metadata
library_name: peft
base_model: HuggingFaceTB/smollm2-1.7B-8k-mix7-ep2-v2
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: smollm2-1.7B-8k-mix7-ep2-v2-qlora-r16-a16-lr3e4-mix1-dpo
results: []
smollm2-1.7B-8k-mix7-ep2-v2-qlora-r16-a16-lr3e4-mix1-dpo
This model is a fine-tuned version of gabrielmbmb/smollm2-1.7B-8k-mix7-ep2-v2-qlora-r16-a16-lr3e4-mix1 on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.5156
- Rewards/chosen: -4.3948
- Rewards/rejected: -5.4305
- Rewards/accuracies: 0.7656
- Rewards/margins: 1.0357
- Logps/rejected: -849.2994
- Logps/chosen: -752.2209
- Logits/rejected: -1.2614
- Logits/chosen: -1.2341
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5629 | 0.2093 | 100 | 0.5765 | -2.2363 | -2.7515 | 0.7227 | 0.5152 | -581.3958 | -536.3666 | -1.6836 | -1.6572 |
0.5499 | 0.4186 | 200 | 0.5310 | -3.6681 | -4.4704 | 0.7734 | 0.8022 | -753.2846 | -679.5535 | -0.8209 | -0.8334 |
0.511 | 0.6279 | 300 | 0.5225 | -4.8153 | -5.7685 | 0.7695 | 0.9532 | -883.0991 | -794.2732 | -1.1394 | -1.1157 |
0.508 | 0.8373 | 400 | 0.5157 | -4.3456 | -5.3593 | 0.7695 | 1.0137 | -842.1772 | -747.2964 | -1.2109 | -1.1871 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.0
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.20.1