|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- HuggingFaceTB/smollm-corpus |
|
base_model: |
|
- HuggingFaceTB/SmolLM-360M |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
**Research Paper** ["Towards Economical Inference: Enabling DeepSeek's Multi-Head Latent Attention in Any Transformer-based LLMs"](https://arxiv.org/abs/2502.14837) |
|
|
|
## Inference |
|
|
|
- Step 1: Download the [**monkey patch file**](https://github.com/JT-Ushio/MHA2MLA/blob/main/src/mha2mla/monkey_patch.py). |
|
```shell |
|
wget https://raw.githubusercontent.com/JT-Ushio/MHA2MLA/refs/heads/main/src/mha2mla/monkey_patch.py |
|
``` |
|
|
|
- Step 2(Option): For MHA2MLA models using Partial-RoPE 2-nrom method, Download the [**qk_2-norm file**](https://github.com/JT-Ushio/MHA2MLA/tree/main/utils). |
|
Take `qk_tensor_360M.pth` as an example: |
|
```shell |
|
wget https://github.com/JT-Ushio/MHA2MLA/raw/refs/heads/main/utils/qk_tensor_360M.pth |
|
``` |
|
|
|
- Step 3: Download the [MHA2MLA models](https://huggingface.co/fnlp/SmolLM-360M-MLA-d_kv_32) and run inference. |
|
Take `fnlp/SmolLM-360M-MLA-d_kv_32` as an example: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoConfig, AutoTokenizer, LlamaForCausalLM |
|
from monkey_patch import infer_monkey_patch |
|
|
|
model_name = "fnlp/SmolLM-360M-MLA-d_kv_32" |
|
|
|
# Monkey Patch: MHA -> MLA |
|
config = AutoConfig.from_pretrained(model_name) |
|
if "RoPE" in config: |
|
config.RoPE["qk_tensor_path"] = "qk_tensor_360M.pth" # Configuration for Specific Models |
|
infer_monkey_patch(config.RoPE) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
model = LlamaForCausalLM.from_pretrained(model_name, config=config, torch_dtype=torch.bfloat16).cuda() |
|
|
|
# Generate |
|
text = "Which American-born Sinclair won the Nobel Prize for Literature in 1930?" |
|
inputs = tokenizer(text, return_tensors="pt").to(model.device) |
|
generation_kwargs = {"do_sample": False, "use_cache": True, "max_new_tokens": 128} |
|
output = model.generate(**inputs, **generation_kwargs) |
|
|
|
print(tokenizer.decode(output[0], skip_special_tokens=True)) |
|
# - Sinclair Lewis |
|
``` |
|
|
|
## Citation |
|
``` |
|
@misc{ji2025economicalinferenceenablingdeepseeks, |
|
title={Towards Economical Inference: Enabling DeepSeek's Multi-Head Latent Attention in Any Transformer-based LLMs}, |
|
author={Tao Ji and Bin Guo and Yuanbin Wu and Qipeng Guo and Lixing Shen and Zhan Chen and Xipeng Qiu and Qi Zhang and Tao Gui}, |
|
year={2025}, |
|
eprint={2502.14837}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2502.14837}, |
|
} |
|
``` |
|
|
|
|