sft_full

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the healthcaremagic dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7460

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 512
  • total_eval_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
1.2093 2.8429 500 1.7462

Evaluation results

Name Checkpoint Rouge1 RougeL Meteor Bert Score
baseline instruct model Meta-Llama-3-8B-Instruct 0.254 0.128 0.222 0.747
full fientune from inst sft_llama3_instruct_full 0.315 0.189 0.238 0.782
lora sft from inst sft_llama3_instruct_lora_all 0.271 0.143 0.194 0.774
lora sft from base sft_llama3_lora_all 0.239 0.113 0.211 0.735
qlora sft from inst sft_llama3_instruct_qlora_all 0.137 0.071 0.102 0.679
qlora sft from base sft_llama3_qlora_all 0.192 0.090 0.159 0.718

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
13
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for geshijoker/HealthCareMagic_sft_llama3_instruct_full

Finetuned
(512)
this model
Quantizations
1 model

Collection including geshijoker/HealthCareMagic_sft_llama3_instruct_full