metadata
tags:
- autotrain
- text-classification
language:
- unk
widget:
- text: I love AutoTrain
datasets:
- dmytrobaida/autotrain-data-ukrainian-telegram-sentiment-analysis
co2_eq_emissions:
emissions: 0.10582404396425517
Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 70044138081
- CO2 Emissions (in grams): 0.1058
Validation Metrics
- Loss: 0.461
- Accuracy: 0.817
- Precision: 0.824
- Recall: 0.955
- AUC: 0.772
- F1: 0.885
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/dmytrobaida/autotrain-ukrainian-telegram-sentiment-analysis-70044138081
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("dmytrobaida/autotrain-ukrainian-telegram-sentiment-analysis-70044138081", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("dmytrobaida/autotrain-ukrainian-telegram-sentiment-analysis-70044138081", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)