|
--- |
|
base_model: muchad/idt5-base |
|
library_name: peft |
|
license: apache-2.0 |
|
metrics: |
|
- rouge |
|
- bleu |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: idt5-base-ae_adapter |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# idt5-base-ae_adapter |
|
|
|
This model is a fine-tuned version of [muchad/idt5-base](https://huggingface.co/muchad/idt5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1132 |
|
- Rouge1: 0.3358 |
|
- Rouge2: 0.1831 |
|
- Rougel: 0.3088 |
|
- Rougelsum: 0.3109 |
|
- Bleu: 0.1408 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:------:| |
|
| 1.35 | 1.0 | 3390 | 1.2546 | 0.2972 | 0.1424 | 0.2697 | 0.2722 | 0.1256 | |
|
| 1.1749 | 2.0 | 6780 | 1.1832 | 0.3197 | 0.1655 | 0.2940 | 0.2961 | 0.1313 | |
|
| 1.1447 | 3.0 | 10170 | 1.1313 | 0.3279 | 0.1742 | 0.3024 | 0.3043 | 0.1372 | |
|
| 1.1106 | 4.0 | 13560 | 1.1294 | 0.3308 | 0.1790 | 0.3045 | 0.3065 | 0.1386 | |
|
| 1.0842 | 5.0 | 16950 | 1.1132 | 0.3358 | 0.1831 | 0.3088 | 0.3109 | 0.1408 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.13.2 |
|
- Transformers 4.45.1 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.0 |