fontadie's picture
Model save
0c7bd2a verified
metadata
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
  - generated_from_trainer
datasets:
  - tedlium
metrics:
  - wer
model-index:
  - name: whisper-tiny-openslrdev
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: tedlium
          type: tedlium
          config: release1
          split: test
          args: release1
        metrics:
          - name: Wer
            type: wer
            value: 90.4153910381297

whisper-tiny-openslrdev

This model is a fine-tuned version of openai/whisper-tiny.en on the tedlium dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0820
  • Wer: 90.4154

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 300
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.06 20 3.7027 35.3291
3.9098 0.13 40 3.3264 35.0647
3.0852 0.19 60 2.9769 34.0871
2.2682 0.26 80 2.7802 31.6309
1.6662 0.32 100 2.5284 27.7728
1.6662 0.38 120 2.4481 24.3668
1.2505 0.45 140 2.4118 21.6532
1.0859 0.51 160 2.3687 20.9087
0.9491 0.58 180 2.1924 19.6493
0.8746 0.64 200 2.1752 22.1229
0.8746 0.7 220 2.2546 29.7245
0.8064 0.77 240 2.1611 39.6326
0.733 0.83 260 2.1281 55.7334
0.7135 0.89 280 2.0406 75.1705
0.6806 0.96 300 2.0820 90.4154

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2