|
---
|
|
library_name: transformers
|
|
license: apache-2.0
|
|
base_model: openai/whisper-medium
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- fsicoli/cv18-fleurs
|
|
metrics:
|
|
- wer
|
|
model-index:
|
|
- name: whisper-medium-pt-cv18-fleurs2-lr
|
|
results:
|
|
- task:
|
|
name: Automatic Speech Recognition
|
|
type: automatic-speech-recognition
|
|
dataset:
|
|
name: fsicoli/cv18-fleurs default
|
|
type: fsicoli/cv18-fleurs
|
|
args: default
|
|
metrics:
|
|
- name: Wer
|
|
type: wer
|
|
value: 0.10594170403587444
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# whisper-medium-pt-cv18-fleurs2-lr
|
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the fsicoli/cv18-fleurs default dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 0.1662
|
|
- Wer: 0.1059
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 6.25e-06
|
|
- train_batch_size: 8
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 2
|
|
- total_train_batch_size: 16
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_steps: 5000
|
|
- training_steps: 25000
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
|
|:-------------:|:-------:|:-----:|:---------------:|:------:|
|
|
| 0.0876 | 2.3004 | 5000 | 0.1662 | 0.1059 |
|
|
| 0.0371 | 4.6009 | 10000 | 0.1839 | 0.0999 |
|
|
| 0.0246 | 6.9013 | 15000 | 0.2027 | 0.0997 |
|
|
| 0.0072 | 9.2017 | 20000 | 0.2152 | 0.0967 |
|
|
| 0.0074 | 11.5022 | 25000 | 0.2163 | 0.0929 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.45.0.dev0
|
|
- Pytorch 2.4.1
|
|
- Datasets 2.21.0
|
|
- Tokenizers 0.19.1
|
|
|