EC-SelfSupervision
Collection
10 items
•
Updated
This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
---|---|---|---|---|---|---|
1.1024 | 0.75 | 500 | 0.7890 | 0.6854 | 0.4813 | 0.5502 |
0.8788 | 1.51 | 1000 | 0.7176 | 0.6906 | 0.4989 | 0.5638 |
0.8086 | 2.26 | 1500 | 0.6830 | 0.6872 | 0.5052 | 0.5663 |
0.7818 | 3.02 | 2000 | 0.6650 | 0.6912 | 0.5104 | 0.5711 |
0.7466 | 3.77 | 2500 | 0.6458 | 0.6965 | 0.5167 | 0.5774 |
0.731 | 4.52 | 3000 | 0.6355 | 0.6955 | 0.5161 | 0.5763 |
0.7126 | 5.28 | 3500 | 0.6249 | 0.6924 | 0.517 | 0.576 |
0.6998 | 6.03 | 4000 | 0.6166 | 0.6995 | 0.5207 | 0.5809 |
0.6855 | 6.79 | 4500 | 0.6076 | 0.6981 | 0.5215 | 0.5813 |
0.676 | 7.54 | 5000 | 0.6015 | 0.7003 | 0.5242 | 0.5836 |
0.6688 | 8.3 | 5500 | 0.5962 | 0.7004 | 0.5235 | 0.583 |
0.6569 | 9.05 | 6000 | 0.5900 | 0.6997 | 0.5234 | 0.5827 |
0.6503 | 9.8 | 6500 | 0.5880 | 0.703 | 0.5257 | 0.5856 |
0.6455 | 10.56 | 7000 | 0.5818 | 0.7008 | 0.5259 | 0.5849 |
0.635 | 11.31 | 7500 | 0.5796 | 0.7017 | 0.5271 | 0.5861 |
0.6323 | 12.07 | 8000 | 0.5769 | 0.7053 | 0.5276 | 0.5877 |
0.6241 | 12.82 | 8500 | 0.5730 | 0.7011 | 0.5243 | 0.5838 |
0.6224 | 13.57 | 9000 | 0.5696 | 0.7046 | 0.5286 | 0.5879 |
0.6139 | 14.33 | 9500 | 0.5685 | 0.7047 | 0.5295 | 0.5886 |
0.6118 | 15.08 | 10000 | 0.5653 | 0.704 | 0.5297 | 0.5886 |
0.6089 | 15.84 | 10500 | 0.5633 | 0.703 | 0.5272 | 0.5865 |
0.598 | 16.59 | 11000 | 0.5613 | 0.7059 | 0.5293 | 0.5889 |
0.6003 | 17.35 | 11500 | 0.5602 | 0.7085 | 0.532 | 0.5918 |
0.5981 | 18.1 | 12000 | 0.5587 | 0.7106 | 0.5339 | 0.5938 |
0.5919 | 18.85 | 12500 | 0.5556 | 0.708 | 0.5319 | 0.5914 |
0.5897 | 19.61 | 13000 | 0.5556 | 0.7106 | 0.5327 | 0.5931 |
0.5899 | 20.36 | 13500 | 0.5526 | 0.7114 | 0.534 | 0.5939 |
0.5804 | 21.12 | 14000 | 0.5521 | 0.7105 | 0.5328 | 0.5928 |
0.5764 | 21.87 | 14500 | 0.5520 | 0.715 | 0.537 | 0.5976 |
0.5793 | 22.62 | 15000 | 0.5506 | 0.713 | 0.5346 | 0.5951 |
0.5796 | 23.38 | 15500 | 0.5492 | 0.7124 | 0.5352 | 0.5952 |
0.5672 | 24.13 | 16000 | 0.5482 | 0.7124 | 0.5346 | 0.5948 |
0.5737 | 24.89 | 16500 | 0.5470 | 0.7134 | 0.5352 | 0.5956 |
0.5685 | 25.64 | 17000 | 0.5463 | 0.7117 | 0.5346 | 0.5946 |
0.5658 | 26.4 | 17500 | 0.5457 | 0.7145 | 0.5359 | 0.5965 |
0.5657 | 27.15 | 18000 | 0.5447 | 0.7145 | 0.5367 | 0.597 |
0.5645 | 27.9 | 18500 | 0.5441 | 0.7141 | 0.5362 | 0.5964 |
0.565 | 28.66 | 19000 | 0.5436 | 0.7151 | 0.5367 | 0.5972 |
0.5579 | 29.41 | 19500 | 0.5426 | 0.7162 | 0.5378 | 0.5982 |
0.563 | 30.17 | 20000 | 0.5424 | 0.7155 | 0.5373 | 0.5977 |
0.556 | 30.92 | 20500 | 0.5418 | 0.7148 | 0.536 | 0.5966 |
0.5576 | 31.67 | 21000 | 0.5411 | 0.7141 | 0.5356 | 0.5961 |
0.5546 | 32.43 | 21500 | 0.5409 | 0.7149 | 0.5364 | 0.5967 |
0.556 | 33.18 | 22000 | 0.5405 | 0.7143 | 0.5356 | 0.596 |
0.5536 | 33.94 | 22500 | 0.5401 | 0.7165 | 0.5377 | 0.5982 |
0.5527 | 34.69 | 23000 | 0.5397 | 0.7188 | 0.5389 | 0.5999 |
0.5531 | 35.44 | 23500 | 0.5395 | 0.7172 | 0.538 | 0.5989 |
0.5508 | 36.2 | 24000 | 0.5392 | 0.7166 | 0.538 | 0.5985 |
0.5495 | 36.95 | 24500 | 0.5391 | 0.7176 | 0.5387 | 0.5993 |
0.5539 | 37.71 | 25000 | 0.5391 | 0.7169 | 0.5372 | 0.598 |
0.5452 | 38.46 | 25500 | 0.5390 | 0.7179 | 0.5384 | 0.5991 |
0.5513 | 39.22 | 26000 | 0.5390 | 0.717 | 0.5377 | 0.5984 |
0.5506 | 39.97 | 26500 | 0.5389 | 0.7165 | 0.5375 | 0.5981 |