|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
library_name: transformers |
|
inference: false |
|
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico |
|
tags: |
|
- gpt |
|
- llm |
|
- large language model |
|
- open-source |
|
datasets: |
|
- h2oai/openassistant_oasst1 |
|
--- |
|
# h2oGPT Model Card |
|
## Summary |
|
|
|
H2O.ai's `h2ogpt-oasst1-512-12b` is a 12 billion parameter instruction-following large language model licensed for commercial use. |
|
|
|
- Base model: [EleutherAI/pythia-12b](https://huggingface.co/EleutherAI/pythia-12b) |
|
- Fine-tuning dataset: [h2oai/openassistant_oasst1](https://huggingface.co/datasets/h2oai/openassistant_oasst1) |
|
- Data-prep and fine-tuning code: [H2O.ai GitHub](https://github.com/h2oai/h2ogpt) |
|
- Training logs: [zip](https://huggingface.co/h2oai/h2ogpt-oasst1-512-12b/blob/main/pythia-12b.openassistant_oasst1.json.1_epochs.d45a9d34d34534e076cc6797614b322bd0efb11c.15.zip) |
|
|
|
## Chatbot |
|
|
|
- Run your own chatbot: [H2O.ai GitHub](https://github.com/h2oai/h2ogpt) |
|
[![H2O.ai GitHub](https://user-images.githubusercontent.com/6147661/232930822-e7170e4d-8aa1-4f7a-ad70-ece9cdd8b0cb.png)](https://github.com/h2oai/h2ogpt) |
|
|
|
## Usage |
|
|
|
To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers` and `accelerate` libraries installed. |
|
|
|
```bash |
|
pip install transformers==4.28.1 |
|
pip install accelerate==0.18.0 |
|
``` |
|
|
|
```python |
|
import torch |
|
from transformers import pipeline |
|
|
|
generate_text = pipeline(model="h2oai/h2ogpt-oasst1-512-12b", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") |
|
|
|
res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) |
|
print(res[0]["generated_text"]) |
|
``` |
|
|
|
Alternatively, if you prefer to not use `trust_remote_code=True` you can download [instruct_pipeline.py](https://huggingface.co/h2oai/h2ogpt-oasst1-512-12b/blob/main/h2oai_pipeline.py), |
|
store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer: |
|
|
|
```python |
|
import torch |
|
from h2oai_pipeline import H2OTextGenerationPipeline |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("h2oai/h2ogpt-oasst1-512-12b", padding_side="left") |
|
model = AutoModelForCausalLM.from_pretrained("h2oai/h2ogpt-oasst1-512-12b", torch_dtype=torch.bfloat16, device_map="auto") |
|
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) |
|
|
|
res = generate_text("Why is drinking water so healthy?", max_new_tokens=100) |
|
print(res[0]["generated_text"]) |
|
``` |
|
|
|
## Model Architecture |
|
|
|
``` |
|
GPTNeoXForCausalLM( |
|
(gpt_neox): GPTNeoXModel( |
|
(embed_in): Embedding(50688, 5120) |
|
(layers): ModuleList( |
|
(0-35): 36 x GPTNeoXLayer( |
|
(input_layernorm): LayerNorm((5120,), eps=1e-05, elementwise_affine=True) |
|
(post_attention_layernorm): LayerNorm((5120,), eps=1e-05, elementwise_affine=True) |
|
(attention): GPTNeoXAttention( |
|
(rotary_emb): RotaryEmbedding() |
|
(query_key_value): Linear(in_features=5120, out_features=15360, bias=True) |
|
(dense): Linear(in_features=5120, out_features=5120, bias=True) |
|
) |
|
(mlp): GPTNeoXMLP( |
|
(dense_h_to_4h): Linear(in_features=5120, out_features=20480, bias=True) |
|
(dense_4h_to_h): Linear(in_features=20480, out_features=5120, bias=True) |
|
(act): GELUActivation() |
|
) |
|
) |
|
) |
|
(final_layer_norm): LayerNorm((5120,), eps=1e-05, elementwise_affine=True) |
|
) |
|
(embed_out): Linear(in_features=5120, out_features=50688, bias=False) |
|
) |
|
``` |
|
|
|
## Model Configuration |
|
|
|
```json |
|
GPTNeoXConfig { |
|
"_name_or_path": "h2oai/h2ogpt-oasst1-512-12b", |
|
"architectures": [ |
|
"GPTNeoXForCausalLM" |
|
], |
|
"bos_token_id": 0, |
|
"custom_pipelines": { |
|
"text-generation": { |
|
"impl": "h2oai_pipeline.H2OTextGenerationPipeline", |
|
"pt": "AutoModelForCausalLM" |
|
} |
|
}, |
|
"eos_token_id": 0, |
|
"hidden_act": "gelu", |
|
"hidden_size": 5120, |
|
"initializer_range": 0.02, |
|
"intermediate_size": 20480, |
|
"layer_norm_eps": 1e-05, |
|
"max_position_embeddings": 2048, |
|
"model_type": "gpt_neox", |
|
"num_attention_heads": 40, |
|
"num_hidden_layers": 36, |
|
"rotary_emb_base": 10000, |
|
"rotary_pct": 0.25, |
|
"tie_word_embeddings": false, |
|
"torch_dtype": "float16", |
|
"transformers_version": "4.28.1", |
|
"use_cache": true, |
|
"use_parallel_residual": true, |
|
"vocab_size": 50688 |
|
} |
|
|
|
``` |
|
|