|
<div align="center"> |
|
<img src="resources/mmdet3d-logo.png" width="600"/> |
|
<div> </div> |
|
<div align="center"> |
|
<b><font size="5">OpenMMLab 官网</font></b> |
|
<sup> |
|
<a href="https://openmmlab.com"> |
|
<i><font size="4">HOT</font></i> |
|
</a> |
|
</sup> |
|
|
|
<b><font size="5">OpenMMLab 开放平台</font></b> |
|
<sup> |
|
<a href="https://platform.openmmlab.com"> |
|
<i><font size="4">TRY IT OUT</font></i> |
|
</a> |
|
</sup> |
|
</div> |
|
<div> </div> |
|
|
|
[![PyPI](https://img.shields.io/pypi/v/mmdet3d)](https://pypi.org/project/mmdet3d) |
|
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/zh_CN/latest/) |
|
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions) |
|
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d) |
|
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/main/LICENSE) |
|
[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues) |
|
[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/issues) |
|
|
|
[📘使用文档](https://mmdetection3d.readthedocs.io/zh_CN/latest/) | |
|
[🛠️安装教程](https://mmdetection3d.readthedocs.io/zh_CN/latest/get_started.html) | |
|
[👀模型库](https://mmdetection3d.readthedocs.io/zh_CN/latest/model_zoo.html) | |
|
[🆕更新日志](https://mmdetection3d.readthedocs.io/en/latest/notes/changelog.html) | |
|
[🚀进行中的项目](https://github.com/open-mmlab/mmdetection3d/projects) | |
|
[🤔报告问题](https://github.com/open-mmlab/mmdetection3d/issues/new/choose) |
|
|
|
</div> |
|
|
|
<div align="center"> |
|
|
|
[English](README.md) | 简体中文 |
|
|
|
</div> |
|
|
|
<div align="center"> |
|
<a href="https://openmmlab.medium.com/" style="text-decoration:none;"> |
|
<img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a> |
|
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> |
|
<a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;"> |
|
<img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a> |
|
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> |
|
<a href="https://twitter.com/OpenMMLab" style="text-decoration:none;"> |
|
<img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a> |
|
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> |
|
<a href="https://www.youtube.com/openmmlab" style="text-decoration:none;"> |
|
<img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a> |
|
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> |
|
<a href="https://space.bilibili.com/1293512903" style="text-decoration:none;"> |
|
<img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a> |
|
<img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" /> |
|
<a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;"> |
|
<img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a> |
|
</div> |
|
|
|
## 简介 |
|
|
|
MMDetection3D 是一个基于 PyTorch 的目标检测开源工具箱,下一代面向 3D 检测的平台。它是 [OpenMMlab](https://openmmlab.com/) 项目的一部分。 |
|
|
|
主分支代码目前支持 PyTorch 1.8 以上的版本。 |
|
|
|
![demo image](resources/mmdet3d_outdoor_demo.gif) |
|
|
|
<details open> |
|
<summary>主要特性</summary> |
|
|
|
- **支持多模态/单模态的检测器** |
|
|
|
支持多模态/单模态检测器,包括 MVXNet,VoteNet,PointPillars 等。 |
|
|
|
- **支持户内/户外的数据集** |
|
|
|
支持室内/室外的 3D 检测数据集,包括 ScanNet,SUNRGB-D,Waymo,nuScenes,Lyft,KITTI。对于 nuScenes 数据集,我们也支持 [nuImages 数据集](https://github.com/open-mmlab/mmdetection3d/tree/main/configs/nuimages)。 |
|
|
|
- **与 2D 检测器的自然整合** |
|
|
|
[MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/zh_cn/model_zoo.md) 支持的 **300+ 个模型,40+ 的论文算法**,和相关模块都可以在此代码库中训练或使用。 |
|
|
|
- **性能高** |
|
|
|
训练速度比其他代码库更快。下表可见主要的对比结果。更多的细节可见[基准测评文档](./docs/zh_cn/notes/benchmarks.md)。我们对比了每秒训练的样本数(值越高越好)。其他代码库不支持的模型被标记为 `✗`。 |
|
|
|
