metadata
license: apache-2.0
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- mnist
metrics:
- accuracy
base_model: google/vit-base-patch16-224-in21k
model-index:
- name: mnist-digit-classification-2022-09-04
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: mnist
type: mnist
config: mnist
split: train
args: mnist
metrics:
- type: accuracy
value: 0.9923333333333333
name: Accuracy
mnist-digit-classification-2022-09-04
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the mnist dataset. It achieves the following results on the evaluation set:
- Loss: 0.0319
- Accuracy: 0.9923
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Framework versions
- Transformers 4.22.0.dev0
- Pytorch 1.12.1+cu102
- Datasets 2.4.0
- Tokenizers 0.12.1