Edit model card

mBART-TextSimp-LT-BatchSize8-lr1e-4

This model is a fine-tuned version of facebook/mbart-large-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0744
  • Rouge1: 0.7931
  • Rouge2: 0.657
  • Rougel: 0.7873
  • Sacrebleu: 56.7266
  • Gen Len: 34.9093

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Sacrebleu Gen Len
5.5149 1.0 104 3.9238 0.6383 0.4681 0.6268 40.2914 36.6301
0.0989 2.0 209 0.0807 0.6925 0.5318 0.6852 46.8337 34.9093
0.0666 3.0 313 0.0679 0.7014 0.5448 0.6936 47.4249 34.9093
0.0464 4.0 418 0.0765 0.698 0.5344 0.6859 46.7217 34.9093
0.0344 5.0 522 0.0668 0.7604 0.6085 0.7526 49.5391 34.9117
0.0168 6.0 627 0.0652 0.7825 0.6391 0.7763 53.7888 34.9093
0.0116 7.0 731 0.0674 0.7911 0.6558 0.7856 55.8977 34.9093
0.0036 7.96 832 0.0744 0.7931 0.657 0.7873 56.7266 34.9093

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for eglkan1/mBART-TextSimp-LT-BatchSize8-lr1e-4

Finetuned
(130)
this model