| Methods | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) | [votenet](https://github.com/facebookresearch/votenet) | [Det3D](https://github.com/poodarchu/Det3D) | |
|
| :-----------------: | :-----------: | :--------------------------------------------------: | :----------------------------------------------------: | :-----------------------------------------: | |
|
| VoteNet | 358 | ✗ | 77 | ✗ | |
|
| PointPillars-car | 141 | ✗ | ✗ | 140 | |
|
| PointPillars-3class | 107 | 44 | ✗ | ✗ | |
|
| SECOND | 40 | 30 | ✗ | ✗ | |
|
| Part-A2 | 17 | 14 | ✗ | ✗ | |
|
|
|
</details> |
|
|
|
和 [MMDetection](https://github.com/open-mmlab/mmdetection),[MMCV](https://github.com/open-mmlab/mmcv) 一样,MMDetection3D 也可以作为一个库去支持各式各样的项目。 |
|
|
|
## 最新进展 |
|
|
|
### 亮点 |
|
|
|
在1.4版本中,MMDetecion3D 重构了 Waymo 数据集, 加速了 Waymo 数据集的预处理、训练/测试启动、验证的速度。并且在 Waymo 上拓展了对 单目/BEV 等基于相机的三维目标检测模型的支持。在[这里](https://mmdetection3d.readthedocs.io/en/latest/advanced_guides/datasets/waymo.html)提供了对 Waymo 数据信息的详细解读。 |
|
|
|
此外,在1.4版本中,MMDetection3D 提供了 [Waymo-mini](https://download.openmmlab.com/mmdetection3d/data/waymo_mmdet3d_after_1x4/waymo_mini.tar.gz) 来帮助社区用户上手 Waymo 并用于快速迭代开发。 |
|
|
|
**v1.4.0** 版本已经在 2024.1.8 发布: |
|
|
|
- 在 `projects` 中支持了 [DSVT](<(https://arxiv.org/abs/2301.06051)>) 的训练 |
|
- 在 `projects` 中支持了 [Nerf-Det](https://arxiv.org/abs/2307.14620) |
|
- 重构了 Waymo 数据集 |
|
|
|
**v1.3.0** 版本已经在 2023.10.18 发布: |
|
|
|
- 在 `projects` 中支持 [CENet](https://arxiv.org/abs/2207.12691) |
|
- 使用新的 3D inferencers 增强演示代码效果 |
|
|
|
**v1.2.0** 版本已经在 2023.7.4 发布: |
|
|
|
- 在 `mmdet3d/configs`中支持 [新Config样式](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#a-pure-python-style-configuration-file-beta) |
|
- 在 `projects` 中支持 [DSVT](<(https://arxiv.org/abs/2301.06051)>) 的推理 |
|
- 支持通过 `mim` 从 [OpenDataLab](https://opendatalab.com/) 下载数据集 |
|
|
|
**v1.1.1** 版本已经在 2023.5.30 发布: |
|
|
|
- 在 `projects` 中支持 [TPVFormer](https://arxiv.org/pdf/2302.07817.pdf) |
|
- 在 `projects` 中支持 BEVFusion 的训练 |
|
- 支持基于激光雷达的 3D 语义分割基准 |
|
|
|
## 安装 |
|
|
|
请参考[快速入门文档](https://mmdetection3d.readthedocs.io/zh_CN/latest/get_started.html)进行安装。 |
|
|
|
## 教程 |
|
|
|
<details> |
|
<summary>用户指南</summary> |
|
|
|
- [训练 & 测试](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/index.html#train-test) |
|
- [学习配置文件](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/config.html) |
|
- [坐标系](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/coord_sys_tutorial.html) |
|
- [数据预处理](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/dataset_prepare.html) |
|
- [自定义数据预处理流程](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/data_pipeline.html) |
|
- [在标注数据集上测试和训练](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/train_test.html) |
|
- [推理](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/inference.html) |
|
- [在自定义数据集上进行训练](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/new_data_model.html) |
|
- [实用工具](https://mmdetection3d.readthedocs.io/zh_CN/latest/user_guides/index.html#useful-tools) |
|
|
|
</details> |
|
|
|
<details> |
|
<summary>进阶教程</summary> |
|
|
|
- [数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/index.html#datasets) |
|
- [KITTI 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/kitti.html) |
|
- [NuScenes 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/nuscenes.html) |
|
- [Lyft 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/lyft.html) |
|
- [Waymo 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/waymo.html) |
|
- [SUN RGB-D 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/sunrgbd.html) |
|
