|
---
|
|
library_name: hivex
|
|
original_train_name: DroneBasedReforestation_difficulty_4_task_2_run_id_1_train
|
|
tags:
|
|
- hivex
|
|
- hivex-drone-based-reforestation
|
|
- reinforcement-learning
|
|
- multi-agent-reinforcement-learning
|
|
model-index:
|
|
- name: hivex-DBR-PPO-baseline-task-2-difficulty-4
|
|
results:
|
|
- task:
|
|
type: sub-task
|
|
name: pick_up_seed_at_base
|
|
task-id: 2
|
|
difficulty-id: 4
|
|
dataset:
|
|
name: hivex-drone-based-reforestation
|
|
type: hivex-drone-based-reforestation
|
|
metrics:
|
|
- type: out_of_energy_count
|
|
value: 0.5909523957967758 +/- 0.09171894105446358
|
|
name: Out of Energy Count
|
|
verified: true
|
|
- type: recharge_energy_count
|
|
value: 125.54469884961844 +/- 115.46428296295271
|
|
name: Recharge Energy Count
|
|
verified: true
|
|
- type: cumulative_reward
|
|
value: 12.542430520057678 +/- 7.328528013270426
|
|
name: Cumulative Reward
|
|
verified: true
|
|
---
|
|
|
|
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task <code>2</code> with difficulty <code>4</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>Environment: **Drone-Based Reforestation**<br>Task: <code>2</code><br>Difficulty: <code>4</code><br>Algorithm: <code>PPO</code><br>Episode Length: <code>2000</code><br>Training <code>max_steps</code>: <code>1200000</code><br>Testing <code>max_steps</code>: <code>300000</code><br><br>Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>Download the [Environment](https://github.com/hivex-research/hivex-environments) |