hkivancoral's picture
End of training
acc1e1a
|
raw
history blame
4.87 kB
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_beit_large_sgd_0001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8768718801996672

smids_10x_beit_large_sgd_0001_fold2

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3022
  • Accuracy: 0.8769

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9337 1.0 750 0.9902 0.5025
0.7559 2.0 1500 0.8323 0.6206
0.6418 3.0 2250 0.7119 0.7205
0.6498 4.0 3000 0.6261 0.7737
0.5308 5.0 3750 0.5616 0.8020
0.5189 6.0 4500 0.5157 0.8186
0.4977 7.0 5250 0.4808 0.8303
0.4495 8.0 6000 0.4552 0.8369
0.4544 9.0 6750 0.4332 0.8303
0.4325 10.0 7500 0.4166 0.8336
0.4708 11.0 8250 0.4025 0.8419
0.4375 12.0 9000 0.3904 0.8419
0.3875 13.0 9750 0.3796 0.8486
0.338 14.0 10500 0.3718 0.8486
0.3613 15.0 11250 0.3643 0.8502
0.3159 16.0 12000 0.3576 0.8569
0.313 17.0 12750 0.3520 0.8602
0.3243 18.0 13500 0.3466 0.8619
0.3747 19.0 14250 0.3420 0.8619
0.3494 20.0 15000 0.3382 0.8652
0.3628 21.0 15750 0.3347 0.8652
0.2681 22.0 16500 0.3313 0.8686
0.3103 23.0 17250 0.3283 0.8686
0.3029 24.0 18000 0.3255 0.8686
0.3439 25.0 18750 0.3228 0.8686
0.363 26.0 19500 0.3205 0.8735
0.3457 27.0 20250 0.3186 0.8735
0.3118 28.0 21000 0.3168 0.8719
0.3203 29.0 21750 0.3151 0.8719
0.2897 30.0 22500 0.3135 0.8702
0.3287 31.0 23250 0.3118 0.8702
0.3672 32.0 24000 0.3107 0.8719
0.3139 33.0 24750 0.3101 0.8702
0.3173 34.0 25500 0.3088 0.8719
0.3321 35.0 26250 0.3079 0.8735
0.3146 36.0 27000 0.3071 0.8735
0.3221 37.0 27750 0.3062 0.8735
0.2973 38.0 28500 0.3058 0.8752
0.275 39.0 29250 0.3050 0.8752
0.3603 40.0 30000 0.3045 0.8752
0.3249 41.0 30750 0.3040 0.8752
0.3107 42.0 31500 0.3036 0.8752
0.2783 43.0 32250 0.3032 0.8752
0.2901 44.0 33000 0.3029 0.8752
0.3257 45.0 33750 0.3026 0.8752
0.2732 46.0 34500 0.3025 0.8752
0.3622 47.0 35250 0.3024 0.8769
0.3082 48.0 36000 0.3023 0.8769
0.2937 49.0 36750 0.3022 0.8769
0.3097 50.0 37500 0.3022 0.8769

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2