- [ScanNet 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/scannet.html) |
|
- [S3DIS 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/s3dis.html) |
|
- [SemanticKITTI 数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/datasets/semantickitti.html) |
|
- [支持的任务](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/index.html#supported-tasks) |
|
- [基于激光雷达的 3D 检测](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/supported_tasks/lidar_det3d.html) |
|
- [基于视觉的 3D 检测](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/supported_tasks/vision_det3d.html) |
|
- [基于激光雷达的 3D 语义分割](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/supported_tasks/lidar_sem_seg3d.html) |
|
- [自定义项目](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/index.html#customization) |
|
- [自定义数据集](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/customize_dataset.html) |
|
- [自定义模型](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/customize_models.html) |
|
- [自定义运行时配置](https://mmdetection3d.readthedocs.io/zh_CN/latest/advanced_guides/customize_runtime.html) |
|
|
|
</details> |
|
|
|
## 基准测试和模型库 |
|
|
|
测试结果和模型可以在[模型库](docs/zh_cn/model_zoo.md)中找到。 |
|
|
|
<div align="center"> |
|
<b>模块组件</b> |
|
</div> |
|
<table align="center"> |
|
<tbody> |
|
<tr align="center" valign="bottom"> |
|
<td> |
|
<b>主干网络</b> |
|
</td> |
|
<td> |
|
<b>检测头</b> |
|
</td> |
|
<td> |
|
<b>特性</b> |
|
</td> |
|
</tr> |
|
<tr valign="top"> |
|
<td> |
|
<ul> |
|
<li><a href="configs/pointnet2">PointNet (CVPR'2017)</a></li> |
|
<li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li> |
|
<li><a href="configs/regnet">RegNet (CVPR'2020)</a></li> |
|
<li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li> |
|
<li>DLA (CVPR'2018)</li> |
|
<li>MinkResNet (CVPR'2019)</li> |
|
<li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li> |
|
<li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li> |
|
</ul> |
|
</td> |
|
<td> |
|
<ul> |
|
<li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li> |
|
</ul> |
|
</td> |
|
<td> |
|
<ul> |
|
<li><a href="configs/dynamic_voxelization">Dynamic Voxelization (CoRL'2019)</a></li> |
|
</ul> |
|
</td> |
|
</tr> |
|
</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
<div align="center"> |
|
<b>算法模型</b> |
|
</div> |
|
<table align="center"> |
|
<tbody> |
|
<tr align="center" valign="middle"> |
|
<td> |
|
<b>激光雷达 3D 目标检测</b> |
|
</td> |
|
<td> |
|
<b>相机 3D 目标检测</b> |
|
</td> |
|
<td> |
|
<b>多模态 3D 目标检测</b> |
|
</td> |
|
<td> |
|
<b>3D 语义分割</b> |
|
</td> |
|
</tr> |
|
<tr valign="top"> |
|
<td> |
|
<li><b>室外</b></li> |
|
<ul> |
|
<li><a href="configs/second">SECOND (Sensor'2018)</a></li> |
|
<li><a href="configs/pointpillars">PointPillars (CVPR'2019)</a></li> |
|
<li><a href="configs/ssn">SSN (ECCV'2020)</a></li> |
|
<li><a href="configs/3dssd">3DSSD (CVPR'2020)</a></li> |
|
<li><a href="configs/sassd">SA-SSD (CVPR'2020)</a></li> |
|
<li><a href="configs/point_rcnn">PointRCNN (CVPR'2019)</a></li> |
|
<li><a href="configs/parta2">Part-A2 (TPAMI'2020)</a></li> |
|
<li><a href="configs/centerpoint">CenterPoint (CVPR'2021)</a></li> |
|
<li><a href="configs/pv_rcnn">PV-RCNN (CVPR'2020)</a></li> |
|
<li><a href="projects/CenterFormer">CenterFormer (ECCV'2022)</a></li> |
|
</ul> |
|
<li><b>室内</b></li> |
|
<ul> |
|
<li><a href="configs/votenet">VoteNet (ICCV'2019)</a></li> |
|
<li><a href="configs/h3dnet">H3DNet (ECCV'2020)</a></li> |
|
<li><a href="configs/groupfree3d">Group-Free-3D (ICCV'2021)</a></li> |
|
<li><a href="configs/fcaf3d">FCAF3D (ECCV'2022)</a></li> |
|
<li><a href="projects/TR3D">TR3D (ArXiv'2023)</a></li> |
|
</ul> |
