|
--- |
|
language: |
|
- en |
|
base_model: gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: hBERTv1_new_pretrain_w_init_48_ver2_mrpc |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE MRPC |
|
type: glue |
|
config: mrpc |
|
split: validation |
|
args: mrpc |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7181372549019608 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8099173553719009 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hBERTv1_new_pretrain_w_init_48_ver2_mrpc |
|
|
|
This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the GLUE MRPC dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5916 |
|
- Accuracy: 0.7181 |
|
- F1: 0.8099 |
|
- Combined Score: 0.7640 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 10 |
|
- distributed_type: multi-GPU |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| |
|
| 0.6666 | 1.0 | 58 | 0.6274 | 0.6912 | 0.8006 | 0.7459 | |
|
| 0.6239 | 2.0 | 116 | 0.5916 | 0.7181 | 0.8099 | 0.7640 | |
|
| 0.5981 | 3.0 | 174 | 0.6532 | 0.6225 | 0.7004 | 0.6615 | |
|
| 0.518 | 4.0 | 232 | 0.6251 | 0.7108 | 0.8059 | 0.7584 | |
|
| 0.3848 | 5.0 | 290 | 0.7553 | 0.6814 | 0.7869 | 0.7341 | |
|
| 0.2708 | 6.0 | 348 | 1.0696 | 0.6838 | 0.7994 | 0.7416 | |
|
| 0.2062 | 7.0 | 406 | 1.2159 | 0.6103 | 0.7145 | 0.6624 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 1.14.0a0+410ce96 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|