gokuls's picture
End of training
552eae0
metadata
base_model: gokuls/HBERTv1_48_L4_H256_A4
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: HBERTv1_48_L4_H256_A4_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8401377274963109

HBERTv1_48_L4_H256_A4_massive

This model is a fine-tuned version of gokuls/HBERTv1_48_L4_H256_A4 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7151
  • Accuracy: 0.8401

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.206 1.0 180 2.2341 0.4579
1.8169 2.0 360 1.3642 0.6749
1.1697 3.0 540 1.0289 0.7423
0.8587 4.0 720 0.8583 0.7821
0.6723 5.0 900 0.8038 0.8008
0.5497 6.0 1080 0.7459 0.8101
0.4755 7.0 1260 0.7419 0.8146
0.3992 8.0 1440 0.7095 0.8278
0.336 9.0 1620 0.7278 0.8288
0.2956 10.0 1800 0.7151 0.8401
0.2593 11.0 1980 0.7130 0.8347
0.2301 12.0 2160 0.7215 0.8367
0.2038 13.0 2340 0.7191 0.8372
0.1881 14.0 2520 0.7273 0.8362
0.1766 15.0 2700 0.7256 0.8401

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.0