|
</td> |
|
<td> |
|
<li><b>室外</b></li> |
|
<ul> |
|
<li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li> |
|
<li><a href="configs/smoke">SMOKE (CVPRW'2020)</a></li> |
|
<li><a href="configs/fcos3d">FCOS3D (ICCVW'2021)</a></li> |
|
<li><a href="configs/pgd">PGD (CoRL'2021)</a></li> |
|
<li><a href="configs/monoflex">MonoFlex (CVPR'2021)</a></li> |
|
<li><a href="projects/DETR3D">DETR3D (CoRL'2021)</a></li> |
|
<li><a href="projects/PETR">PETR (ECCV'2022)</a></li> |
|
</ul> |
|
<li><b>Indoor</b></li> |
|
<ul> |
|
<li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li> |
|
</ul> |
|
</td> |
|
<td> |
|
<li><b>室外</b></li> |
|
<ul> |
|
<li><a href="configs/mvxnet">MVXNet (ICRA'2019)</a></li> |
|
<li><a href="projects/BEVFusion">BEVFusion (ICRA'2023)</a></li> |
|
</ul> |
|
<li><b>室内</b></li> |
|
<ul> |
|
<li><a href="configs/imvotenet">ImVoteNet (CVPR'2020)</a></li> |
|
</ul> |
|
</td> |
|
<td> |
|
<li><b>室外</b></li> |
|
<ul> |
|
<li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li> |
|
<li><a href="configs/spvcnn">SPVCNN (ECCV'2020)</a></li> |
|
<li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li> |
|
<li><a href="projects/TPVFormer">TPVFormer (CVPR'2023)</a></li> |
|
</ul> |
|
<li><b>室内</b></li> |
|
<ul> |
|
<li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li> |
|
<li><a href="configs/paconv">PAConv (CVPR'2021)</a></li> |
|
<li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li> |
|
</ul> |
|
</ul> |
|
</td> |
|
</tr> |
|
</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
| | ResNet | VoVNet | Swin-T | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet | Cylinder3D | MinkUNet | |
|
| :-----------: | :----: | :----: | :----: | :--------: | :----: | :---: | :-----: | :-: | :--------: | :--------: | :------: | |
|
| SECOND | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| PointPillars | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | |
|
| FreeAnchor | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | |
|
| VoteNet | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| H3DNet | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| 3DSSD | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| Part-A2 | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| MVXNet | ✓ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| CenterPoint | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| SSN | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | |
|
| ImVoteNet | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| FCOS3D | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| PointNet++ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| Group-Free-3D | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| ImVoxelNet | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| PAConv | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| DGCNN | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| SMOKE | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | |
|
| PGD | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| MonoFlex | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | |
|
| SA-SSD | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| FCAF3D | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | |
|
| PV-RCNN | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| Cylinder3D | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | |
|
| MinkUNet | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | |
|
| SPVCNN | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | |
|
