fsicoli's picture
End of training
6f4a787 verified
|
raw
history blame
2.22 kB
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - fsicoli/cv18-fleurs
metrics:
  - wer
model-index:
  - name: whisper-medium-pt-cv18-fleurs2-lr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fsicoli/cv18-fleurs default
          type: fsicoli/cv18-fleurs
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.10594170403587444

whisper-medium-pt-cv18-fleurs2-lr

This model is a fine-tuned version of openai/whisper-medium on the fsicoli/cv18-fleurs default dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1662
  • Wer: 0.1059

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6.25e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5000
  • training_steps: 25000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0876 2.3004 5000 0.1662 0.1059
0.0371 4.6009 10000 0.1839 0.0999
0.0246 6.9013 15000 0.2027 0.0997
0.0072 9.2017 20000 0.2152 0.0967
0.0074 11.5022 25000 0.2163 0.0929

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.1
  • Datasets 2.21.0
  • Tokenizers 0.19.1