|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- keyword_pubmed_dataset |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: kw_pubmed_1000_0.0003 |
|
results: |
|
- task: |
|
name: Masked Language Modeling |
|
type: fill-mask |
|
dataset: |
|
name: keyword_pubmed_dataset |
|
type: keyword_pubmed_dataset |
|
args: sentence |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.33938523162661094 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# kw_pubmed_1000_0.0003 |
|
|
|
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the keyword_pubmed_dataset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.7086 |
|
- Accuracy: 0.3394 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 250 |
|
- total_train_batch_size: 8000 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 0.09 | 4 | 4.3723 | 0.3436 | |
|
| 6.0386 | 0.17 | 8 | 4.2113 | 0.3442 | |
|
| 3.7573 | 0.26 | 12 | 4.2079 | 0.3634 | |
|
| 2.9944 | 0.35 | 16 | 4.3370 | 0.3513 | |
|
| 2.7048 | 0.44 | 20 | 4.8594 | 0.3067 | |
|
| 2.7048 | 0.52 | 24 | 4.4929 | 0.3383 | |
|
| 2.9458 | 0.61 | 28 | 4.5146 | 0.3408 | |
|
| 2.3783 | 0.7 | 32 | 4.5680 | 0.3430 | |
|
| 2.2485 | 0.78 | 36 | 4.5095 | 0.3477 | |
|
| 2.1701 | 0.87 | 40 | 4.4971 | 0.3449 | |
|
| 2.1701 | 0.96 | 44 | 4.7051 | 0.3321 | |
|
| 2.0861 | 1.07 | 48 | 4.7615 | 0.3310 | |
|
| 2.4168 | 1.15 | 52 | 4.7086 | 0.3394 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|