Model Information
Quantized version of iGeniusAI/Italia-9B-Instruct-v0.1 using torch.float32 for quantization tuning.
- 8 bits (INT8)
- group size = 64
- Asymmetrical Quantization
- Method WoQ (AutoRound format)
Quantization framework: Intel AutoRound v0.4.6
Note: this INT8 version of Italia-9B-Instruct-v0.1 has been quantized using NVIDIA CUDA libraries.
Replication Recipe
Step 1 Install Requirements
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.6.tar.gz
tar -xvzf v0.4.6.tar.gz
cd auto-round-0.4.6
pip install -r requirements.txt --upgrade
Step 2 Build Intel AutoRound wheel from sources
pip install -vvv --no-build-isolation -e .
Step 3 Script for Quantization
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTNeoXModel
model_name = "iGeniusAI/Italia-9B-Instruct-v0.1"
model = GPTNeoXModel.from_pretrained(model_name, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name)
from auto_round import AutoRound
bits, group_size, sym, device, amp = 8, 64, False, 'auto', False
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
autoround.quantize()
output_dir = "./AutoRound/iGeniusAI_Italia-9B-Instruct-v0.1-autoround-int8-gs64-auto-asym"
autoround.save_quantized(output_dir, format='auto_round', inplace=True)
Note: the GPTNeoXSdpaAttention
class is deprecated in favor of simply modifying the config._attn_implementation
attribute of the GPTNeoXAttention
class. So this require transformers<4.48.
License
Disclaimer
This quantized model comes with no warranty. It has been developed only for research purposes.
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model authors have turned it off explicitly.
Model tree for fbaldassarri/iGeniusAI_Italia-9B-Instruct-v0.1-autoround-int8-gs64-auto-asym
Base model
iGeniusAI/Italia-9B-Instruct-v0.1