null | null | null | tools/gen_bbox_ac.py | vincentzhang/faster-rcnn-fcn | 7118d715a430f0ec2697e5f7a9a39c9752b466da | [
"BSD-2-Clause"
] | 1 | 2021-06-17T03:57:23.000Z | 2021-06-17T03:57:23.000Z | # generated bbox ground truth from pixel-wise segmentation
# it currently only generate one bbox
from __future__ import print_function
import numpy as np
import h5py
import os
import pdb
mask_path = '../data/acce'
f = h5py.File(os.path.join(mask_path, "resized_label_ac_2d.h5"), 'r')
bbox_path = '../data/acce/bbox'
if not os.path.exists(bbox_path):
os.mkdir(bbox_path)
# dim: shape (256, 367, 342), slices, height, width
count = 0
for k in f.keys():
#pdb.set_trace()
count += 1
print("processing {}-th vol".format(count))
data = f[k][...] # convert to numpy
k = k.rsplit('_',1)[0] # strip the '_label' from the vol name
with open( os.path.join(bbox_path, k)+'_bbox.txt', 'w') as bbox_file:
# iterate through each slice
for idx in range(data.shape[0]):
mask = data[idx, :, :] # get the mask
i,j = np.where(mask) # find positive mask
if not i.size: # no positive mask
print("{}_{},{}".format(k, idx, 0), file=bbox_file)
else:
h_min,w_min = np.min(zip(i,j), axis=0)
h_max,w_max = np.max(zip(i,j), axis=0)
print("{}_{},{},{},{},{},{}".format(k, idx, 1, w_min, h_min, w_max,
h_max), file=bbox_file)
f.close()
| 34.72973 | 83 | 0.585214 |
fff2144edf1dc7c96f337289635ef5af44b23625 | 8,510 | py | Python | testscript/imputation_algorithms.py | zshufan/Tattle-Tale | f9d93051efb523f1bda0cead023c2f001e18cc85 | [
"BSD-3-Clause"
] | null | null | null | testscript/imputation_algorithms.py | zshufan/Tattle-Tale | f9d93051efb523f1bda0cead023c2f001e18cc85 | [
"BSD-3-Clause"
] | null | null | null | testscript/imputation_algorithms.py | zshufan/Tattle-Tale | f9d93051efb523f1bda0cead023c2f001e18cc85 | [
"BSD-3-Clause"
] | null | null | null | # some codes refer to Holoclean evaluation function
# https://github.com/HoloClean/holoclean
import pandas as pd
import numpy as np
import logging
import random
import argparse
parser = argparse.ArgumentParser(description='Predict on many examples')
parser.add_argument("--dataset", type=str, help="dataset path")
parser.add_argument("--ground_truth", type=str, help="ground truth path")
parser.add_argument("--ground_truth_2", type=str, help="ground truth path")
args = parser.parse_args()
NULL_REPR = '_nan_'
exclude_attr = ['_tid_', 'FName', 'LName']
if __name__ == "__main__":
# load dataset
adv = DataCleaningAsAdv(args.dataset)
f = open("baseline_cleaning_report_1", "a")
print(args.dataset, file=f)
# evaluate
adv.evaluate(gt_fpath=args.ground_truth,
tid_col='tid',
attr_col='attribute',
val_col='correct_val', file=f)
if args.ground_truth_2 is not None:
adv.evaluate(gt_fpath=args.ground_truth_2,
tid_col='tid',
attr_col='attribute',
val_col='correct_val', file=f)
| 42.338308 | 169 | 0.602115 |
fff27be5ec642c73c3bac5ec2ecda165d7fe17c5 | 145 | py | Python | Hackerrank_python/15.numpy/10.Min and Max.py | manish1822510059/Hackerrank | 7c6e4553f033f067e04dc6c756ef90cb43f3c4a8 | [
"MIT"
] | 39 | 2020-09-27T05:32:05.000Z | 2022-01-08T18:04:05.000Z | Hackerrank_python/15.numpy/10.Min and Max.py | manish1822510059/Hackerrank | 7c6e4553f033f067e04dc6c756ef90cb43f3c4a8 | [
"MIT"
] | 5 | 2020-10-02T13:33:00.000Z | 2021-03-01T14:06:08.000Z | Hackerrank_python/15.numpy/10.Min and Max.py | manish1822510059/Hackerrank | 7c6e4553f033f067e04dc6c756ef90cb43f3c4a8 | [
"MIT"
] | 6 | 2020-10-03T04:04:55.000Z | 2021-10-18T04:07:53.000Z | import numpy as arr
n,m=map(int,input().split())
ar=([list(map(int,input().split()))for _ in range(n)])
arr1=arr.min(ar,axis=1)
print(max(arr1))
| 24.166667 | 54 | 0.668966 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.