metadata
library_name: transformers
tags:
- generated_from_trainer
- trl
- sft
base_model: HuggingFaceTB/SmolLM-1.7B-Instruct
datasets: gabrielmbmb/ifeval-trl
model_name: SmolLM-1.7B-Instruct-IFEval
licence: license
model-index:
- name: SmolLM-1.7B-Instruct-IFEval
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 23.06
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gabrielmbmb/SmolLM-1.7B-Instruct-IFEval
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 4.5
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gabrielmbmb/SmolLM-1.7B-Instruct-IFEval
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gabrielmbmb/SmolLM-1.7B-Instruct-IFEval
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0.45
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gabrielmbmb/SmolLM-1.7B-Instruct-IFEval
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.6
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gabrielmbmb/SmolLM-1.7B-Instruct-IFEval
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.73
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gabrielmbmb/SmolLM-1.7B-Instruct-IFEval
name: Open LLM Leaderboard
Model Card for SmolLM-1.7B-Instruct-IFEval
This model is a fine-tuned version of HuggingFaceTB/SmolLM-1.7B-Instruct on the gabrielmbmb/ifeval-trl dataset. It has been trained using TRL.
Quick start
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="gabrielmbmb/SmolLM-1.7B-Instruct-IFEval", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
Training procedure
This model was trained with SFT.
Framework versions
- TRL: 0.12.0.dev0
- Transformers: 4.45.1
- Pytorch: 2.4.1
- Datasets: 3.0.1
- Tokenizers: 0.20.0
Citations
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 5.22 |
IFEval (0-Shot) | 23.06 |
BBH (3-Shot) | 4.50 |
MATH Lvl 5 (4-Shot) | 0.00 |
GPQA (0-shot) | 0.45 |
MuSR (0-shot) | 1.60 |
MMLU-PRO (5-shot) | 1.73 |