| BEVFusion | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| CenterFormer | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| TR3D | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | |
|
| DETR3D | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| PETR | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
| TPVFormer | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | |
|
|
|
**注意:**[MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/zh_cn/model_zoo.md) 支持的基于 2D 检测的 **300+ 个模型,40+ 的论文算法**在 MMDetection3D 中都可以被训练或使用。 |
|
|
|
## 常见问题 |
|
|
|
请参考 [FAQ](docs/zh_cn/notes/faq.md) 了解其他用户的常见问题。 |
|
|
|
## 贡献指南 |
|
|
|
我们感谢所有的贡献者为改进和提升 MMDetection3D 所作出的努力。请参考[贡献指南](docs/en/notes/contribution_guides.md)来了解参与项目贡献的相关指引。 |
|
|
|
## 致谢 |
|
|
|
MMDetection3D 是一款由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。我们希望这个工具箱和基准测试可以为社区提供灵活的代码工具,供用户复现已有算法并开发自己的新的 3D 检测模型。 |
|
|
|
## 引用 |
|
|
|
如果你觉得本项目对你的研究工作有所帮助,请参考如下 bibtex 引用 MMdetection3D: |
|
|
|
```latex |
|
@misc{mmdet3d2020, |
|
title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection}, |
|
author={MMDetection3D Contributors}, |
|
howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}}, |
|
year={2020} |
|
} |
|
``` |
|
|
|
## 开源许可证 |
|
|
|
该项目采用 [Apache 2.0 开源许可证](LICENSE)。 |
|
|
|
## OpenMMLab 的其他项目 |
|
|
|
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab 深度学习模型训练基础库 |
|
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab 计算机视觉基础库 |
|
- [MMEval](https://github.com/open-mmlab/mmeval): 统一开放的跨框架算法评测库 |
|
- [MIM](https://github.com/open-mmlab/mim): MIM 是 OpenMMlab 项目、算法、模型的统一入口 |
|
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab 深度学习预训练工具箱 |
|
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab 目标检测工具箱 |
|
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab 新一代通用 3D 目标检测平台 |
|
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab 旋转框检测工具箱与测试基准 |
|
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO 系列工具箱与测试基准 |
|
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab 语义分割工具箱 |
|
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab 全流程文字检测识别理解工具包 |
|
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab 姿态估计工具箱 |
|
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 人体参数化模型工具箱与测试基准 |
|
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab 自监督学习工具箱与测试基准 |
|
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab 模型压缩工具箱与测试基准 |
|
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab 少样本学习工具箱与测试基准 |
|
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab 新一代视频理解工具箱 |
|
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab 一体化视频目标感知平台 |
|
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab 光流估计工具箱与测试基准 |
|
- [MMagic](https://github.com/open-mmlab/mmagic): OpenMMLab 新一代人工智能内容生成(AIGC)工具箱 |
|
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab 图片视频生成模型工具箱 |
|
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab 模型部署框架 |
|
|
|
## 欢迎加入 OpenMMLab 社区 |
|
|
|
扫描下方的二维码可关注 OpenMMLab 团队的 [知乎官方账号](https://www.zhihu.com/people/openmmlab),扫描下方微信二维码添加喵喵好友,进入 MMDetection3D 微信交流社群。【加好友申请格式:研究方向+地区+学校/公司+姓名】 |
|
|
|
<div align="center"> |
|
<img src="https://user-images.githubusercontent.com/58739961/187154320-f3312cdf-31f2-4316-9dbb-8d7b0e1b7e08.jpg" height="400" /> <img src="https://github.com/open-mmlab/mmdetection3d/assets/62195058/dfb3f6a9-25c6-47a5-936b-3f1d7347a42b" height="400" /> |
|
</div> |
|
|
|
我们会在 OpenMMLab 社区为大家 |
|
|
|
- 📢 分享 AI 框架的前沿核心技术 |
|
- 💻 解读 PyTorch 常用模块源码 |
|
- 📰 发布 OpenMMLab 的相关新闻 |
|
- 🚀 介绍 OpenMMLab 开发的前沿算法 |
|
- 🏃 获取更高效的问题答疑和意见反馈 |
|
- 🔥 提供与各行各业开发者充分交流的平台 |
|
|
|
干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬 |
|
|