metadata
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.935275616619765
- name: Recall
type: recall
value: 0.9508582968697409
- name: F1
type: f1
value: 0.9430025869982476
- name: Accuracy
type: accuracy
value: 0.9868281627126626
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0595
- Precision: 0.9353
- Recall: 0.9509
- F1: 0.9430
- Accuracy: 0.9868
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0793 | 1.0 | 1756 | 0.0648 | 0.9069 | 0.9360 | 0.9212 | 0.9825 |
0.0352 | 2.0 | 3512 | 0.0645 | 0.9320 | 0.9458 | 0.9389 | 0.9850 |
0.0205 | 3.0 | 5268 | 0.0595 | 0.9353 | 0.9509 | 0.9430 | 0.9868 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1