|
--- |
|
license: mit |
|
base_model: facebook/xlm-v-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- massive |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: scenario-TCR-XLMV-1_data-AmazonScience_massive_all_1_1 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: massive |
|
type: massive |
|
config: all_1.1 |
|
split: validation |
|
args: all_1.1 |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8472984221877483 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8225956665149763 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# scenario-TCR-XLMV-1_data-AmazonScience_massive_all_1_1 |
|
|
|
This model is a fine-tuned version of [facebook/xlm-v-base](https://huggingface.co/facebook/xlm-v-base) on the massive dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7886 |
|
- Accuracy: 0.8473 |
|
- F1: 0.8226 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 47 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| |
|
| 0.587 | 0.27 | 5000 | 0.7148 | 0.8166 | 0.7696 | |
|
| 0.456 | 0.53 | 10000 | 0.6624 | 0.8415 | 0.8006 | |
|
| 0.3711 | 0.8 | 15000 | 0.6803 | 0.8394 | 0.8064 | |
|
| 0.2846 | 1.07 | 20000 | 0.7409 | 0.8406 | 0.8119 | |
|
| 0.2698 | 1.34 | 25000 | 0.7120 | 0.8428 | 0.8129 | |
|
| 0.2589 | 1.6 | 30000 | 0.7179 | 0.8478 | 0.8300 | |
|
| 0.246 | 1.87 | 35000 | 0.7383 | 0.8455 | 0.8119 | |
|
| 0.2079 | 2.14 | 40000 | 0.7911 | 0.8503 | 0.8162 | |
|
| 0.2157 | 2.41 | 45000 | 0.7775 | 0.8434 | 0.8251 | |
|
| 0.2111 | 2.67 | 50000 | 0.7737 | 0.8455 | 0.8196 | |
|
| 0.2014 | 2.94 | 55000 | 0.7886 | 0.8473 | 0.8226 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|