|
--- |
|
library_name: peft |
|
base_model: HuggingFaceTB/smollm2-1.7B-8k-mix7-ep2-v2 |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- dpo |
|
- generated_from_trainer |
|
datasets: |
|
- HuggingFaceH4/ultrafeedback_binarized |
|
model-index: |
|
- name: smollm2-1.7B-8k-mix7-ep2-v2-qlora-r16-a16-lr3e4-mix1-dpo |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# smollm2-1.7B-8k-mix7-ep2-v2-qlora-r16-a16-lr3e4-mix1-dpo |
|
|
|
This model is a fine-tuned version of [gabrielmbmb/smollm2-1.7B-8k-mix7-ep2-v2-qlora-r16-a16-lr3e4-mix1](https://huggingface.co/gabrielmbmb/smollm2-1.7B-8k-mix7-ep2-v2-qlora-r16-a16-lr3e4-mix1) on the HuggingFaceH4/ultrafeedback_binarized dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5156 |
|
- Rewards/chosen: -4.3948 |
|
- Rewards/rejected: -5.4305 |
|
- Rewards/accuracies: 0.7656 |
|
- Rewards/margins: 1.0357 |
|
- Logps/rejected: -849.2994 |
|
- Logps/chosen: -752.2209 |
|
- Logits/rejected: -1.2614 |
|
- Logits/chosen: -1.2341 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |
|
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| |
|
| 0.5629 | 0.2093 | 100 | 0.5765 | -2.2363 | -2.7515 | 0.7227 | 0.5152 | -581.3958 | -536.3666 | -1.6836 | -1.6572 | |
|
| 0.5499 | 0.4186 | 200 | 0.5310 | -3.6681 | -4.4704 | 0.7734 | 0.8022 | -753.2846 | -679.5535 | -0.8209 | -0.8334 | |
|
| 0.511 | 0.6279 | 300 | 0.5225 | -4.8153 | -5.7685 | 0.7695 | 0.9532 | -883.0991 | -794.2732 | -1.1394 | -1.1157 | |
|
| 0.508 | 0.8373 | 400 | 0.5157 | -4.3456 | -5.3593 | 0.7695 | 1.0137 | -842.1772 | -747.2964 | -1.2109 | -1.1871 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.13.2 |
|
- Transformers 4.45.0 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.20.1 |