Edit model card

Open-Assistant SFT-4 12B Model

This is the 4th iteration English supervised-fine-tuning (SFT) model of the Open-Assistant project. It is based on a Pythia 12B that was fine-tuned on human demonstrations of assistant conversations collected through the https://open-assistant.io/ human feedback web app before March 25, 2023.

Model Details

Prompting

Two special tokens are used to mark the beginning of user and assistant turns: <|prompter|> and <|assistant|>. Each turn ends with a <|endoftext|> token.

Input prompt example:

<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>

The input ends with the <|assistant|> token to signal that the model should start generating the assistant reply.

Dev Details

command: deepspeed trainer_sft.py --configs defaults reference-data reference-pythia-12b --cache_dir /home/ubuntu/data_cache --output_dir .saved/oasst-sft-3-pythia-12b-reference_2kpre --num_train_epochs 8 --residual_dropout 0.2 --deepspeed --use_flash_attention true --model_name andreaskoepf/pythia-12b-pre-2000

data:

reference-data:
  datasets:
    - oasst_export:
      lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
      input_file_path: 2023-03-25_oasst_research_ready_synth_labels.jsonl.gz
      val_split: 0.05
    - alpaca
  sort_by_length: false
  use_custom_sampler: false

pythia:

reference-pythia-12b:
  dtype: fp16
  log_dir: "pythia_log_12b"
  learning_rate: 6e-6
  model_name: EleutherAI/pythia-12b-deduped
  output_dir: pythia_model_12b
  weight_decay: 0.0
  max_length: 2048
  warmup_steps: 100
  gradient_checkpointing: true
  gradient_accumulation_steps: 2
  per_device_train_batch_size: 4
  per_device_eval_batch_size: 4
  eval_steps: 100
  save_steps: 1000
  num_train_epochs: 8
  save_total_limit: 4

zero config:

{
  "fp16": {
    "enabled": "auto",
    "loss_scale": 0,
    "loss_scale_window": 1000,
    "initial_scale_power": 16,
    "hysteresis": 2,
    "min_loss_scale": 1
  },
  "bf16": {
    "enabled": "auto"
  },
  "optimizer": {
    "type": "AdamW",
    "params": {
      "lr": "auto",
      "betas": "auto",
      "eps": "auto",
      "weight_decay": "auto"
    }
  },
  "scheduler": {
    "type": "WarmupDecayLR",
    "params": {
      "warmup_min_lr": "auto",
      "warmup_max_lr": "auto",
      "warmup_num_steps": "auto",
      "total_num_steps": "auto"
    }
  },
  "zero_optimization": {
    "stage": 2,
    "allgather_partitions": true,
    "allgather_bucket_size": 1e9,
    "overlap_comm": false,
    "reduce_scatter": true,
    "reduce_bucket_size": 1e9,
    "contiguous_gradients": true
  },
  "gradient_accumulation_steps": "auto",
  "gradient_clipping": "auto",
  "steps_per_print": 2000,
  "train_batch_size": "auto",
  "train_micro_batch_size_per_gpu": "auto",
  "wall_clock_breakdown": false
}
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.