Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: microsoft/Phi-3.5-mini-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
chat_template: phi_3

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: flydust/CodeGen_snippets_1130_20037_correct
    type: chat_template
    field_messages: conversations
    # The key in the message turn that contains the role. Default is "role".
    message_field_role: from
    # The key in the message turn that contains the content. Default is "content".
    message_field_content: value
    # Optional[Dict[str, List]]. Roles mapping for the messages.
    roles:
      user: ["human", "user"]
      assistant: ["gpt", "assistant", "ai"]
      system: ["system"]


dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: axolotl_out/Phi-3.5-mini-instruct-CodeGen_snippets_1130_20037_correct

sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

wandb_project: CodeGen
wandb_entity:
wandb_watch:
wandb_name: Phi-3.5-mini-instruct-CodeGen_snippets_1130_20037_correct
wandb_log_model:
hub_model_id: flydust/Phi-3.5-mini-instruct-CodeGen_snippets_1130_20037_correct

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
# Disable flash attention
flash_attention: true
# sdp_attention: falses
# eager_attention: true

warmup_ratio: 0.1
evals_per_epoch: 10
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

Phi-3.5-mini-instruct-CodeGen_snippets_1130_20037_correct

This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0841

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 59
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.3186 0.0034 1 0.2093
0.1593 0.1006 30 0.1003
0.1449 0.2012 60 0.0912
0.1277 0.3018 90 0.0879
0.1453 0.4023 120 0.0873
0.1468 0.5029 150 0.0861
0.1397 0.6035 180 0.0857
0.1499 0.7041 210 0.0845
0.1568 0.8047 240 0.0840
0.1369 0.9053 270 0.0843
0.1214 1.0042 300 0.0840
0.1315 1.1048 330 0.0846
0.1336 1.2054 360 0.0844
0.1114 1.3060 390 0.0844
0.1314 1.4065 420 0.0846
0.1232 1.5071 450 0.0840
0.1454 1.6077 480 0.0834
0.1376 1.7083 510 0.0843
0.1301 1.8089 540 0.0842
0.0966 1.9095 570 0.0841

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.3
Downloads last month
29
Safetensors
Model size
3.82B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for flydust/Phi-3.5-mini-instruct-CodeGen_snippets_1130_20037_correct

Finetuned
(44)
this model