metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- f1
- accuracy
model-index:
- name: vedt-lg
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: F1
type: f1
value: 0.95
- name: Accuracy
type: accuracy
value: 0.94
vedt-lg
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1643
- F1: 0.95
- Roc Auc: 0.96
- Accuracy: 0.94
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.523 | 1.0 | 122 | 0.5292 | 0.53 | 0.67 | 0.45 |
0.3308 | 2.0 | 245 | 0.3331 | 0.82 | 0.86 | 0.79 |
0.1989 | 3.0 | 367 | 0.2265 | 0.91 | 0.93 | 0.9 |
0.1182 | 4.0 | 490 | 0.1949 | 0.92 | 0.94 | 0.92 |
0.0936 | 4.98 | 610 | 0.1643 | 0.95 | 0.96 | 0.94 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.1