YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Fact checking
This generative model - trained on FEVER - aims to predict whether a claim is consistent with the provided evidence.
Installation and simple usage
One quick way to install it is to type
pip install fact_checking
and then use the following code:
from transformers import (
GPT2LMHeadModel,
GPT2Tokenizer,
)
from fact_checking import FactChecker
_evidence = """
Justine Tanya Bateman (born February 19, 1966) is an American writer, producer, and actress . She is best known for her regular role as Mallory Keaton on the sitcom Family Ties (1982 -- 1989). Until recently, Bateman ran a production and consulting company, SECTION 5 . In the fall of 2012, she started studying computer science at UCLA.
"""
_claim = 'Justine Bateman is a poet.'
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
fact_checking_model = GPT2LMHeadModel.from_pretrained('fractalego/fact-checking')
fact_checker = FactChecker(fact_checking_model, tokenizer)
is_claim_true = fact_checker.validate(_evidence, _claim)
print(is_claim_true)
which gives the output
False
Probabilistic output with replicas
The output can include a probabilistic component, obtained by iterating a number of times the output generation. The system generates an ensemble of answers and groups them by Yes or No.
For example, one can ask
from transformers import (
GPT2LMHeadModel,
GPT2Tokenizer,
)
from fact_checking import FactChecker
_evidence = """
Jane writes code for Huggingface.
"""
_claim = 'Jane is an engineer.'
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
fact_checking_model = GPT2LMHeadModel.from_pretrained('fractalego/fact-checking')
fact_checker = FactChecker(fact_checking_model, tokenizer)
is_claim_true = fact_checker.validate_with_replicas(_evidence, _claim)
print(is_claim_true)
with output
{'Y': 0.95, 'N': 0.05}
Score on FEVER
The predictions are evaluated on a subset of the FEVER dev dataset, restricted to the SUPPORTING and REFUTING options:
precision | recall | F1 |
---|---|---|
0.94 | 0.98 | 0.96 |
These results should be taken with many grains of salt. This is still a work in progress, and there might be leakage coming from the underlining GPT2 model unnaturally raising the scores.
- Downloads last month
- 29
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.