metadata
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: black-forest-labs/FLUX.1-dev
pipeline_tag: text-to-image
instance_prompt: Hyundai N Vision 74 car
widget:
- text: Hyundai N Vision 74 car driving fast along a tropical beach road
output:
url: >-
https://replicate.delivery/yhqm/9a6E6if5eWgydEDNizsLmO1Mec3xUnOJFVieZw7yBGLdNiiNB/out-3.webp
- text: Hyundai N Vision 74 car driving fast along a tropical beach road
output:
url: >-
https://replicate.delivery/yhqm/K3Efzz3uZWx0KqMjbr4BQn3YfBBBinO3WYqwYjtt4JKXjoYTA/out-2.webp
Flux Hyundai N Vision 74
Run on Replicate:
https://replicate.com/fofr/flux-hyundai-n-vision-74
Trained on Replicate using:
https://replicate.com/ostris/flux-dev-lora-trainer/train
Trigger words
You should use Hyundai N Vision 74 car
to trigger the image generation.
Use it with the 🧨 diffusers library
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('fofr/flux-hyundai-n-vision-74', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers