|
--- |
|
license: llama3 |
|
base_model: maywell/Llama-3-Ko-Luxia-Instruct |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: data/output/1min-luxia-8b |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: maywell/Llama-3-Ko-Luxia-Instruct |
|
trust_remote_code: true |
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
datasets: |
|
- path: "../data/output_fix_real.json" |
|
type: alpaca |
|
conversation: chatml |
|
dataset_prepared_path: ../data/1min-luxia-data-pre |
|
val_set_size: 0.1 |
|
output_dir: ../data/output/1min-luxia-8b |
|
sequence_len: 1024 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
eval_sample_packing: false |
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
gradient_accumulation_steps: 8 |
|
micro_batch_size: 1 |
|
num_epochs: 10 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 2e-6 |
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: null |
|
tf32: false |
|
gradient_checkpointing: true |
|
early_stopping_patience: null |
|
resume_from_checkpoint: null |
|
local_rank: null |
|
logging_steps: 1 |
|
xformers_attention: null |
|
flash_attention: true |
|
warmup_steps: 10 |
|
evals_per_epoch: 4 |
|
eval_table_size: null |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
save_total_limit: 4 |
|
debug: true |
|
deepspeed: deepspeed_configs/zero2.json |
|
weight_decay: 0.0 |
|
special_tokens: |
|
pad_token: <|end_of_text|> |
|
``` |
|
|
|
</details><br> |
|
|
|
# data/output/1min-luxia-8b |
|
|
|
This model is a fine-tuned version of [maywell/Llama-3-Ko-Luxia-Instruct](https://huggingface.co/maywell/Llama-3-Ko-Luxia-Instruct) on the modified [maywell/ko_youtube_transcription_sample](https://huggingface.co/datasets/maywell/ko_youtube_transcription_sample) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.5280 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-06 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 7 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 56 |
|
- total_eval_batch_size: 7 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 2.9998 | 0.2051 | 1 | 3.0382 | |
|
| 3.0081 | 0.4103 | 2 | 3.0379 | |
|
| 2.9024 | 0.6154 | 3 | 3.0356 | |
|
| 2.9814 | 0.8205 | 4 | 3.0280 | |
|
| 2.9813 | 1.0256 | 5 | 3.0136 | |
|
| 2.9137 | 1.1795 | 6 | 2.9918 | |
|
| 2.9909 | 1.3846 | 7 | 2.9426 | |
|
| 2.8925 | 1.5897 | 8 | 2.9047 | |
|
| 2.825 | 1.7949 | 9 | 2.8790 | |
|
| 2.8329 | 2.0 | 10 | 2.7949 | |
|
| 2.6496 | 2.1538 | 11 | 2.7632 | |
|
| 2.6857 | 2.3590 | 12 | 2.7388 | |
|
| 2.679 | 2.5641 | 13 | 2.7193 | |
|
| 2.6802 | 2.7692 | 14 | 2.6748 | |
|
| 2.6269 | 2.9744 | 15 | 2.6452 | |
|
| 2.5546 | 3.1282 | 16 | 2.6286 | |
|
| 2.574 | 3.3333 | 17 | 2.6168 | |
|
| 2.5548 | 3.5385 | 18 | 2.6054 | |
|
| 2.5145 | 3.7436 | 19 | 2.5952 | |
|
| 2.452 | 3.9487 | 20 | 2.5863 | |
|
| 2.4647 | 4.1026 | 21 | 2.5786 | |
|
| 2.423 | 4.3077 | 22 | 2.5715 | |
|
| 2.4104 | 4.5128 | 23 | 2.5648 | |
|
| 2.3664 | 4.7179 | 24 | 2.5592 | |
|
| 2.4211 | 4.9231 | 25 | 2.5536 | |
|
| 2.4291 | 5.0769 | 26 | 2.5492 | |
|
| 2.3475 | 5.2821 | 27 | 2.5455 | |
|
| 2.3665 | 5.4872 | 28 | 2.5417 | |
|
| 2.3862 | 5.6923 | 29 | 2.5387 | |
|
| 2.3784 | 5.8974 | 30 | 2.5360 | |
|
| 2.354 | 6.0513 | 31 | 2.5343 | |
|
| 2.3442 | 6.2564 | 32 | 2.5321 | |
|
| 2.3499 | 6.4615 | 33 | 2.5312 | |
|
| 2.3312 | 6.6667 | 34 | 2.5297 | |
|
| 2.3551 | 6.8718 | 35 | 2.5289 | |
|
| 2.3363 | 7.0256 | 36 | 2.5289 | |
|
| 2.3691 | 7.2308 | 37 | 2.5284 | |
|
| 2.3267 | 7.4359 | 38 | 2.5281 | |
|
| 2.3389 | 7.6410 | 39 | 2.5281 | |
|
| 2.1969 | 7.8462 | 40 | 2.5280 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.1.2+cu118 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|