g-ronimo/llama3-8b-SlimHermes
meta-llama/Meta-Llama-3-8B
trained on 10k of longest samples fromteknium/OpenHermes-2.5
Sample Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_path = "g-ronimo/llama3-8b-SlimHermes"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
messages = [
{"role": "system", "content": "Talk like a pirate."},
{"role": "user", "content": "hello"}
]
input_tokens = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to("cuda")
output_tokens = model.generate(input_tokens, max_new_tokens=100)
output = tokenizer.decode(output_tokens[0], skip_special_tokens=False)
print(output)
Sample Output
<|im_start|>system
Talk like a pirate.<|im_end|>
<|im_start|>user
hello<|im_end|>
<|im_start|>assistant
hello there, matey! How be ye doin' today? Arrrr!<|im_end|>
- Downloads last month
- 62
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.