Distilled-HermesChat-7B
Distilled-HermesChat-7B is a merge of the following models using LazyMergekit:
As an experiment to find the best base merge to further fine-tuning, expect a lot of experiments named using parts of the component models until a clear winner emerges in the benchmarks
𧩠Configuration
slices:
- sources:
- model: openchat/openchat-3.5-0106
layer_range: [0, 32]
- model: argilla/distilabeled-Hermes-2.5-Mistral-7B
layer_range: [0, 32]
merge_method: slerp
base_model: openchat/openchat-3.5-0106
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "flemmingmiguel/Distilled-HermesChat-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 834
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.