See axolotl config
axolotl version: 0.4.1
base_model: microsoft/Phi-3.5-mini-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
chat_template: phi_3
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: flydust/CodeGen_snippets_1130_20037_correct
type: chat_template
field_messages: conversations
# The key in the message turn that contains the role. Default is "role".
message_field_role: from
# The key in the message turn that contains the content. Default is "content".
message_field_content: value
# Optional[Dict[str, List]]. Roles mapping for the messages.
roles:
user: ["human", "user"]
assistant: ["gpt", "assistant", "ai"]
system: ["system"]
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: axolotl_out/Phi-3.5-mini-instruct-CodeGen_snippets_1130_20037_correct
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: CodeGen
wandb_entity:
wandb_watch:
wandb_name: Phi-3.5-mini-instruct-CodeGen_snippets_1130_20037_correct
wandb_log_model:
hub_model_id: flydust/Phi-3.5-mini-instruct-CodeGen_snippets_1130_20037_correct
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
# Disable flash attention
flash_attention: true
# sdp_attention: falses
# eager_attention: true
warmup_ratio: 0.1
evals_per_epoch: 10
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
Phi-3.5-mini-instruct-CodeGen_snippets_1130_20037_correct
This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0841
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 59
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.3186 | 0.0034 | 1 | 0.2093 |
0.1593 | 0.1006 | 30 | 0.1003 |
0.1449 | 0.2012 | 60 | 0.0912 |
0.1277 | 0.3018 | 90 | 0.0879 |
0.1453 | 0.4023 | 120 | 0.0873 |
0.1468 | 0.5029 | 150 | 0.0861 |
0.1397 | 0.6035 | 180 | 0.0857 |
0.1499 | 0.7041 | 210 | 0.0845 |
0.1568 | 0.8047 | 240 | 0.0840 |
0.1369 | 0.9053 | 270 | 0.0843 |
0.1214 | 1.0042 | 300 | 0.0840 |
0.1315 | 1.1048 | 330 | 0.0846 |
0.1336 | 1.2054 | 360 | 0.0844 |
0.1114 | 1.3060 | 390 | 0.0844 |
0.1314 | 1.4065 | 420 | 0.0846 |
0.1232 | 1.5071 | 450 | 0.0840 |
0.1454 | 1.6077 | 480 | 0.0834 |
0.1376 | 1.7083 | 510 | 0.0843 |
0.1301 | 1.8089 | 540 | 0.0842 |
0.0966 | 1.9095 | 570 | 0.0841 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1+cu124
- Datasets 3.0.1
- Tokenizers 0.20.3
- Downloads last month
- 29
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for flydust/Phi-3.5-mini-instruct-CodeGen_snippets_1130_20037_correct
Base model
microsoft/Phi-3.5-mini-instruct