|
---
|
|
license: apache-2.0
|
|
base_model: openai/whisper-tiny.en
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- tedlium
|
|
metrics:
|
|
- wer
|
|
model-index:
|
|
- name: whisper-tiny-openslrdev
|
|
results:
|
|
- task:
|
|
name: Automatic Speech Recognition
|
|
type: automatic-speech-recognition
|
|
dataset:
|
|
name: tedlium
|
|
type: tedlium
|
|
config: release1
|
|
split: test
|
|
args: release1
|
|
metrics:
|
|
- name: Wer
|
|
type: wer
|
|
value: 90.4153910381297
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# whisper-tiny-openslrdev
|
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on the tedlium dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 2.0820
|
|
- Wer: 90.4154
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 1e-05
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_steps: 200
|
|
- training_steps: 300
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|
|
|
| No log | 0.06 | 20 | 3.7027 | 35.3291 |
|
|
| 3.9098 | 0.13 | 40 | 3.3264 | 35.0647 |
|
|
| 3.0852 | 0.19 | 60 | 2.9769 | 34.0871 |
|
|
| 2.2682 | 0.26 | 80 | 2.7802 | 31.6309 |
|
|
| 1.6662 | 0.32 | 100 | 2.5284 | 27.7728 |
|
|
| 1.6662 | 0.38 | 120 | 2.4481 | 24.3668 |
|
|
| 1.2505 | 0.45 | 140 | 2.4118 | 21.6532 |
|
|
| 1.0859 | 0.51 | 160 | 2.3687 | 20.9087 |
|
|
| 0.9491 | 0.58 | 180 | 2.1924 | 19.6493 |
|
|
| 0.8746 | 0.64 | 200 | 2.1752 | 22.1229 |
|
|
| 0.8746 | 0.7 | 220 | 2.2546 | 29.7245 |
|
|
| 0.8064 | 0.77 | 240 | 2.1611 | 39.6326 |
|
|
| 0.733 | 0.83 | 260 | 2.1281 | 55.7334 |
|
|
| 0.7135 | 0.89 | 280 | 2.0406 | 75.1705 |
|
|
| 0.6806 | 0.96 | 300 | 2.0820 | 90.4154 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.39.2
|
|
- Pytorch 2.2.2+cu121
|
|
- Datasets 2.18.0
|
|
- Tokenizers 0.15.2
|
|
|